A Cross-Layer Review of Deep Learning
Frameworks to Ease Their Optimization and Reuse

Hamid Tabani*, Roger Pujol*T, Jaume Abella* and Francisco J. Cazorla*

* Barcelona Supercomputing Center

Abstract—Machine learning and especially Deep Learning
(DL) approaches are at the heart of many domains, from
computer vision and speech processing to predicting trajectories
in autonomous driving and data science. Those approaches
mainly build upon Neural Networks (NNs), which are compute-
intensive in nature. A plethora of frameworks, libraries and
platforms have been deployed for the implementation of those
NNs, but end users often lack guidance on what frameworks,
platforms and libraries to use to obtain the best implementation
for their particular needs. This paper analyzes the DL ecosystem
providing a structured view of some of the main frameworks,
platforms and libraries for DL implementation. We show how
those DL applications build ultimately on some form of linear
algebra operations such as matrix multiplication, vector addition,
dot product and the like. This analysis allows understanding
how optimizations of specific linear algebra functions for specific
platforms can be effectively leveraged to maximize specific targets
(e.g. performance or power-efficiency) at application level reusing
components across frameworks and domains.

Index Terms—Deep Learning, Frameworks, Linear Algebra

I. INTRODUCTION

Al and Deep Learning (DL) approaches are at the heart
of a variety of domains. Computer vision algorithms such
as image classification and object detection are just among
many algorithms that are built relying on DL since, in many
cases, DL approaches provide much higher accuracy than any
other alternative solution and, in some domains, they are the
only existing solution. Given the widespread use of these
approaches, the need for an accelerated Al development with a
seamless path from prototyping to deployment is inevitable. In
this context, DL frameworks offer access to building blocks for
designing, training, validating, and testing DL models, through
a high-level and simplified programming interface.

Widely used DL frameworks such as MXNet [1], Py-
Torch [2], TensorFlow [3], Keras [4], Caffe [5] and others
provide implementations for CPUs by using libraries such as
openBLAS [6], ATLAS [7] and Intel MKL [8], and imple-
mentations for GPUs with libraries such as cuBLAS [9] and
cuDNN [10] to deliver high-performance multi-GPU accel-
erated training. Developers can get easy access to optimized
DL framework containers from vendors such as NVIDIA. This
eliminates the need to manage packages and dependencies or
build DL frameworks from scratch.

While there are abundant frameworks, mostly building upon
Neural Networks (NNs), as well as target platforms and
platform-dependent libraries, each domain tends to focus on
specific frameworks, platforms and libraries, thus missing
opportunities for improved efficiency due to the lack of a
global view of the problem and the ecosystem of components.

T Universitat Politécnica de Catalunya

This paper analyzes the ecosystem of DL related compo-
nents providing a structured view to help end users understand
the landscape of choices available for their applications. Then,
by relating those components and analyzing their implementa-
tions, we show how cross-domain reuse may enable increased
efficiency for applications in different domains, and eases the
process of determining those few low-level operations that
need optimization for a given high-level goal.

II. DEEP LEARNING ECOSYSTEM STRUCTURED VIEW

In this section, we provide a structured top-down view of
the components for a DL based solution, spanning from the
top-level NNs regarded as appropriate for the target application
by end users, and reaching down to linear algebra operations
that ultimately implement those applications. Note that our
analysis aims at illustrating the different existing layers, but
not being exhaustive in any of those since the number and
type of frameworks, platforms and libraries is too large to be
exhaustively covered in this short paper.

The framework. The choice of the DL framework to use
is usually independent from the DL approach itself. Different
DL frameworks provide different advantages such as flexi-
bility, or simpler interfaces for instance. The users decide
what framework fits better their needs for the development
of their model. As an illustrative example, Keras [4] and
TensorFlow [3] are both very well-known frameworks. Keras
was developed to be more user-friendly with high-level APIs
and a modular structure. However, sometimes the user needs
to define something new such as a cost function, a metric, a
layer, etc. Although Keras has been designed to be flexible,
low-level libraries of TensorFlow provide further flexibility.

Most of the DL frameworks use similar libraries to perform
the low-level operations, and they mainly differ at higher
levels. For instance, unlike TensorFlow, the PyTorch frame-
work uses a dynamically updated graph, which allows the
user to make changes to the architecture in the process. Still,
TensorFlow has a level of abstraction similar to that of MXNet,
Theano, and PyTorch. In this level, mathematical operations
such as Generalized Matrix-Matrix multiplication and NN
primitives are implemented. Keras, instead, works at a higher
abstraction level where the lower level primitives are used to
implement NN abstractions such as various layers and models.
In general, other useful APIs such as model saving and model
training are implemented at this level.

The platform. Different frameworks offer implementations
for different hardware platforms, for both training and in-
ference. For instance, TensorFlow provides implementations



for both CPU and GPU, and the user can choose the target
hardware platform. The framework is then installed and run
on the chosen platform accordingly. In the case of some
specialized hardware platforms such as the NVIDIA Deep
Learning Accelerator (NVDLA), additional libraries are re-
quired to launch and manage the operations on the platform.
In the case of NVDLA, NVIDIA’s TensorRT [11] is used to
launch and manage the workloads on the NVDLA.

Low-level libraries. Once the hardware platform is se-
lected, a platform-dependent optimized library is used, which
includes the majority of the required low-level functions im-
plemented and optimized for that specific target platform. For
instance, ATLAS [7] and openBLAS [6] are two well-known
libraries for CPUs, as well as cuBLAS [9] and cuDNN [10]
for NVIDIA GPUs.

At this low level, different operations are performed by
calling the corresponding functions of a library providing their
required parameters. Such compute-intensive operations are
linear algebra operations (mostly matrix operations) whose
platform-dependent implementations are provided by the cor-
responding libraries. Normally, these implementations have
been optimized with average performance in mind.

III. A DEEPER VIEW OF THE LOW-LEVEL LIBRARIES

We have analyzed some of the most popular DL libraries
such as TensorFlow, Keras, MXNet, Caffe and PyTorch, as
illustrative examples of this type of frameworks, considering
both, CPU and GPU target platforms. The computations
are translated into operations such as vector addition, scalar
multiplication, dot products, linear combinations, and matrix
operations with different dimensions. DL frameworks do not
implement those operations directly but, instead, build upon
low-level libraries providing efficient implementations (mostly
targeting optimized average performance) for different CPU
and GPU target platforms.

So far, DL approaches have been mostly used for appli-
cations where the main concern is performance and energy,
with both objectives being achieved with almost identical
optimizations. This relates to the fact that, performing the
same computations in shorter time, as needed for average
performance reasons, often leads to lower energy consumption
due to the lower active time of the platform.

However, the increasing number of applications of DL ap-
proaches in different domains brings additional non-functional
metrics to be optimized. For instance, autonomous navigation
in cars, planes, satellites and drones has some degree of
criticality since malfunctioning may cause fatalities or large
economical losses. Moreover, the performance and power
requirements of those systems may not need to be optimized
but kept within specific budgets.

It is expected that those new goals together with new
platforms needed in those domains, pose the need for new
low-level libraries targeting, for instance, security or fault-
tolerance for specific embedded platforms with limited power
envelopes and specific deadlines. Thus, DL frameworks will

have to further consider additional low-level libraries and the
overall ecosystem is expected to grow.

Hence, it is particularly important to reuse efforts across
domains and across platforms whenever possible. Low-level
libraries build on linear algebra operations such as matrix mul-
tiplication, and hence, frameworks and applications above also
end up inheriting the features of the linear algebra operations
used in the lowest levels of the stack. Thus, the key to meet the
requirements of applications ultimately lies on the ability to
optimize specific matrix operations and other linear algebra
operations for the different needs of applications, and let
frameworks in-between act as interfaces to ease programmabil-
ity while using highly optimized operations from the low-level
libraries. It is, therefore, of paramount importance to devote
efforts to the development and optimization of linear algebra
operations for different goals such as average performance,
worst-case execution time, energy consumption, security, fault-
tolerance, testability, and maintainability among others.

IV. CONCLUSIONS

This paper presents a structured view of the different com-
ponents composing the DL software ecosystem. DL frame-
works are ultimately implemented with a series of linear
algebra operations building upon some highly optimized low-
level libraries. As a result, optimizing the low-level libraries
can have a direct impact on the performance and testability,
among other non-functional metrics, of the frameworks and
applications at the highest level. This helps to focus on opti-
mizing low-level libraries (or developing new ones) targeting
performance, power, time-predictability, fault-tolerance or any
other metric, and reusing libraries and frameworks across
domains to maximize benefits.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish Min-
istry of Economy and Competitiveness under grant TIN2015-
65316-P, the SuPerCom European Research Council (ERC)
project under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 772773), and
the HIPEAC Network of Excellence.

REFERENCES

[1] T. Chen et al.,, “Mxnet: A flexible and efficient machine learn-
ing library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[2] A. Paszke et al., “Automatic differentiation in pytorch,” 2017.

[3] M. Abadi et al, “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015. [Online]. Available: http://tensorflow.org/

[4] F. Chollet et al., “Keras,” https://keras.io, 2015.

[5] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proceedings of the 22nd ACM international conference on
Multimedia, 2014.

[6] “An optimized BLAS library (OpenBLAS),” http://www.openblas.net/.

[7] “Automatically Tuned Linear Algebra Software (ATLAS),” http:/
math-atlas.sourceforge.net/.

[8] “Intel, Math Kernel Library,” https://software.intel.com/en-us/intel-mkl.

[91 “cuBLAS,” http://docs.nvidia.com/cuda/cublas/.

[10] S. Chetlur et al., “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.
“TensorRT: A platform for high-performance deep learning inference.”

[Online]. Available: https://developer.nvidia.com/tensorrt

(11]



