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Abstract: We used socioeconomic models that included economic inequality to predict biodiversity loss,

measured as the proportion of threatened plant and vertebrate species, across 50 countries. Our main goal

was to evaluate whether economic inequality, measured as the Gini index of income distribution, improved

the explanatory power of our statistical models. We compared four models that included the following: only

population density, economic footprint (i.e., the size of the economy relative to the country area), economic

footprint and income inequality (Gini index), and an index of environmental governance. We also tested the

environmental Kuznets curve hypothesis, but it was not supported by the data. Statistical comparisons of the

models revealed that the model including both economic footprint and inequality was the best predictor of

threatened species. It significantly outperformed population density alone and the environmental governance

model according to the Akaike information criterion. Inequality was a significant predictor of biodiversity

loss and significantly improved the fit of our models. These results confirm that socioeconomic inequality is

an important factor to consider when predicting rates of anthropogenic biodiversity loss.
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Análisis Transnacional de Cómo la Inequidad Económica Predice la Pérdida de Biodiversidad

Resumen: Utilizamos modelos socioeconómicos que incluyeron la inequidad económica para predecir la

pérdida de biodiversidad, medida como la proporción de especies amenazadas de plantas y vertebrados,

en 50 paı́ses. Nuestra principal meta fue evaluar śı la inequidad económica, medida como el ı́ndice Gini

de distribución del ingreso, mejoraba el poder predictivo de nuestros modelos estadı́sticos. Comparamos

cuatro modelos que incluyeron lo siguiente: solo densidad poblacional, huella económica (i.e., el tamaño

de la economı́a en relación con la superficie del paı́s); huella económica e inequidad de ingresos (́ındice

Gini) y un ı́ndice de gobernabilidad ambiental. También probamos la hipótesis de la curva ambiental de

Kuznets, pero no fue sustentada por los datos. Las comparaciones estadı́sticas de los modelos revelaron que

el modelo que incluyó la huella ecológica y la inequidad fue el mejor pronosticador de especies amenazadas.

Superó significativamente el funcionamiento de la densidad poblacional sola y la gobernabilidad ambiental

de acuerdo con el criterio de información de Akaike. La inequidad fue un pronosticador significativo de la

pérdida de biodiversidad y mejoró significativamente el ajuste de nuestros modelos. Los resultados confirman

que la inequidad socioeconómica es un factor importante a considerar cuando se pronostican tasas de pérdida

antropogénica de biodiversidad.
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Introduction

Global species loss is occurring 100 to 1000 times faster
than the background rate (May & Lawton 1995), primar-

ily due to the effects of habitat degradation, overexploita-
tion, introduction of invasive species, and pollution (MA
2005a). Given the importance of biodiversity to human

well-being and the irreversibility of its loss, the depletion
of biodiversity is one of the most important environmen-
tal threats that humanity faces (Chapin et al. 2000; Tilman

2000; MA 2005a).
The impact humanity has on biodiversity is largely de-

termined by the social and economic activities of soci-

eties. For example, the transformation of primary forest
into agricultural land, which is the direct driver of the

loss of many species, is caused by a variety of indirect
socioeconomic drivers. Market pressures, land tenure ar-
rangements, poverty, and various regulatory frameworks

all play a role (Chomitz 2007). Similarly, the dynamics
of fishery exploitation depend on international law and
negotiation at a large scale, and community management

practices, financial resources, and the availability of mar-
kets play a significant role at a smaller scale (MA 2005b).
As can be seen from these examples, an understanding

of the connections between socioeconomic factors and
environmental outcomes is crucial if effective strategies
for managing the environment are to be developed (cf.

Vitousek et al. 1997). We compared the ability of several
statistical models to predict biodiversity loss. Each model
contained different combinations of socioeconomic vari-

ables representing different theories regarding the indi-
rect drivers of environmental impact.

Despite the importance of socioeconomic factors as
indirect drivers of biodiversity loss, their role has been
overlooked until quite recently (Naidoo & Adamowicz

2001; Asafu-Adjaye 2003). This recent empirical work
has its origins in a longer tradition of literature examin-
ing the relationship between socioeconomic factors and

environmental change in general (e.g., Ehrlich & Hol-
dren 1971; World Bank 1992; York et al. 2003). Most
of these studies, as well as the two recent studies that

examined biodiversity loss specifically, focused primar-
ily on the economy and particularly on its overall size.
They generally looked at the relationship between en-

vironmental change and gross domestic product (GDP)
or GDP per capita. Naidoo and Adamowicz (2001), for
example, found that GDP per capita is a significant pre-

dictor of the number of species threatened for five out of
seven taxonomic groupings, in which higher values were
associated with more threatened species in four of those

five cases. Asafu-Adjaye (2003), in a similar vein, found

that higher rates of economic growth are associated with
greater biodiversity loss. In addition he found that com-
position of the economy (in this case, the proportion of

GDP contributed by agricultural production) is an impor-
tant determinant of biodiversity loss. In a similar analysis
at a smaller scale Taylor and Irwin (2004) used a regional

proxy for GDP and found that greater economic activity
is associated with higher numbers of introduced exotic
plant species in the United States and Canada.

Inequality and Biodiversity Loss

Studies of how economic concerns contribute to species

loss have not analyzed the consequences of the distribu-
tion of economic wealth. Nevertheless, extensive empir-
ical evidence demonstrates that inequality has a negative

effect on other social outcomes and institutions (e.g.,
Ronzio et al. 2004; Ross et al. 2005; Wilkinson & Pick-
ett 2006). For example, a study of community forestry

in Mexico showed that village forest management was
correlated with levels of inequality. In a village with an

economic structure that was highly unequal, forests were
managed poorly because small groups of powerful peo-
ple manipulated the logging industry for their own ben-

efit, resulting in overexploitation. In more equitable vil-
lages, however, community institutions were more effec-
tive, resulting in better forest management and likely less

biodiversity loss (Klooster 2000).
Researchers propose that social inequality has a sig-

nificant effect on the environment (e.g., Ostrom 1990;

Boyce 1994; Baland et al. 2007). Olson (1965) suggests
that small groups with considerable inequality might fa-
vor the provision of a public good. The expectation is

that when the majority of the wealth is held by a few re-
source users, it is in their interest to conserve, regardless
of what the poorer members of the group do. Some more

recent analyses also support this perspective (e.g., Itaya
et al. 1997). Nevertheless, others suggest that inequality

may hinder conservation, and empirical work shows that
inequality can thwart the collective action required for
environmental protection (Boyce 1994; Dayton-Johnson

& Bardhan 2002; Baland et al. 2007). Although these stud-
ies suggest a connection between inequality and environ-
mental degradation, the direction and strength of the re-

lationship with biodiversity were revealed only recently
(Mikkelson et al. 2007).

Mikkelson et al. (2007) found that greater inequality is

associated with the number of threatened species (Inter-
national Union for Conservation of Nature [IUCN] Red
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List data) at the international scale when human popu-

lation, GDP, and the total number of species are con-
trolled for. The situation is similar in the United States

for species of birds: states with higher socioeconomic
inequality tend to have a greater proportion of species
undergoing population decline (Mikkelson et al. 2007).

Here we used a more recent version of the IUCN Red
List. These are the only data on species endangerment
that are global in scope; thus, despite some well-known

shortcomings (Akçakaya et al. 2006), they are uniquely
appropriate for a cross-national comparison of threatened
species.

Our work here is a significant extension of the work by
Mikkelson et al. (2007). In particular we partitioned data
by taxonomic group and partitioned countries according

to their level of development; both of these analyses were
additional to Mikkelson et al. We also tested a broader
range of competing models across a greater number of

countries than Mikkelson et al. did. To evaluate this range
of models we used a comparison approach, whereby we

developed competing models, each based on theoreti-
cal expectations of the indirect drivers of environmental
change, and assessed which best predicted differing rates

of biodiversity loss among countries. To address the role
of collinearity among independent variables we also in-
cluded an analysis based on hierarchical partitioning to

evaluate the independent contribution of each variable
(Mac Nally 2000).

Methods

To determine which socioeconomic factors are most
likely to be indirect drivers of biodiversity loss we used

a model comparison approach. We evaluated the follow-
ing six models: (1) saturated, includes all variables, (2)
stepwise-reduced, stepwise deletion of terms from the

saturated model, (3) population density only, (4) eco-
nomic footprint, simplified version (York et al. 2003) of

the IPAT (impact = population × affluence × technol-
ogy) framework (Ehrlich & Holdren 1971) that includes
population density and GDP per capita (together these

provide a measure of total economic activity per unit of
land area), (5) economic footprint + inequality and (6)
environmental governance, includes the index of envi-

ronmental governance as only term.
In addition to the variables mentioned above we con-

trolled for the level of species endemism in all models.

The economic footprint models were evaluated with and
without the square of GDP included in addition to the
linear GDP term. This tested for nonlinear responses, par-

ticularly the hypothesized—but only weakly supported—
environmental Kuznets curve (EKC), which suggests that
environmental indicators will deteriorate through the ini-

tial stages of economic growth but will improve in the

later stages (Stern 2004).
We used adjusted R2 and the Akaike information crite-

rion (AIC) from an ordinary least-squares multiple linear
regression to compare models for predictive power and
parsimony, respectively. When comparing the fit of sev-

eral models, AIC provides a criterion (penalized log likeli-
hood) with which to find the model that best explains the
data with a minimum of free parameters (Akaike 1974;

Burnham & Anderson 2004). We also used a correction
for small sample sizes when necessary. Countries were
not weighted in the analyses (either by country area or

by human population). We decided that because each
country has a single, independent set of institutions, all
countries should be treated equally. For the sake of con-

sistency at the model comparison stage we only included
countries that had data for all the variables in the satu-
rated model. The model that performed best according

to the corrected AIC was then tested for consistency be-
tween development categories as defined by the United

Nations Development Programme (UNDP)’s Human De-
velopment Reports (UNDP 2006). Because this model
included fewer total variables than the full-model com-

parison, we were able to include more countries in the
sample at this stage of analysis.

We used hierarchical partitioning to address collinear-

ity in our data set and assess the independent explanatory
power of each variable. This statistical method analyzes
all possible models in a multiple regression to identify the

contribution of each variable to the total variance, both
independently and in conjunction with the other vari-
ables, to infer the causal impact of each variable (Chevan

& Sutherland 1991; Mac Nally 2000; Quinn & Keough
2002).

We applied the hierarchical partitioning approach with

the ‘hier.part’ package (Walsh & Mac Nally 2008) in R
(R-Project 2008). The same model format was used as

in the model comparison, with identical variable trans-
formations. We assumed Gaussian errors and calculated
goodness of fit with R2. The statistical significance of the

independent effect of each variable was determined by
a randomization approach (n = 1000) that produced Z

scores (Mac Nally 2002).

Data Sources

To measure the status of biodiversity in each country we

looked at the proportion of plant and vertebrate species
that were threatened in 2007, as defined by the IUCN
(2007). For most of this analysis we looked at combined

data for plants and vertebrates; however, we also applied
our best-performing model to data partitioned between
plants and five animal classes. Data on the total number

of plant and vertebrate species known and threatened in
each country were obtained from the World Resources
Institute’s EarthTrends database (WRI 2007). Using

Conservation Biology

Volume 23, No. 5, 2009



Holland et al. 1307

the proportion of species threatened, we implicitly con-

trolled for the total number of species known, which
varies between countries by more than two orders of

magnitude and is related to the number of species threat-
ened. The IUCN defines threat to individual species at
a global level, meaning that the threat status for species

with wide ranges will be the same for all of the countries
they overlap, even though those countries may be man-
aging the species very differently. This challenges one

of the assumptions of our analysis, namely, that the so-
cioeconomic variables we measured at the country level
have an impact on the threat status of species at the same

scale. That assumption may not be entirely true, but there
is no reason to expect this issue will bias the results in
any particular direction.

All else being equal, the risk of global threat of extinc-
tion for a species is greater for highly endemic species
than for those that are widespread. It is, therefore, im-

portant to control for levels of endemism when com-
paring the numbers of threatened species among coun-

tries. Endemism data for plants are unavailable for many
countries; however, endemism data for vertebrates alone
are relatively complete. Controlling for endemism with

data from all plants and vertebrates combined restricted
the number of countries with data for all variables in
our target-year range to 40, in contrast to the 50 coun-

tries available for the sample when we used endemism
data for vertebrates only. In addition to improving the
sample size an index of endemism based on vertebrates

has more explanatory power with respect to the propor-
tion of species that are threatened (adjusted R2 = 0.33,
p < 10−16) than does an index of endemism based on

both plants and vertebrates (adjusted R2 = 0.15, p <

10−6). We, therefore, used an index of endemism based
on vertebrates for the rest of the analyses. The correla-

tion between this index of vertebrate endemism and an
equivalent one generated for plants was high (Pearson’s

correlation = 0.76; p < 0.001).

Socioeconomic Data

Gross domestic product (GDP) per capita was used as an
indicator of the intensity of economic activity in a coun-
try. Instead of raw GDP per capita, we used data that were

normalized for purchasing power. This corrected for dif-
ferences in cost of living and exchange rates between
countries and thus provided a better estimate of eco-

nomic activity in the country in question. We obtained
GDP data from the WRI’s EarthTrends database for all
years between 1975 and 1999 (WRI 2007). To achieve

larger sample sizes we averaged GDP over 5-year periods
(Fig. 1) because in any given year many countries are
missing data.

We measured environmental governance with an in-
dex calculated by the Yale Center for Environmental Law
and Policy (YCELP 2005). This index is a composite of

several variables, including general governance indica-

tors (such as corruption and the level of democracy) and
factors more specific to the environment (such as knowl-

edge creation in environmental science and the number
of IUCN member organizations). One deficiency of the
environmental governance data is that they are not avail-

able over the same time scale as the GDP data: only recent
(2005) values are available (Fig. 1).

Inequality was measured with the Gini index, which

ranges (theoretically) from 0 to 100, where 0 is perfect
equality and 100 is perfect inequality (Milanovic 2005).
In practice, national Gini indices between 1995 and 1999

ranged from a high of 59 (Brazil) to a low of 23 (Slovakia).
We used the Standardized Income Distribution Database
(SIDD) as our source for the Gini index (SIDD 2005). This

is a relatively new database that has corrected data incon-
sistencies that were a problem for previous studies of in-
equality (Babones & Alvarez-Rivadulla 2007). In a similar

fashion to the treatment of GDP data, we averaged Gini
values over 5-year periods to improve the sample size.

The SIDD contains interpolated estimates of inequality
for years and countries that do not have original data
available. Because of concerns regarding the reliability of

these interpolations we used only original data (Fig. 1).

Time Lag between Human Activity and Effect on Biodiversity

The effects of human activity on biodiversity are not im-
mediate; rather, species populations will respond to an-

thropogenic impacts after a delay. The length of this time
lag depends on both the species and the impact in ques-
tion. Mikkelson et al. (2007) found that socioeconomic

data for 1989 were most strongly related to species indi-
cators for 2004. In this paper we addressed multiple po-
tential time lags by analyzing data from all 5-year periods

between 1975 and 1999. We compared results between
the time periods for simple models with only the variables
for which time series data were available (population den-

sity, GDP, and inequality). To avoid a sampling effect this
comparison included only countries that had data for all
three variables and all five time periods. When adjusted

R2 values were compared among the models from differ-
ent time periods, the 1980–1984 time period showed the
best predictive power (adjusted R2 = 0.35). Throughout

we present results from the period 1980–1984.

Results

Initially we ran models that included both the linear

(Gini) and the quadratic (Gini2) inequality term. This
tested for the U-shaped relationship between inequal-
ity and conservation proposed by Baland and Platteau

(1999). In all cases the quadratic Gini was not significant,
so we left it out of the models presented here. Similarly,
initial models also included the quadratic form of GDP to
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test for the presence of a U-shaped relationship between

GDP and species threatened, as predicted by the EKC hy-
pothesis (World Bank 1992; Stern 2004). Nevertheless,

the quadratic term was not significant in any of the mod-
els examined, so the EKC models were discarded in favor
of models with linear GDP.

Among the 50 countries with sufficient data in the
1980–1984 time period, the fully saturated model ex-
plained 48.6% of the total variance (adjusted R2) in the

proportion of plant and vertebrate species threatened
(Table 1). These countries represented 48.7% of the
world’s land area and 70.9% of its human population. Of

the variables included, only the proportion of vertebrate
species endemic to the country stood out as significant.
Endemism had a positive coefficient, meaning that higher

levels of endemism were related to a greater proportion
of threatened species.

The use of AIC in a stepwise simplification of the satu-

rated model resulted in a model that included only GDP,
inequality, and endemism. These remaining terms were

all significant at the p < 0.05 level. The regression co-
efficients for all remaining variables were of the same
sign and, as in the saturated model, wealthier economies

and more equitable ones both tended to be associated
with fewer threatened species. This simplified model had
an equivalent adjusted R2 to the fully saturated model

(0.486). It also had the best (lowest) corrected AIC score
of all 6 models, with a 47.7% probability of being the best
fitting model, according to the Akaike weight (Table 1).

The Gini index had a positive coefficient, meaning that
greater inequality was associated with a greater propor-
tion of species threatened (Fig. 2).

The population density model performed the worst of
the six models. The population density term itself was not
significant, and the adjusted R2 was only 0.364 (Table 1).

The economic footprint model retained three of the
seven variables in the saturated model and explained

Table 1. Comparison of models predicting the proportion of plant and vertebrate species threatened (log).a

Modelb

stepwise- economic econ. footprint + environmental
saturated reduced population footprint inequality governance

Independent variable β β β β β β

GDP per capita (log) −0.258∗ −0.215∗∗ – −0.186∗∗ −0.191∗∗ –
Population density (log) 0.059 – 0.097 0.051 0.070 –
Inequality (Gini index) 0.020∗ 0.019∗ – – 0.021∗ –
Environmental governance 0.113 – – – – −0.202
Proportion of vertebrates 0.249∗∗ 0.225∗∗ 0.385∗∗∗ 0.331∗∗∗ 0.243∗∗ 0.317∗∗∗

endemic (log)

Constant −2.09 −2.46 −2.87 −1.53 −2.61 −3.06
Adjusted R2 0.486 0.486 0.364 0.439 0.492 0.378
Corrected AIC 68.7 66.0 75.5 70.4 66.7 74.3
Akaike weight 0.124 0.477 0.004 0.052 0.336 0.008

aAll evaluated with the same set of 50 countries.
bSignificance: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

43.9% of the variance in the proportion of species threat-

ened. Of the three variables included, GDP per capita and
endemism were significant, whereas population density

was not. In the case of all four variables the direction
of their effect was the same as in the saturated model
(Table 1).

The economic footprint + inequality model had the
second-best corrected AIC after the stepwise-reduced sat-
urated model and had a 33.6% probability of being the

best fitting model (Table 1). Summing the Akaike weights
of the models containing inequality yielded an 81.3%
probability that one of them was the best model. Adding

the Gini index increased the adjusted R2 from 0.439 to
0.492. Three of the four terms in the model were signif-
icant; the exception was population density. No coeffi-

cients changed sign compared with the saturated model
(Table 1).

The final model introduced a new variable: environ-

mental governance. This term was not significant at the
α = 0.05 level, and the model as a whole performed

poorly relative to the others in terms of the corrected
AIC and the adjusted R2 (Table 1). The sign of the coef-
ficient was expected—that better environmental gover-

nance was associated with a lower proportion of species
threatened—however, this relationship was weak.

When we used the best-performing model—stepwise-

reduced—with data partitioned by level of development,
only high- and medium-development categories could be
compared because there were insufficient data on low-

development countries. The coefficients for each term
at the model comparison stage were consistent across
all development categories (Table 2). The strength of

the model as judged by the adjusted R2 value was great-
est for the high-development category and declined with
the level of human development. Neither GDP nor in-

equality was significant when countries were split by
development category.
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Figure 2. Correlation between the Gini index and the

proportion of species threatened (dashed line, best fit

of that relationship). Countries indicated by the

three-letter codes assigned by the International

Organization for Standardization (ISO).

The results of hierarchical partitioning further sup-
ported our model analyses by consistently identifying
three variables—the proportion of endemic species, in-

equality, and the size of the economy—as important pre-
dictors of the proportion of species threatened for both

time periods (p < 0.01). This accounted for collinear-
ity and showed the independent importance of each of
these three variables (Fig. 3). In our models the total in-

dependent contribution accounted for over 60% of the
total explained variance.

Analyzing our data by taxonomic group revealed differ-

ent patterns among taxa (Table 3). As mentioned above,
we tested different taxa with the stepwise-reduced
model. Partitioning the data resulted in never significant

Table 2. Comparison among development categories of the prediction by the stepwise-reduced model of the proportion of plant and vertebrate
species threatened (log)a.

Countries with Countries with
All high human medium human

countriesb developmentb developmentb

Independent variable β β β

GDP per capita (log) −0.199∗∗ −0.232 −0.395
Inequality (Gini index) 0.025∗ 0.019 0.038
Proportion of vertebrates endemic (log) 0.235∗∗ 0.300∗∗ 0.208

Constant −2.70 −1.91 −2.01
Adjusted R2 0.428 0.477 0.222
n 53 30 19

aInsufficient data in the low-development category prevented its inclusion here.
bSignificance: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

GDP per capita and inequality terms for all five classes of

vertebrates (mammals, birds, reptiles, amphibians, and
fish). Nevertheless, inequality was significantly and posi-

tively associated with the proportion of threatened plant
species (β = 0.018, p < 0.05), whereas GDP per capita
was significantly negatively associated with threatened

plant species (β = −0.204, p < 0.01). Model fit was lower
than that for the combined data for all taxonomic groups
except amphibians (adjusted R2 = 0.532). The same anal-

ysis with the hierarchical partitioning approach returned
similar results, with one important difference: the in-
equality term was also significantly and positively asso-

ciated with threatened species for amphibians (Table 3).
The GDP per capita term was significant for mammals and
plants. Nevertheless, the amount of variance explained

by the independent variables dropped below 50% for all
the taxa except plants and amphibians.

Discussion

Patterns of biodiversity loss are complex, and no single

statistical model can predict them perfectly. Neverthe-
less, our analysis shows that much of the variation seen
between countries can be explained by a few socioeco-

nomic variables, among which inequality is a key factor.
Two models, population density and environmental gov-
ernance, performed poorly relative to others. The poor

performance of the former suggests that population num-
bers alone are not a particularly good indicator of the
environmental impact of a society, as some authors have

suggested (Boserup 1965; Ehrlich 1968). A broadened
conception of environmental impact that includes the
economic characteristics of a society seems more effec-

tive at predicting biodiversity loss than population alone.
The poor performance of the environmental governance

model was an interesting finding and may indicate that al-
though governance has an effect, it is small relative to the
impact of the economy. This conclusion should be drawn

with caution, however. An aggregate measure such as the
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Figure 3. Independent effect

of each variable on the

proportion of plant and

vertebrate species

threatened (asterisk [∗],

independent effects

significant [p < 0.05]; GDP,

gross domestic product).

one produced by the YCELP may not sufficiently capture
the complexities of environmental governance. Also, be-
cause the YCELP data only go back to 2005, they do

not account for a time lag between the quality of gover-
nance and the biodiversity outcome. Any large changes
in environmental governance that occurred prior to 2005

would thus interfere with the detection of a relationship
between governance and biodiversity.

The Role of Affluence and Economy Size

Similar to York et al. (2003), we found that total size of
a country’s economy relative to its population was a sig-

nificant predictor of environmental indicators. Neverthe-
less, in their study, they found that ecological footprint
increases monotonically with increasing GDP per capita,

whereas we found that the proportion of species threat-
ened decreased with increasing GDP per capita. Other re-
searchers found that greater affluence negatively affects

biodiversity (Naidoo & Adamowicz 2001; Taylor & Irwin
2004), whereas we found the reverse. These differing

results suggest the nature of the relationships between

Table 3. Results of hierarchical partitioning analysis in which values shown are the independent effect of each variable on the proportion of
species threatened in each taxonomic group.

Plants and
vertebrates Mammals Birds Reptiles Amphibians Fish Plants

Independent variable

GDP per capita (log) 0.11∗ 0.08∗ 0.01 0.04 0.05 0.16∗ 0.14∗

Population density (log) 0.01 0.02 0.01 0.04 0.02 0.01 0.01
Inequality (Gini index) 0.15∗ 0.02 0.03 0.01 0.07∗ 0.01 0.13∗

Environmental governance 0.05 0.03 0.01 0.10∗ 0.11∗ 0.09∗ 0.05
Proportion of vertebrates endemic (log) 0.20∗ 0.21∗ 0.43∗ 0.11∗ 0.39∗ 0.01 0.18∗

∗p < 0.05.

population size, affluence, total size of the economy, and
species loss merit further study.

The predictive power of our models was about half that

of the models used by York et al. (2003) when equiva-
lent sets of terms were compared. This is likely because
they used a measure of human impact as their dependent

variable, whereas we used an outcome (the number of
threatened species) of that impact. By proceeding one
step further down the causal chain we introduced more

variation; however, we also gained a better understand-
ing of the actual outcomes of human impact, which is
ultimately where our interest lies.

The two most useful models for explaining the propor-
tion of species threatened were the stepwise-simplified

model and the economic footprint + inequality model.
The former included GDP per capita, inequality, and the
proportion of endemic species, whereas the latter con-

tained the same three variables, with population density
added (Tables 1 & 2). The explanatory power of these
models with all countries included (adjusted R2 = 0.486

and 0.492, respectively) was lower than that of the full
models developed by Naidoo and Adamowicz (2001),
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which also predicted the proportion of species threat-

ened (deviance R2 values of between 0.50 and 0.84 for
different classes of animals and plants). Our models, how-

ever, explained this variation with fewer terms.
The stepwise-reduced model had the most predictive

power among countries at higher levels of development.

This may be indicative of two things. First, data quality is
better in wealthier countries, so it is reasonable to expect
that patterns will be easier to detect there. Second, it may

be that institutions are more effective at regulating the
environment in rich countries than in poor ones, so vari-
ables expected to alter the effectiveness of institutions,

such as inequality, may have a greater effect in countries
at high levels of development (cf. Ostrom 1990, 2001).
The strength of the model also varied across taxa, with

plants and amphibians generally being the best predicted,
and fish and reptiles the least. This may be the result of
differences in range sizes among taxa and thus in the

degree to which species are affected by activities in par-
ticular countries. What determines the variation among

taxa in their relative sensitivity to human economic and
social activity requires further study.

The Role of Inequality

The inequality term had a significant positive coeffi-
cient in all models in which it was included and had a
stronger independent effect on the proportion of threat-

ened species than GDP per capita (Fig. 3). The stepwise-
reduced model provided the most conservative regres-
sion coefficient for the inequality term (0.019; Table 1).

With this value, the 8-point difference in the Gini in-
dex between the United Kingdom (Gini = 42) and Spain
(Gini = 34) could represent an increase from 2.6% to 3.0%

in the proportion of species threatened if Spain saw its
inequality increase to the level of the United Kingdom.
Alternatively, taking a time-scale approach, the 5-point

change in the Gini index in the United States from 1990
to 1997 (from 44 to 49) could eventually be associated
with an increase in the proportion of species threatened

in the United States from 2.7% (as it is now) to 3.0%, all
else being equal.

There are many mechanisms by which inequality may
influence biodiversity, and these can be categorized as in-
dividual or collective effects. Individual effects are those

in which the inequality changes the incentives and be-
havior of individuals, and collective effects are those that
are mediated through environmental management insti-

tutions. Institutions, either formal or informal, play an
important role in how communities or nations manage
their natural resources. Biodiversity, although not always

managed directly, is closely linked to the fate of those
natural systems. Communally owned resources are not
necessarily doomed to overexploitation. Collective deci-

sion making and action, when effective, can avoid the
“tragedy of the commons” (Ostrom 1990). Greater in-
equality, however, often interferes with the effectiveness

of these institutions (Boyce 1994; Dietz et al. 2003). In-

dividuals are less likely to have common goals, and the
wealthy will be more able to insulate themselves from

the problems faced by the rest of the group. As these in-
stitutions weaken, so too will the effective management
practices that biodiversity ultimately depends on.

The presence of both individual and collective effects
is at the core of the theory that environmental degrada-
tion should be greatest in intermediate-equality societies

and lowest in highly equal and highly unequal societies
(Baland & Platteau 1999). In very unequal societies, indi-
viduals will have an incentive to conserve the resources

they profit from, which would have a beneficial effect on
biodiversity (Olson 1965). In contrast, in very equal soci-
eties, groups will collectively manage conservation more

effectively (Ostrom 1990). This U-shaped relationship,
with better conservation at the extremes of inequality,
was not supported by our results. The quadratic Gini

term was never significant in our models. It may be
that countries are generally too large for individual-level

conservation decisions to directly benefit the individu-
als themselves; therefore, this potentially positive effect
of inequality may not occur at the scale of countries.

In the absence of individual-level effects institutional ef-
fects would dominate the pattern, meaning that only a
monotonic increase in degradation and biodiversity loss

would be seen as inequality increases. This is the pattern
demonstrated by our results.

An awareness of economic distribution improves the

understanding of the socioeconomic drivers of biodiver-
sity loss. The importance of inequality as a determinant of
environmental degradation in general is asserted theoreti-

cally by many different disciplines (Ostrom 2001; Dayton-
Johnson & Bardhan 2002; Ronzio et al. 2004; Baland et al.
2007). Our study and Mikkelson et al.’s (2007) study pro-

vide clear empirical confirmation of the importance of
inequality as a predictor of biodiversity loss in particular.

The results of the hierarchical portioning analysis sug-
gest that there is an independent causal relationship with
inequality, although plants and amphibians seem to be

most affected. Although the average level of affluence
is an important explanatory factor, the inclusion of the
Gini index consistently improved our ability to predict

the numbers of threatened species. The distribution of
the economy is a factor that cannot be ignored as re-
searchers work to understand those processes that drive

humanity’s impact on biodiversity.
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