
 Open access  Posted Content  DOI:10.1101/385237

A cross-organism framework for supervised enhancer prediction with epigenetic
pattern recognition and targeted validation — Source link 

Anurag Sethi, Mengting Gu, Emrah Gumusgoz, Landon L Chan ...+21 more authors

Institutions: Yale University, The Chinese University of Hong Kong, Lawrence Berkeley National Laboratory

Published on: 05 Aug 2018 - bioRxiv (Cold Spring Harbor Laboratory)

Related papers:

 Discriminative prediction of mammalian enhancers from DNA sequence

 DEEP: a general computational framework for predicting enhancers

 Taking promoters out of enhancers in sequence based predictions of tissue-specific mammalian enhancers.

 
Accurate promoter and enhancer identification in 127 ENCODE and Roadmap Epigenomics cell types and tissues by
GenoSTAN

 Prediction of enhancer RNA activity levels from ChIP-seq-derived histone modification combinatorial codes

Share this paper:    

View more about this paper here: https://typeset.io/papers/a-cross-organism-framework-for-supervised-enhancer-
1fwz76nn5m

https://typeset.io/
https://www.doi.org/10.1101/385237
https://typeset.io/papers/a-cross-organism-framework-for-supervised-enhancer-1fwz76nn5m
https://typeset.io/authors/anurag-sethi-1izq8yimsg
https://typeset.io/authors/mengting-gu-4t5zjculiv
https://typeset.io/authors/emrah-gumusgoz-5d5b78bylc
https://typeset.io/authors/landon-l-chan-45sxla1n1c
https://typeset.io/institutions/yale-university-sbbuxg8k
https://typeset.io/institutions/the-chinese-university-of-hong-kong-ip453ffv
https://typeset.io/institutions/lawrence-berkeley-national-laboratory-2kbhbepv
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/papers/discriminative-prediction-of-mammalian-enhancers-from-dna-3p5sb1v16i
https://typeset.io/papers/deep-a-general-computational-framework-for-predicting-2h8aaqc6wb
https://typeset.io/papers/taking-promoters-out-of-enhancers-in-sequence-based-20wb56lqwq
https://typeset.io/papers/accurate-promoter-and-enhancer-identification-in-127-encode-u5qcql1gi4
https://typeset.io/papers/prediction-of-enhancer-rna-activity-levels-from-chip-seq-3gj5g6f9r4
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-cross-organism-framework-for-supervised-enhancer-1fwz76nn5m
https://twitter.com/intent/tweet?text=A%20cross-organism%20framework%20for%20supervised%20enhancer%20prediction%20with%20epigenetic%20pattern%20recognition%20and%20targeted%20validation&url=https://typeset.io/papers/a-cross-organism-framework-for-supervised-enhancer-1fwz76nn5m
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-cross-organism-framework-for-supervised-enhancer-1fwz76nn5m
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-cross-organism-framework-for-supervised-enhancer-1fwz76nn5m
https://typeset.io/papers/a-cross-organism-framework-for-supervised-enhancer-1fwz76nn5m


1 

 

A cross-organism framework for supervised enhancer prediction with epigenetic 
pattern recognition and targeted validation  

  
Anurag Sethi1,2,†, Mengting Gu1,†, Emrah Gumusgoz6, Landon Chan3, Koon-Kiu Yan1,2, 
Joel Rozowsky1,2, Iros Barozzi7, Veena Afzal7, Jennifer Akiyama7, Ingrid Plajzer-Frick7, 

Chengfei Yan, Catherine Pickle7, Momoe Kato7, Tyler Garvin7, Quan Pham7, Anne 
Harrington7, Brandon Mannion7, Elizabeth Lee7, Yoko Fukuda-Yuzawa7, Axel Visel7, 

Diane E. Dickel7, Kevin Yip4, Richard Sutton6, Len A. Pennacchio7 and Mark Gerstein1,2,5* 

  
  
  

1Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, 

United States of America 
2Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, 

Connecticut, United States of America 
3School of Medicine, The Chinese University of Hong Kong, China 
4Department of Computer Science, The Chinese University of Hong Kong, China 
5Department of Computer Science, Yale University, New Haven, Connecticut, United States of 

America 
6 Department of Internal Medicine, Section of Infectious Diseases, Yale University School of 

Medicine, New Haven, Connecticut, United States of America 
7Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, California, 

United States of America 

  

 

 

 

 
 †  Both authors contributed equally to this work 

 * To whom correspondence should be addressed 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2018. ; https://doi.org/10.1101/385237doi: bioRxiv preprint 

https://doi.org/10.1101/385237
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract 
  
Enhancers are important noncoding elements, but they have been traditionally hard to 
characterize experimentally. Only a few mammalian enhancers have been validated, 
making it difficult to train statistical models for their identification properly. Instead, 
postulated patterns of genomic features have been used heuristically for identification. 
The development of massively parallel assays allows for the characterization of large 
numbers of enhancers for the first time. Here, we developed a framework that uses 
Drosophila STARR-seq data to create shape-matching filters based on enhancer-
associated meta-profiles of epigenetic features. We combined these features with 
supervised machine learning algorithms (e.g., support vector machines) to predict 
enhancers. We demonstrated that our model could be applied to predict enhancers in 
mammalian species (i.e., mouse and human). We comprehensively validated the 
predictions using a combination of in vivo and in vitro approaches, involving transgenic 
assays in mouse and transduction-based reporter assays in human cell lines. Overall, 
the validations involved 153 enhancers in 6 mouse tissues and 4 human cell lines. The 
results confirmed that our model can accurately predict enhancers in different species 
without re-parameterization. Finally, we examined the transcription-factor binding 
patterns at predicted enhancers and promoters in human cell lines. We demonstrated 
that these patterns enable the construction of a secondary model effectively 
discriminating between enhancers and promoters. 
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Introduction 
  
Enhancers are gene regulatory elements that activate expression of target genes from a 
distance [1]. Enhancers are turned on in a space- and time-dependent manner, 
contributing to the formation of a large assortment of cell types with different 
morphologies and functions, even though each cell in an organism contains a nearly 
identical genome [2-4]. Moreover, changes in the sequences of regulatory elements are 
thought to play a significant role in the evolution of species [5-9]. Understanding 
enhancer function and evolution is currently an area of great interest because many 
variants within distal regulatory elements also have been associated with various traits 
and diseases during genome-wide association studies [10-12]. However, the vast 
majority of enhancers and their spatiotemporal activities remain unknown because of the 
difficulty in predicting their activity based on DNA sequence or chromatin state [13, 14]. 

Traditionally, regulatory activity of enhancers and promoters was experimentally 
validated using low-throughput heterologous reporter constructs, leading to a relatively 
small number of enhancers that are functionally validated in several selected 
mammalian cell types [15, 16]. These validated enhancers were typically in conserved 
noncoding regions [17, 18] with particular patterns of chromatin [19], transcription factor 
(TF) binding [20], or noncoding transcription [21]. When complex computational methods 
for predicting tissue/cell line-specific enhancers were trained on these validated 
enhancers, they could be susceptible to potential biases and were difficult to generalize 
to other tissues or species as the training data were usually not large enough. Some 
published methods also trained their model based on TF binding sites [20, 22-24]. The 
TF binding sites provide a large dataset for training, but introduce obvious bias as most 
enhancers do not bind to one or a small group of TFs. In addition, it has remained 
challenging to assess the performance of different methods for enhancer prediction with 
a limited number of putative enhancers being validated. 
  
Recently, due to the advent of next-generation sequencing, a number of transfection and 
transduction-based assays were developed to experimentally test the regulatory activity 
of thousands of regions simultaneously in a massively parallel fashion [25-31]. In these 
experiments, plasmids each containing a potential enhancer element and a downstream 
luciferase or green fluorescent protein (GFP) gene are transfected or transduced into 
cells. The differences in activity of the tested regions are reflected in the differences of 
the gene expressions as measured by the fluorescence strength. STARR-seq was one 
such massively parallel reporter assay (MPRA) that was used to test the regulatory 
activity of the Drosophila genome by inserting candidate fragments from the genome 
within the 3’ untranslated region of the luciferase gene, leading to the identification of 
thousands of cell type-specific enhancers and promoters [25, 32]. The result of this 
assay confirmed that active enhancers and promoters tend to be depleted of histone 
proteins and contain accessible DNA where various TFs and cofactors bind [33, 34]. In 
addition, it showed that the regulatory regions tend to be flanked by nucleosomes that 
contain histone proteins with certain characteristic post-translational modifications. 
These attributes lead to an enriched peak-trough-peak (“double peak”) signal in different 
ChIP-Seq experiments for various histone modifications such as acetylation on H3K27 
and methylations on H3K4. The troughs in the double peak ChIP-seq signal represent 
the accessible DNA that leads to a peak in the DNase-I hypersensitivity (DHS) at the 
enhancers [35]. These patterns revealed from aggregation of STARR-seq-validated 
enhancers provide a new scope for annotating regulatory regions. The large amount of 
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experimental data also allows us to train complex models with less bias and test the 
performance of different models using cross validation.  
  
Here we developed a framework for making supervised enhancer prediction models 
using MPRA datasets. We made use of published data resources to provide a 
comprehensive model for enhancer prediction that can be applied across different 
contexts (i.e., different species and tissue types), and we validated our model in a variety 
of contexts. In particular, we utilized extensive datasets from STARR-seq experiments 
performed on Drosophila cell lines to create and parameterize our model. Unlike 
previous prediction methods that focused on the enrichment (or signal peaks) of different 
epigenetic datasets, we developed a method to take into account the specific enhancer-
associated pattern within different epigenetic signals. As the epigenetic signal around 
each enhancer is noisy, we aggregated the signal around thousands of enhancers 
identified using STARR-seq to increase the signal-to-noise ratio and identify the shape 
associated with active regulatory regions. Previous ENCODE and modENCODE efforts 
showed that the chromatin modifications on active promoters and enhancers are 
conserved across higher eukaryotes [36-42]. The signals of different chromatin 
modifications upstream of genes were used to create a universal model for predicting 
gene expressions; moreover, the parameters of the model were transferable across 
humans, flies, and worms. Here, we further explored this conservation of epigenetic 
signal shapes for constructing simple-to-use transferrable statistical models with six 
parameters to predict enhancers and promoters in diverse eukaryotic species including 
fly, mouse, and human. We showed that the enhancer predictions from our transferrable 
model are comparable to the prediction accuracy of species-specific models.  
  
Working across organisms also allowed us to take advantage of different assays to 
validate our predictions in a robust fashion using multiple experimental approaches. In 
the first stage, we predicted enhancers in six different embryonic mouse tissues and 
tested the activity of these predictions in vivo with transgenic mouse assays. Due to the 
ethical considerations of performing such transgenic assays in human embryos, we then 
proceeded to test the activity of these elements in a human cell line in vitro, e.g. H1 
human embryonic stem cells (H1-hESCs), an extensively studied and well-characterized 
cell line. 
  
After validating our predictions, we examined the TF binding patterns in enhancers and 
promoters respectively. The comprehensive set of TF binding experiments available for 
H1-hESC cells enabled us to perform this analysis. We found that the pattern of TF and 
co-TF binding at active enhancers is much more heterogeneous than the corresponding 
patterns on promoters, which can be used to distinguish enhancers from promoters with 
high accuracy. Thus, our methods provide a framework that utilizes different whole-
genome epigenetic datasets to predict active regulatory regions in a cell type-specific 
manner. Further functional genomics datasets could be utilized to identify key TFs 
associated with active regulatory regions within these cell types. 
  
Results 
  
Aggregation of epigenetic signal in Drosophila to create a metaprofile 
  
We developed a framework to predict active regulatory elements using the epigenetic 
signal patterns associated with experimentally validated promoters and enhancers. We 
aggregated the signal of histone modifications on STARR-seq peaks to remove noise in 
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the signal and created a metaprofile of the double peak pattern of histone modifications 
flanking enhancers and promoters. STARR-seq peaks typically consist of a mixture of 
enhancers and promoters, and at this stage we did not differentiate between the two 
sets of regulatory elements. As STARR-seq quantifies enhancer activity in an episomal 
fashion, not all peaks would be active in the native chromatin environment. Arnold and 
colleagues showed that the STARR-seq peaks that occur with enriched DNase 
hypersensitivity or H3K27ac modifications tend to be associated with active genes, 
whereas other STARR-seq peaks tend to be associated with enrichment of repressive 
marks such as H3K27me3 [25]. Hence, we took the overlap of the STARR-seq 
enhancers with H3K27ac and/or DHS peaks to get a high confidence set of enhancers 
that are active in vivo, based on which the metaprofiles were created. These 
metaprofiles were then utilized in a pattern recognition algorithm for predicting active 
regulatory elements in a cell type-specific manner. 
  
The STARR-seq studies on Drosophila cell lines provide the most comprehensive 
datasets as they were performed genome-wide and performed with multiple core 
promoters [25, 43]. We created metaprofiles using the histone modifications and DNase 
signals at active STARR-seq peaks (see Fig. 1 and Methods) identified within the 
Drosophila S2 cell line. Approximately 70% of the active STARR-seq peaks contained 
an easily identifiable double peak pattern even though there was variability in the 
distance between the two maxima of the double peak in the ChIP-chip signal 
(Supplementary Fig. 1). While the minimum tended to occur in the center of these two 
maxima on average, the distance between the two maxima in the double peaks varied 
between 300 and 1,100 base pairs. During aggregation, we first aligned the two maxima 
in the H3K27ac signal across different STARR-seq peaks, followed by interpolation of 
the signal before calculating the average metaprofile. We performed a flipping step to 
generate the matched filter for convolution, which maintains the asymmetry in the 
underlying H3K27ac double peak because it may be associated with the directionality of 
transcription [44]. Then we calculated the dependent metaprofiles for 30 other histone 
marks by applying the same set of transformations to these datasets. These dependent 
metaprofiles also exhibited a double peak pattern, and the maxima across different 
histone modification signals tended to align with each other on average (Supplementary 
Fig. 2). This indicates that a large number of histone modifications tends to 
simultaneously co-occur on the nucleosomes flanking an active enhancer or promoter. In 
contrast, as expected, the DHS signal displayed a single peak at the center of the 
H3K27ac double peak (Fig. 1). In addition, repressive marks such as H3K27me3 were 
depleted in these regions, and the metaprofile for these regions did not contain a double 
peak signal (Supplementary Fig. 2). 
  
Match of a metaprofile is predictive of regulatory activity 
  
We evaluated whether these metaprofiles could be utilized to predict active promoters 
and enhancers using matched filters, a well-established algorithm in template 
recognition. Matched filter is the pattern recognition algorithm that uses a shape-
matching filter to recognize the occurrence of a template in the presence of stochastic 
noise [45]. When scanning the whole genome with matched filter, we applied the 
H3K27ac metaprofile to match the region between histone double peaks. Due to the 
aforementioned variability of the distance between the double peaks, we allowed the 
width of the scanned regions to vary between 300 and 1,100 basepairs. We used the 
highest score to rate the regulatory potential of this region (see Methods). The 
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dependent profiles were subsequently used on the region of the same width to get the 
score for other histone marks.  
  
  
We calculated the matched filter score for all 30 epigenetic modification signals available 
in the Drosophila cell lines on STARR-seq peaks and a negative control set 
(Supplementary Fig. 3). Interestingly, the distribution of matched filter scores for STARR-
seq peaks are unimodal for each histone mark except for H3K4me1, H3K4me3, and 
H2Av, which are bimodal. We looked at the degree to which the matched filter scores for 
promoters and enhancers are higher than the matched filter scores for the rest of the 
genome, as this is a measure of the signal-to-noise ratio for regulatory region prediction. 
We found that, in general, several histone acetylations marks including H3K27ac, as well 
as H1, H3K4me2, and DHS were the most accurate prediction features , whereas other 
histone marks like H3K79m1 and H4K20me1 were not well suited as their matched filter 
scores for positive regions and negative regions were not distinguishable. 
  
To quantitatively evaluate whether the occurrence of the epigenetic metaprofiles could 
be used to predict active enhancers and promoters, we did a ten-fold cross validation 
assessing the average areas under the receiver operating characteristic (ROC) (AUROC) 
and the areas under the precision-recall (PR) (AUPR) curves. PR curves are particularly 
useful to assess the performance of classifiers in skewed or imbalanced data sets in 
which one of the classes is observed much more frequently compared to the other class. 
Comparing the matched filter result with the peak calling result, we found that the 
AUROC and AUPR of the matched filter scores for different histone modifications were 
higher than those of the peaks of corresponding histone marks (Supplementary Fig. 4), 
suggesting that the matched filter score is more accurate for predicting active STARR-
seq peaks than the simple enrichment of the signals.  
 
 
We observed that the H3K27ac matched filter score is the most accurate feature for 
predicting active regulatory regions identified using STARR-seq (Fig. 2 and 
Supplementary Table 1). This could potentially be a bias as we used STARR-seq peaks 
overlapping with H3K27ac or DHS peaks as the positive training set as described above. 
To check for this, we repeated the analysis using all STARR-seq peaks as the positives. 
We found that H3K27ac matched filter scores still had the highest AUROC and AUPR 
compared to the other features (Supplementary Fig. 5). In addition, while DHS peaks 
were used to select the STARR-seq peaks, the AUROC and AUPR for DHS did not 
seem to be as high as some other histone marks. Thus, the selection of STARR-seq 
peaks using H3K27ac and DHS was less likely to have introduced substantial bias to the 
model, but they helped to prune the STARR-seq peaks to create a more accurate set for 
training. 
 
 
As STARR-seq identified active regulatory regions display core-promoter specificity -- 
different sets of enhancers are identified when different core promoters are used in the 
same cell type [43, 46-49], we combined the peaks identified from multiple STARR-seq 
experiments of S2 cells and reassessed the performance of the matched filters at 
predicting these regulatory regions. Merging the STARR-seq peaks from multiple core 
promoters used in S2 cells led to higher AUROC and AUPR for the matched filters of 
most histone marks (Fig. 2). 
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Machine learning can combine matched filter scores from different epigenetic 
features 
 
 
We built an integrated model with combined matched filter scores of six commonly 
available and discriminative epigenetic marks (H3K27ac, H3K4me1, H3K4me2, 
H3K4me3, H3K9ac, and DHS) associated with active regulatory regions using a linear 
support vector machine (SVM) [50]. The selection of these six features was based on 
their matched filter score performance, their importance in the integrated model, and 
data availability. The performance of each individual feature was measured by how well 
its matched filter score could distinguish STARR-seq peaks from negative controls, as 
discussed above (Supplementary Fig. 3 and Supplementary Table 1). The importance of 
each feature in the integrated model was measured by the feature coefficient or GINI 
score.  
 
We combined the matched filter scores from all 30 measured histone marks along with 
the DHS in statistical models like random forest and SVM (Supplementary Fig. 6). The 
integrated models with 30 epigenetic features displayed high accuracy (AUROC=0.97, 
AUPR=0.93 for SVM model with multiple core promoters). We found that several major 
histone modification marks had considerably high weights in these integrative models, 
like histone acetylations (H3K27ac, H3K9ac, H2BK5ac, H4ac, and H4K12ac) and H3K4 
methylations (H3K4me1, H3K4me2, H3K4me3). While the DHS performed well as on its 
own in the single-feature matched filter model (Fig. 2), it had a lower weight in the 
integrated SVM among the six features, likely due to the fact that the information in DHS 
is redundant with the information contained within the histone mark (e.g., the DHS peaks 
usually occur at the trough region between two maxima in the histone signal). Despite 
the redundancy, the combination of the DHS and histone signals was more predictive of 
regulatory activity because the reinforcing signals strengthened the prediction as 
compared to the uncorrelated noise. 
  
We then checked the data availability of the features selected from above. As our goal 
was to build a model with broad applicability across organisms, we excluded epigenetic 
marks that were generally unavailable in mammalian tissues and cell lines (e.g., 
H2BK5ac, H4ac and H4K12ac). The final model consisted of a very simplified set of 
input: H3K27ac, H3K4me1, H3K4me2, H3K4me3, H3K9ac, and DHS. We then 
assessed the performances of different statistical approaches including random forest, 
ridge regression and Naïve Bayes and SVM to combine the features. While all these 
approaches performed similarly (Supplementary Fig. 7), we used a linear SVM in our 
framework due to its better interpretability.  
 
 
We found that the simplified SVM model had a high performance similar to that of the 
complete SVM model using all 30 epigenetic marks, with an AUROC of 0.96 (0.97 in the 
full model) and an AUPR of 0.91 (0.93 in the full model). We observed that H3K27ac 
was the highest weighted feature in SVM. To test if this was biased because of the 
selection of STARR-seq peaks based on H3K27ac and DHS, we trained an SVM model 
using all STARR-seq peaks with the same six features. We found that H3K27ac still had 
the highest GINI score in random forest, albeit a slightly smaller coefficient in SVM 
(Supplementary Fig. 8), which could be due to the added noise in the training data. In 
general, the integrated model trained on the six features achieved good performance 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2018. ; https://doi.org/10.1101/385237doi: bioRxiv preprint 

https://doi.org/10.1101/385237
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

upon cross-validation, and this set of input features allowed the integrated model to be 
applied to a variety of cell lines and tissues, as many relevant ChIP-seq and DNase 
experiments have been performed by the Roadmap Epigenomics Mapping [51] and the 
ENCODE [52] Consortia in a wide variety of samples. 
 
We repeated this analysis training a six-parameter integrative models using STARR-seq 
data in the Drosophila BG3 cell  line, and tested them with STARR-seq data in the S2 
cell line. Again, we found that these statistical models showed similar high prediction 
accuracy in predicting enhancers and promoters in the S2 cell line (Supplementary Fig. 
9). This result indicates that our framework of combining epigenetic features with a linear 
SVM model to predict enhancers is applicable across different cell lines. 
 
 
To evaluate the impact of the training sample size on model performance, we did a 
saturation analysis where we down-sampled the training data to different levels of 
fractions and evaluated the model performance on the remaining data. For each fraction 
level, we did a ten-fold cross-validation (see methods) and then took the average of the 
ten outputs. We found that the average AUPR increased with increasing size of training 
data, and started to saturate for our SVM model with 80-90% of the experimental data 
for training (Supplementary Fig. 10). The average AUROC remained comparable, 
although the variances decreased with increasing training data size. This indicates that a 
five-fold cross validation might be sufficient with this size of data, as a five-fold cross 
validation uses 80% of the data for training and the remaining 20% of the data for testing, 
at which point the performance of the model started to saturate.  
 
  
Distinct epigenetic signals associated with promoters and enhancers  
  
We proceeded to create individual metaprofiles and machine learning models for the two 
classes of regulatory activators – promoters (or proximal) and enhancers (or distal). 
While strictly discriminating enhancers from promoters is very difficult, one commonly 
used strategy in the published literature is to look at their distance to the closest 
transcription start site (TSS). In conjunction to that, we divided all the active STARR-seq 
peaks into promoters or enhancers based on this distance to delineate their likely 
function in the native context. Due to the conservative distance metric used in this study 
(1kb upstream and downstream of TSS in Drosophila genome), the enhancers are 
regulatory elements that are not close to any known TSS and could be considered to 
enhance gene transcription from a distance. However, a few of the promoters may also 
regulate distal genes in addition to their promoter activity. We then created metaprofiles 
of the different epigenetic marks on the promoters and enhancers and assessed the 
performance of the matched filters for predicting active regulatory regions within each 
category (Fig. 3). We also combined the peaks identified from multiple STARR-seq 
experiments of S2 cells and reassessed the performance of the matched filters at 
predicting promoters and enhancers, respectively. Merging the STARR-seq peaks from 
multiple core promoters led to higher AUROC and AUPR for the matched filters of most 
histone marks (Supplementary Table 2). The highest matched filter scores were typically 
observed on promoters, and the matched filters for each of the six features tended to 
perform better for promoter prediction. Similar to previous studies [53, 54], we observed 
that the H3K4me1 metaprofile was very predictive for enhancers but was close to 
random for predicting promoters. In contrast, the H3K4me3 metaprofile could be utilized 
to predict promoters and not enhancers. The histogram for matched filter scores showed 
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that the H3K4me1 matched filter score was higher near enhancers while the H3K4me3 
matched filter score tended to be higher near promoters (Supplementary Fig. 11). The 
mixture of these two populations led to bimodal distributions for H3K4me1 and 
H3K4me3 matched filter scores when calculated over all regulatory regions 
(Supplementary Fig. 3).  
 
  
We again trained different statistical models to learn the combination of features 
associated with promoters and enhancers respectively. These integrated models 
outperformed the individual matched filters at predicting active enhancers and promoters 
(Fig. 3 and Supplementary Fig. 12). In addition, the weights of the individual features 
identified the difference in the roles of H3K4me1 and H3K4me3 matched filter scores at 
discriminating active promoters and enhancers from inactive regions in the genome. The 
promoter-based (enhancer-based) model performed much more poorly at predicting 
enhancers (promoters) indicating the unique properties of these regions (Supplementary 
Figs. 13 and 14). We also created two integrated models utilizing matched filter scores 
of all 30 histone marks as features for predicting enhancers and promoters. The 
additional histone marks provided independent information regarding the activity of 
promoters and enhancers as these features increased the accuracy of these models 
(Supplementary Fig. 15). The weights of different features indicated that H2BK5ac again 
displayed the most independent information for accurately predicting active enhancers 
and promoters. We observed similar trends and accuracy with several different machine 
learning methods (Supplementary Figs. 6 and 15). To investigate the impact of different 
distance metrics used to segregate enhancers and promoters, we repeated our analysis 
with different distance cutoffs (0.5kb, 1.5kb, 2.0kb and 2.5kb). While the accuracy as 
measured by the AUROC of different features and the integrated model slightly reduced 
as the distance increased, the importance of each feature in the integrated model 
remained similar (Supplementary Fig. 16).  
  
  

Application of the STARR-seq model to predict enhancers in mammalian species 
  
One of the important findings of previous ENCODE and model organism ENCODE 
efforts was the conservation of chromatin marks close to regulatory elements across 
hundreds of millions of years of evolution [36-42]. The relationship of chromatin marks to 
gene expression was very similar, for instance, in worms, flies, mice and humans, so 
much that one could build a statistical model relating chromatin modification to gene 
expression that would work without re-parameterization across different organisms. This 
motivated us to apply our well-parameterized model based on the STARR-seq data from 
flies to mammalian systems, eg. mouse and human, and test our model performance.  
  
We started by making genome-wide predictions of regulatory regions in mouse. We 
processed tissue-specific epigenetic signals and used them in our model to account for 
the tissue specificity of enhancers. Predictions were made in six different tissues 
(forebrain, midbrain, hindbrain, limb, heart and neural tube) at the embryonic day 11.5 
(e11.5) stage (Genome-wide predictions are available through our website at 
https://goo.gl/E8fLNN). These tissues were selected as their epigenetic signals have 
been highly studied in mouse ENCODE, providing us with a rich source of raw data that 
could be utilized for making enhancer and promoter predictions. In addition, the VISTA 
database contains close to 100 validated enhancers that could be used to test 
predictions in each of these tissues. Using our model, we predicted 31K to 39K 
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regulatory regions in individual tissues in mouse, with each region ranging from 300bp to 
1,100bp. Notably, a consistent proportion of two-thirds (66-70%) of these predicted 
regulatory regions were distal regulatory elements for all six tissues, with the other one-
third (30-34%) being proximal regulators (Supplementary Table 3). These numbers 
agree with a previous enhancer evolution study [8], and suggest that the amount of 
enhancers and promoters are likely comparable in different tissues.  
  
  
Similarly, we performed a genome-wide prediction of regulatory regions in the ENCODE 
top-tier human cell lines, including H1-hESC, GM12878, K562, HepG2, A549 and MCF-
7 (all available through our website). For each cell line, we utilized the six-parameter 
integrated model to predict active enhancers and promoters based on the epigenetic 
datasets measured by the ENCODE consortium [52]. In H1-hESC, for example, we 
predicted 43,463 active regulatory regions, of which 22,828 (52.5%) were within 2kb of 
the TSS and were labeled as promoters. A large proportion of the predicted enhancers 
were found in the introns (30.41%) and intergenic regions (13.93%) (Supplementary Fig. 
17). The predicted promoters and enhancers were significantly closer to active genes 
than expected randomly (Supplementary Fig. 18).  
  

Whole-genome STARR-seq enables proper training of enhancer prediction model 
  
We next evaluated how well the STARR-seq model could predict mammalian enhancers. 
Particularly, we wanted to compare the current mouse enhancer predictions with 
predictions from models directly trained on mouse data. The relatively large number of 
known mouse enhancers from the VISTA database enabled us to parameterize a model 
in the same way as we did with the Drosophila STARR-seq data. However, the number 
of active enhancers in each tissue in the VISTA database is not at the same scale as the 
STARR-seq dataset. In total, we found 1,253 positive regions and 8,631 negative 
regions pulling together from different tissues. 
  
With the VISTA database, we trained four models based on four sets of available e11.5 
mouse tissue-specific enhancers (hindbrain, limb, midbrain and neural tube), and 
assessed them using ten-fold cross-validation. There were no DHS data available for 
e11.5 forebrain and heart, thus these two tissues were excluded for fair comparison. The 
average AUROC value was compared to the AUROC of testing the STARR-seq trained 
model on the same VISTA enhancer data. Despite the significantly unbalanced negative-
to-positive ratios of mouse enhancers in the database, the six-parameter integrative 
SVM models learned using balanced Drosophila STARR-seq data were highly accurate 
at predicting active enhancers and promoters in mouse (Supplementary Fig. 19a). The 
cross-validated mouse model, although it did well, performed no better on predicting 
mouse tissue-specific enhancers. We found that the best performing one among the 
mouse models was for the tissue midbrain, likely due to the fact that the number of 
validated midbrain enhancers is the largest. To construct a larger training sample for 
mouse, we pooled together the normalized z-scores of matched filter scores for six 
epigenetic signals of all four tissues, and parameterized a model using this larger set of 
data. Again, we observed that the original model trained with Drosophila STARR-seq 
data performed equally well at predicting mouse enhancers and much better in 
predicting fly enhancers (Supplementary Fig. 19b). Overall, the result suggests that 
using the larger and more comprehensive STARR-seq data set for parameter tuning is 
superior to using the smaller mouse data set, even on mouse. 
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Given the above overall statistical evaluations, we are confident in the STARR-seq 
parameterized model. We then set out to do targeted unbiased validations of the 
mammalian enhancers predicted, which is described in the next two sections.  
  

  
Validation in vivo in mouse  
  
To test the activity of predicted mouse enhancers in vivo, we performed transgenic 
mouse enhancer assays in e11.5 mice for 133 regions, including 102 regions selected 
based on the H3K27ac signals rank of corresponding mouse tissues, and 31 regions 
selected by an ensemble approach from human homolog sequences. For each tested 
candidate, a readout of activity across the entire embryo was collected. The number of 
transgenic mice that showed the pattern for each tissue was also recorded to confirm 
reproducibility (See Methods, Supplementary Table 4 and 5, and Supplementary Fig. 20). 
In addition, we included other published transgenic mouse experiments from the VISTA 
database for validation. This large set of validated enhancers allowed us to 
comprehensively evaluate our enhancer predictions in all six e11.5 mouse tissues.  
  
Among the first 102 tested regions, 62 were selected based on forebrain H3K27ac signal 
rank, with 20, 22, and 20 regions being in the top, middle and bottom rank, respectively. 
We found that while the top-ranked regions showed high activity rate (~70%), the active 
rate for the middle rank and the bottom rank is similar, with a slightly higher active rate 
for the latter (32% and 35%). This might suggest that the simple H3K27ac signal rank is 
not a direct indicator of enhancer activity. Another 40 regions were selected by heart 
H3K27ac signal with half of them coming from the top rank and the other half coming 
from the middle rank. We observed 35% of the top rank regions and 25% of the middle 
rank regions showing enhancer activity. For the other 31 human homolog sequences, 
12.9% and 9.7% of the assessed regions were active in heart and forebrain, respectively. 
The lower active rate was likely due to the fact that these human sequences are less 
well behaved in mouse tissues compared to their original native environment.  
  
  
We evaluated the predictability of our matched filter model for each individual histone 
marks and DHS, as well as the integrated SVM model (Fig. 4). For each tissue, our 
model ranked all the tested candidate elements with their predicted activity in this tissue 
using either individual features or the integrated SVM model. Then, the label of each 
element from experiment readout was used to assess the predictions with ROC and PR 
curves. On average, the integrated model trained with Drosophila STARR-seq data 
achieved an AUROC of 0.80 and an AUPR of 0.37 for tissue-specific enhancer 
predictions in mouse (Fig. 4a). For AUROC, the baseline was always 0.50, whereas for 
AUPR the baseline was the positive rate from the experiment. In our transgenic mouse 
experiment, the positive rate varied from 8.8% to 17.6% among the tissues, and thus the 
AUPR had a larger variance compared to the AUROC. We also did a similar evaluation 
using the regulatory elements identified by the transduction-based FIREWACh assay in 
mouse embryonic stem cells (mESCs) [30]. Again, we observed similar results for 
individual histone marks and combined SVM model (Supplementary Fig. 21). As the in 
vivo and FIREWACh assays utilized a single core promoter to validate regulatory 
regions, the performance of the different models in Figures 4 and Supplementary Figure 
S21 are probably underestimated. 
  

Validation in human cell lines 
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We proceeded to validate our STARR-seq based model for predicting human enhancers 
using a cell-based transduction assay. We used a third-generation, self-inactivating (SIN) 
HIV-1 based vector system in which the enhanced GFP (eGFP) reporter was driven by 
the DNA element of interest to test putative enhancers after stable transduction of four 
cell lines, including H1-hESCs (Fig. 5). The predicted enhancers, ranging from 650 to 
2,500 bp, were PCR amplified from human genomic DNA and separately inserted 
immediately upstream of a basal Oct-4 promoter of 142 bp within the SIN HIV vector. 
Each putative enhancer was tested in triplicate for both forward and reverse orientation 
in H1-hESCs. We used empty SIN HIV vector and FG12 as the negative and the positive 
controls, respectively. Note that the empty vector had the basal Oct-4 promoter, along 
with the IRES-eGFP reporter cassette. We assessed putative enhancer activity by flow 
cytometric readout of eGFP expression 48-72 h post-transduction, normalized to the 
negative control.  
  

We selected a total of 23 predicted intergenic enhancers for validation. These 
predictions were chosen at random to ensure that they truly represented the whole 
spectrum of predicted enhancers and not just the top tier of predicted enhancers. Of 
these 23 putative enhancers, 20 were successfully PCR-amplified and cloned into the 
SIN HIV vector in both directions. To measure the distribution of gene expression in the 
absence of enhancer, we also amplified and cloned 20 non-repetitive elements with a 
similar length distribution that were predicted to be inactive into the same SIN HIV vector. 
All positive and negative DNA elements were transduced and tested for activity in both 
forward and reverse orientations as enhancers are thought to function in an orientation-
independent manner. Following the same procedures, we performed functional testing in 
duplicate in HOS, TZMBL, and A549 cell lines in addition to H1-hESCs.  
 
 
Insertion of 12 of the putative enhancers into the HIV vector resulted in a significant 
increase in eGFP expression (P-value < 0.05 over the distribution of gene expression for 
negative elements) in H1-hESCs (Supplementary Table 6). Most of the positive 
enhancers displayed a significant increase in gene expression irrespective of their 
orientation. In contrast, the negatives displayed much lower levels of gene expression 
(Fig. 5 and Supplementary Fig. 22). The activity of these tested enhancers also showed 
cell specificity. For example, predicted H1-hESC enhancers A1 to A6 all showed strong 
activity in both orientations in H1-hESCs (Supplementary Fig. 23), but not in A549, HOS 
or TZMBL cell lines (Supplementary Fig. 24). Overall, 16 of the 20 tested predictions 
displayed a statistically significant increase in gene expression of the reporter gene in at 
least one of the cell lines. Given the promoter specificity of enhancers in such assays, 
we anticipate that some of the elements that could not be validated in this particular 
vector would function as enhancers in a more natural biological context (e.g., with the 
cognate promoter or in the absence of surrounding HIV vector sequences). 
  
  
Comparison against other computational methods 
  
To further assess the performance of our model, we compared it against other published 
methods. We first did a comparison with ChromHMM [55], a well-known method to 
segment the genome based on chromatin features. We evaluated the performance of 
ChromHMM in the same way as we presented above using the same data from the 
transgenic mouse enhancer assay. Our integrated model outperformed ChromHMM in 
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all four tissues, with an AUROC value of 0.76 in hindbrain (versus ChromHMM 0.69), 
and 0.81 in limb (versus ChromHMM 0.75), etc (Supplementary Fig. 25). In addition to 
the comparison with unsupervised segmentation-based methods, we also compared 
with other published enhancer prediction tools, including CSIANN, a neural network 
based approach [56]; DELTA, an ensemble model integrating different histone 
modifications [57]; RFECS, a random forest model based on histone modifications [53], 
and REPTILE, a more recent published method that integrates histone modifications and 
whole-genome bisulfite sequencing data [58]. We used the mouse experimental data 
published in REPTILE for the comparison, and assessed the performance of our method 
compared to the four published methods mentioned above for all four mouse tissues 
with available experimental data, ChIP-seq data, and DNase data. In three out of four 
tissues (hindbrain, limb and neural tube), our method had the highest AUROC as shown 
in Supplementary Fig. 26. In midbrain, the AUROC for our prediction was slightly lower 
than REPTILE and RFECS, possibly because the DNase experiment performed in 
midbrain was very noisy; the DNase experiment of mouse e11.5 midbrain was marked 
as “low SPOT score” in ENCODE, where SPOT stands for Signal Portion of Tag. We 
found that while 75% to 81% of the genome regions had DNase signals in the other 
three tissues, only 52% of the genome regions showed DNase signal in the experiment 
in midbrain. Overall, the comparison shows that our model trained using the Drosophila 
STARR-seq data had similar or better performance than the other methods that were 
trained directly using mouse experimental data.  
  
For human, we did not have an extensive amount of validated enhancer data. For 
comparison, we first checked the overlap of our predicted enhancers with the enhancer 
predictions from chromHMM [55], and SegWay [59], the other unsupervised genome 
segmentation method, respectively. We observed that a majority of our predictions 
overlap with either of them (Supplementary Figs. 27-30). In addition, we compared our 
cell type-specific enhancer predictions with the integrative annotation of ChromHMM and 
Segway [60] using CAGE-defined enhancers from the FANTOM5 Atlas [61]. The 
FANTOM5 Atlas has included three human cell lines from the ENCODE project with 
enhancer predictions from both methods: GM12878, K562 and HepG2. We found that 
the percentage of overlap for our predicted enhancers was more than three times higher 
than that of the combined ChromHMM and Segway enhancers in each of these cell lines. 
Despite the fact that our framework predicted a smaller number of enhancers, the 
number of overlaps was still higher for our predictions. Around 40% of the CAGE-defined 
enhancers overlapped with our predicted enhancers, whereas 23% to 34% overlapped 
with the enhancers predicted by the integrative ENCODE annotation method 
(Supplementary Fig. 31). We also compared the predicted promoters from our model 
with their promoter annotations using FANTOM5 promoter sets. Again, the promoters 
predicted in our model had a higher fraction of overlaps with the FANTOM promoters 
(Supplementary Fig. 32).  
  
In addition to the integrative ENCODE annotation, we again compared with other 
supervised enhancer predictions like CSI-ANN [56], DEEP [62] and RFECS [53], using 
the FANTOM5 enhancer dataset. As most of these methods do not have published 
enhancer predictions for GM12878 and HepG2, we performed the comparison in the 
K562 cell line. We found that our predicted K562 enhancers had a similar fraction of 
overlap with FANTOM5 enhancers compared to that of CSI-ANN, but the fraction was 
more than twice as high as that of DEEP and RFECS (Supplementary Fig. 33). Besides 
the overlap with FANTOM5 enhancers, we also checked the overlapping percentage of 
our predicted enhancers with p300, DHS, and other enhancer binding TFs. Enhancer 
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predictions that have a larger fraction of overlap were regarded as more accurate [53]. 
For example, RFECS predictions were shown to have a higher positive rate than 
ChromaGenSVM [63], CSI-ANN [56], and Chromia [53, 64]. Following the same 
convention, we used their published DNase and ChIP-seq experiments (p300, NANOG, 
OCT4, and SOX2) in H1-hESCs and repeated the analysis using the same 2.5kb frame 
distance as they did for overlap. The result showed that our enhancer prediction in H1-
hESC had a higher percentage of potentially true positives than RFECS (Supplementary 
Fig. 34), and thus higher than ChromaGenSVM, CSI-ANN, and Chromia. Overall, our 
comparisons show that the STARR-seq-based enhancer prediction model is highly 
accurate in mammalian systems.   
  

  
Integrative analysis in human cell lines: Different TFs bind to enhancers and 
promoters 
  
We further studied the differences in TF binding at promoters and enhancers (Fig. 6 and 
Supplementary Fig. 35). We focused on the human H1-hESC cell line as there is large 
amount of functional genomic assays from the ENCODE [52] and Roadmap 
Epigenomics Mapping Consortium [51] of these cell lines. Together, the consortia have 
generated ChIP-Seq data for 60 transcription-related factors in the H1-hESC cell line, 
including a few chromatin remodelers and histone modification enzymes. Collectively, 
we call these transcription-related factors "TFs” for simplicity.  
  
 
We showed that the patterns of TFs binding within regulatory regions could be utilized in 
a logistic regression model to distinguish active enhancers from promoters with high 
accuracy (AUPR = 0.90, AUROC = 0.87) (Fig. 6). We were also able to identify the most 
important features that distinguish promoters from enhancers. In addition to TATA box-
associated factors such as TAF1, TAF7, and TBP, the RNA polymerase-II binding 
patterns as well as chromatin remodelers such as KDM5A and PHF8 are some of the 
most important factors that distinguish promoters from enhancers in H1-hESCs. This 
provides a framework that can be utilized to identify the most important TFs associated 
with active enhancers and promoters in each cell type.  
  
  
We found that although most promoters and enhancers contain multiple TF binding sites, 
the pattern of TF binding at promoters was different from that at enhancers and that TF 
binding at enhancers displayed more heterogeneity: more than 70% of the promoters 
bound to the same set of 2-3 sequence-specific TFs, which was not observed for 
enhancers (Fig. 6c and Supplementary Fig. 36). The majority of the promoters contained 
peaks for several TATA-associated factors (TAF1, TAF7, and TBP). These TF co-
associations could lead to mechanistic insights of cooperativity between TFs. Similarly, 
CTCF and ZNF143 may function cooperatively as they are observed to co-occur 
frequently at distal regulatory regions, consistent with the previous report [65]. 
  
To check if the STARR-seq-based enhancer predictions have different TF binding 
patterns, we referred to the fraction of TF occupancy of predicted enhancer from other 
methods. The comparison demonstrated in Supplementary Figure 34 shows that the TF 
binding pattern of our prediction is very similar to that of RFECS. Notably, while RFECS 
took p300 binding regions as positive training sets, only 25% or less of their predicted 
enhancers were within 2.5kb of any p300 binding sites, and this is consistent with 
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predictions from ChromaGenSVM [63], CSI-ANN [56], and Chromia [53, 64]. Overall, the 
high heterogeneity associated with enhancer TF binding is consistent with the absence 
of a characteristic sequence which can be utilized to identify active enhancers on a 
genome-wide fashion. 
  
Discussion 
  
In this study, we developed a framework using transferable supervised machine learning 
models trained on regulatory regions identified by STARR-seq to accurately predict 
active enhancers in a cell-type-specific manner. Currently, most existing methods were 
parameterized on a small number of regions that were typically tested by experiments in 
an ad hoc manner [18, 20, 22-24]. The rich amount of whole-genome STARR-seq 
experiments established the characteristic pattern flanking active regulatory regions 
within certain histone modifications [25]. This motivated us to train a shape-matching 
and filtering model that could be used to identify these patterns in the ChIP-seq signals. 
As the chromatin marks and epigenetic profiles associated with active regulatory regions 
are highly conserved among organisms [36-42], we showed that a well-parameterized 
model in one model organism can be transferred to another with high prediction 
accuracy. 
  
In the model, we compared close to 30 epigenetic signals for their ability to predict 
regulatory elements individually. Consistent with previous literature, we found that the 
H3K27ac matched filter score is very distinctive for predicting active regions, and 
H3K4me1 and H3K4me3 can distinguish promoters and enhancers. We characterized 
the amount of redundant information within the metaprofile of different epigenetic 
features, and showed that the ChIP-seq signals of H2BK5ac, H4ac, and H2A provide 
independent information that improves the accuracy of promoter and enhancer 
predictions. In addition to these 30-feature models, we also provide a simple to use six-
parameter SVM model for combining H3K27ac, H3K9ac, H3K4me1, H3K4me2, 
H3K4me3, and DHS to predict active promoters and enhancers in a cell type-specific 
manner. These six histone marks have been measured for a number of different tissues 
and cell types by the Roadmap Epigenomics Mapping [51], the ENCODE [52], and the 
modENCODE Consortia [66]. Using these features, our model could be applied to other 
species like mouse and human in a tissue- and cell type-specific fashion. We compared 
our enhancer predictions in mouse and human with the predictions from other published 
methods. The transferable model trained from the Drosophila STARR-seq experiment 
demonstrated higher performance than the other methods trained directly from 
mammalian experiments.   
 
While STARR-seq provides a genome-wide unbiased test of the enhancer activity of 
putative sequences, it is intrinsically episomal and thus not completely revealing the 
enhancer activity in the native chromatin environment. Selecting for chromosomally 
active enhancers using H3K27ac and DHS could introduce subtle biases in model 
training. To address this issue, we employed very different experiment techniques and 
provided orthogonal validations. This included in vivo transgenic assays and in vitro 
transduction assays, in which the predicted regions were tested for regulatory activity in 
the native chromatin environment. The transgenic assays were performed in e11.5 mice 
for 133 regions. To better assess our model performance, we also included other 
published transgenic mouse experiments from the VISTA enhancer browser. In total, we 
were able to comprehensively validate our tissue-specific predictions in six different 
tissues in mouse. We also did a similar evaluation with publicly available FIREWACh 
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assay data [30] in mouse, and the result was consistent. With multiple comparisons to 
other published methods trained directly on mouse data, we showed that the matched 
filter model is transferable with high accuracy in predicting active enhancers in mouse 
tissues. The in vitro transduction assays were performed in H1-hESCs and three other 
human cell lines to validate the human regulatory elements predictions. The majority of 
the predicted elements displayed a significant increase in expression of the reporter 
gene, further confirming the predictability of our model in mammalian organisms.   
  
  
As the ENCODE project has generated rich amount of TF ChIP-seq experiment data for 
H1-hESCs, we used it to look into the differences in the patterns of TF binding at 
proximal and distal regulatory regions. The TF binding and co-binding patterns at 
enhancers are much more heterogeneous than that at promoters. This heterogeneity in 
TF binding patterns makes it more difficult to predict enhancers due to the absence of 
obvious sequence patterns in distal regulatory regions. However, we were able to create 
accurate machine learning models that could distinguish proximal promoter regions from 
distal enhancers based on the patterns of TF ChIP-seq peaks within these regulatory 
regions. The conservation of the epigenetic underpinnings underlying active regulatory 
regions sets the stage for our method to study the evolution of tissue-specific enhancers 
and their genomic properties across different eukaryotic species. 
  
  
Our results relate to the previous findings that the epigenetic profiles associated with 
active enhancers and promoters are highly conserved in evolution [36-42]. Therefore, 
our model of integrating shape-matching epigenetic scores using Drosophila STARR-
seq enhancers could be applied for prediction in a variety of tissues and cell lines in 
other species. In the cross-comparison, we showed that the six-parameter integrated 
model trained with STARR-seq data performs better at predicting mouse tissue 
enhancers than a model trained in VISTA mouse enhancer data. This highlights the 
advantage of modeling based on a comprehensive genome-wide experimental assay. In 
the future, we expect that more extensive whole-genome STARR-seq dataset will 
become available on mammalian systems. It could be advantageous to re-train the 
matched filter model on state-of-art datasets. With the setup of our framework, re-
training the model with newly generated datasets should be straightforward. We envision 
that our framework would benefit from these datasets and generate more 
comprehensive regulatory element annotations across eukaryotic species.  
  
  
  
Implementation: source code and datasets 
  
We have implemented our methods in Python. The source code is available at the 
website https://goo.gl/E8fLNN. A dockerized image is also provided for download at this 
site.  
  
The datasets and output annotations referenced in the paper are available in the on the 
website as well as in the Supplement. The transgenic mouse reporter assay results 
shown in Supplementary Table 4 and 5 are also made available in the VISTA Enhancer 
Browser (https://enhancer.lbl.gov). Please refer to the supplement for more details. 
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Figures and Captions 
 
  

 
 
 
  
Figure 1: Flowchart of the Matched-filter model. A) We identified the “double peak” pattern in 
the H3K27ac signal close to STARR-seq peaks. The red triangles denote the position of the two 
maxima in the double peak. B) We aggregated the H3K27ac signal around these regions after 
aligning the flanking maxima, using interpolation and smoothing on the H3K27ac signal, and 
averaged the signal across different MPRA peaks to create the metaprofile in C). The same 
operations were performed on other histone signals and DHS to create metaprofiles in other 
dependent epigenetic signals. D) Matched filters were used to scan the histone and/or DHS 
datasets to identify the occurrence of the corresponding pattern in the genome. E) The matched 
filter scores are high in regions where the profile occurs (grey region shows an example) but low 
when only noise is present in the data. The individual matched filter scores from different 
epigenetic datasets were combined using integrated model in F) to predict active promoters and 
enhancers in a genome-wide fashion. 
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Figure 2: Performance of matched filters and integrated models for predicting MPRA 
peaks. The performance of the matched filters of different epigenetic marks and the integrated 
model for predicting all STARR-seq peaks was compared using ten-fold cross validation. A) The 
area under the receiver-operating characteristic (AUROC) and the precision-recall (AUPR) curves 
were used to measure the accuracy of different matched filters and the integrated model. B) 
Weights of the different features in the integrated model are plotted; error bars show the standard 
deviation of feature weights measured by ten-fold cross validation. These weights may be used 
as a proxy for the importance of each feature in the integrated model.  C-D) The individual ROC 
and PR curves for each matched filter and the integrated model are shown. The performance of 
these features and the integrated model for predicting the STARR-seq peaks using multiple core 
promoters and a single core promoter were compared. The numbers within the parentheses in A) 
refer to the AUROC and AUPR for predicting the peaks using a single STARR-seq core promoter; 
the numbers outside the parentheses refer to the performance of the model for predicting peaks 
from multiple core promoters.  
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Figure 3: Performance of matched filters and integrated models for predicting promoters 
and enhancers. The performance of the matched filters of different epigenetic marks and the 
integrated model for predicting active promoters and enhancers were compared using ten-fold 
cross validation. A) The numbers within parentheses refer to the AUROC and AUPR for 
predicting promoters; the numbers outside the parentheses refer the performance of the models 
for predicting enhancers. B) Weights of the different features in the integrated models for 
promoter and enhancer prediction are plotted; error bars show the standard deviation of feature 
weights measured by ten-fold cross validation. C-D) The ROC and PR curves for each matched 
filter and the integrated model are shown. The performance of these features and the integrated 
model for predicting the active promoters and enhancers using multiple core promoters were 
compared.  
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Figure 4: Performance of matched filters and integrated model for predicting active 
enhancers in mice. The performance of the Drosophila STARR-seq-based matched filters and 
the integrated model for predicting active enhancers identified by transgenic mouse enhancer 
assays in six different tissues of e11.5 mice. A) The AUROC and AUPR are shown for the 
integrated SVM model in six tissues. The weights of the different features in the integrated model 
are the same as the weights shown in Figure 3 for enhancers. B) The individual ROC curves of 
each feature and the integrated SVM model for each tissue are shown. C) The individual PR 
curves of each feature and the integrated SVM model for each tissue are shown. 
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Figure 5: Enhancer validation experiments. A) Schematic of the enhancer validation 
experiment flow. At top is the third-generation HIV-based self-inactivating vector (deletion in 3’ 
LTR indicated by red triangle), with PCR-amplified test DNA (blue, cloned in both orientations) 
inserted just 5’ of a basal Oct4 promoter (P) driving IRES-eGFP (green). Vector supernatant was 
prepared by plasmid co-transfection of 293T cells. Cells of interest were transduced and then 
analyzed by flow cytometry a few days later. Shown below is the expected post-transduction 
structure of the SIN HIV vector, with a duplication of the 3’ LTR deletion rendering both LTRs 
non-functional. B) Fold changes of gene expression of eGFP was compared between negative 
elements and putative enhancers chosen at random, with the p-value measured by the Wilcoxon 
signed-rank test. The 25th and 75th percentiles of the fold change in gene expression for each 
group are represented by the whiskers in the box plot. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2018. ; https://doi.org/10.1101/385237doi: bioRxiv preprint 

https://doi.org/10.1101/385237
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

 
 
 
Figure 6: Differences in TF binding patterns at enhancers and promoters. A) The fraction of 
predicted promoters and enhancers that overlap with ENCODE ChIP-seq peaks for different TFs 
in H1-hESC are shown. The names of all TFs in the figure can be viewed in Figure S20. B) The 
AUROC and AUPR for a logistic regression model created using the pattern of TF binding at each 
regulatory region to distinguish enhancers from promoters are shown. The weight of each feature 
in the logistic regression model could be used to identify the most important TFs that distinguish 
enhancers from promoters. C) The patterns of TF co-binding at active promoters and enhancers 
are shown. The TFs co-occur at promoters regions tend to form obligate complexes. The names 
of all the TFs in this graph can be viewed in Figure S21. 
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