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Gene expression levels can be an important link DNA between variation and phenotypic manifestations. Our previous

map of global gene expression, based on ~400K single nucleotide polymorphisms (SNPs) and 50K transcripts in 400 sib

pairs from the MRCA family panel, has been widely used to interpret the results of genome-wide association studies

(GWASs). Here, we more than double the size of our initial data set with expression data on 550 additional individuals

from the MRCE family panel using the Illumina whole-genome expression array. We have used new statistical methods for

dimension reduction to account for nongenetic effects in estimates of expression levels, and we have also included SNPs

imputed from the 1000 Genomes Project. Our methods reduced false-discovery rates and increased the number of ex-

pression quantitative trait loci (eQTLs) mapped either locally or at a distance (i.e., in cis or trans) from 1534 in the MRCA

data set to 4452 (with <5% FDR). Imputation of 1000 Genomes SNPs further increased the number of eQTLs to 7302.

Using the samemethods and imputed SNPs in the newly acquiredMRCE data set, we identified eQTLs for 9000 genes. The

combined results identify strong local and distant effects for transcripts from 14,177 genes. Our eQTL database based on

these results is freely available to help define the function of disease-associated variants.

[Supplemental material is available for this article.]

Expression quantitative trait loci (eQTLs) provide insights into the

regulation of transcription and aid in interpretation of genome-

wide association studies (GWASs) (Stranger et al. 2005, 2007a,b;

Dixon et al. 2007; Moffatt et al. 2007; Cookson et al. 2009; Heid

et al. 2010; Hsu et al. 2010; Lango Allen et al. 2010; Speliotes et al.

2010; Chu et al. 2011). Transcript abundances for 40%–70% of

genes are heritable, but only 25%–35%of the heritable component

in expression levels has been explained by the eQTLs so far iden-

tified (Dixon et al. 2007; Goring et al. 2007; Stranger et al. 2007a,b;

Emilsson et al. 2008).

The lack of eQTLs for many heritable transcript abundances

may be due to multiple factors. These include the limited sample

sizes of previous studies, high signal noise in microarray mea-

surements of transcript abundances, variation in biological and

technical factors that increase measurement errors in gene ex-

pression abundance, limited coverage of genetic variation using

commercial genotyping platforms, and incomplete coverage of the

transcriptome by gene expression arrays.

In order to increase the power of eQTL mapping and to build

a more complete map of single nucleotide polymorphisms (SNPs)

influencing gene expression, we have expanded our previous

analysis (Dixon et al. 2007) by including data generated using

newer whole-genome gene expression arrays. We have refined our

analyses using newly developed statistical methods (Leek and

Storey 2007; Stegle et al. 2010) together with an expanded catalog

of genetic variation generated by the 1000 Genomes Project. In

this introduction, we first briefly review the rationale for each of

these refinements.

Variation in the conditions and timing of experiments

and operator characteristics may introduce variation in the

measurements of transcript abundances, as may batch effects

on the manufacture of microarray chips (Akey et al. 2007). Bi-

ological conditions such as stage of the cells when RNA is ex-

tracted and other unknown factors may also form important

influences on the measurement of gene expression. Despite

these confounders, the deep information among the thousands

of transcripts on microarrays may be used to improve the accu-

racy of gene expression measurements. All probes on an in-

dividual microarray undergo identical experimental conditions

that can be summarized by dimension reduction methods, such

as principal components analysis (PCA) or factor analysis (Leek

and Storey 2007; Stegle et al. 2010). We systematically evaluate

this strategy in our data sets and show that the top principal

components (PCs) of gene expression are highly correlated with

RNA extraction and cDNA synthesis dates, the date that the

sample was fragmented, and the date of chip hybridization. We

go on to show that including these PCs in downstream analyses

reduces false positives and increases power for both local and

distant eQTLs.

Commonly used gene expression microarrays are manufac-

tured using chip designs that may lead to differential coverage of
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the transcriptome. For example, the probesets on the Affymetrix

U133 Plus 2 chip consist of multiple probes, each 25 bp long. The

probeset level intensity combining all probes is used as the measure

of transcript abundance. On the other hand, the Illumina Human6

V1 array has only one probe of 50 bp long per transcript. Affymetrix

and Illumina probes may sit in different positions in a gene and,

as a consequence, produce different intensities of gene expression

measurements. In addition, the genes that are represented on an

array may differ between platforms, so that only 7601 genes are

covered by both the Affymetrix and Illumina microarrays discussed

above. Newer chip designs such as the Affymetrix Human Gene 1.0

ST arrays are more inclusive, and RNA sequencing can now provide

comprehensive cover of the transcriptome, although its cost and

complexity still limits its utility.While waiting for the technology to

evolve, it is of importance to recognize that individual eQTL de-

tection may be limited by the experimental platform chosen.

Genotype imputation is commonly used to increase the power

and coverage of individual GWASs and to facilitate meta-analysis

across studies utilizing different genotyping platforms (Scott et al.

2007; Wellcome Trust Case Control Consortium 2007; Sanna et al.

2008; Willer et al. 2008). To date, most studies using genotype im-

putation have used HapMap samples as a template reference panel

(Frazer et al. 2007). The 1000 Genomes Project Consortium (in the

following text abbreviated as 1000G) (1000 Genomes Project Con-

sortium 2010; http://www.1000genomes.org) aims at developing

a comprehensive catalog of human genetic variants of SNP and

structure variantswith allele frequencydown to1%.One immediate

benefit from this project is a deeper and broader reference panel of

variants for genotype imputation. Com-

mon SNPs that were implicitly tested for

association by being tagged by one or

more HapMap SNPs may now be directly

imputed and tested.

In this study we use two large gene

expression data sets from nuclear families

ascertained through a child with asthma

using the Affymetrix Hu133A platform

(the MRCA panel) (Dixon et al. 2007) or

eczema using the Illumina bead array

platform (the MRCE panel) (Morar et al.

2007). The study of families allows esti-

mations of heritability for each expres-

sion trait.We compare the power of eQTL

mapping using imputation of the new

reference panel of 8 million SNPs and

imputation of HapMap SNPs. We are able

to identify new eQTLs and categorize

them by allele frequency, genome cover-

age, effect size, and trait heritability.

We have defined local associations

as expression SNP (eSNP) and genewithin

1 Mb on the same chromosome (the

equivalent of cis), and distant associa-

tions as eSNP and gene >1 Mb away from

gene, either on the same chromosome or

on different chromosomes (the equiva-

lent of trans).

Results

The first sample (MRCA) contained 206

siblings of British descent (Dixon et al.

2007). Global gene expression in lymphoblastoid cell lines (LCLs)

was measured using Affymetrix HG-U133 Plus 2.0 chips. All sib-

lings were genotyped using the Illumina Sentrix HumanHap300

BeadChip (ILMN300K), the Illumina Sentrix Human-1 Genotyping

BeadChip (ILMN100K), or both. The second sample (MRCE) of 950

individuals from 320 families of British descent was genotyped

using the Illumina Sentrix HumanHap300 Genotyping BeadChip.

Expression arrays using Illumina Human 6 BeadChips were avail-

able on 550 children. As Illumina probe and Affymetrix probesets

annotated to the same gene may target different transcripts, we

have first analyzed the data as individual transcripts identified by

their respective Illumina or Affymetrix identification.

We carried out variance component-based association anal-

ysis at each SNP (Abecasis et al. 2002; Abecasis and Wigginton

2005). Before adjustments for nongenetic effects and imputa-

tion, we mapped eQTLs for 1534 genes (corresponding to 2432

Affymetrix probesets), either locally or at a distance for the MRCA

data set, and 1784 eQTLs (corresponding to 1820 Illumina probes)

for the MRCE data set (Table 1). We found 2934 individual eQTLs

in the combined data set (Table 1).

Adjusting for nongenetic effects improves power

of eQTL mapping

We estimated PCs from the gene expression values in the family

panels, and progressively included the top PCs in the eQTL re-

gression model as covariates until the number of transcripts

mapped locally no longer increased. In the final models, we in-

Table 1. Number of eQTLs from different sources

Affymetrix U133 Plus2
expression array (MRCA)

Illumina Human6 V1
expression array (MRCE) Combined

No. of
probesets

No. of gene
symbols

No. of
probes

No. of gene
symbols

No. of gene
symbols

Original data
Local 1975 1237 1455 1421 2299
Distant syntenic 44 32 80 79 106
Distant 376 278 366 366 642
Total 2432 1534 1820 1784 2934

PC-adjusted
Local 6219 3674 3658 3552 5882
Distant syntenic 140 106 196 195 291
Distant 1111 897 1004 998 1851
Total 7406 4452 4549 4421 7404

1000G imputation
and PC-adjusteda

Local 6061 3589 4160 4037 6200
Distant syntenic 605 462 850 845 1284
Distant 6629 4639 6746 6554 10,255
Total 12,207 7302 9190 8842 13,661

Total
Local 6796 3996 4272 4146 6579
Distant syntenic 655 500 875 870 1343
Distant 7116 4969 6898 6697 10,634
Total 13,305 7874 9357 9000 14,177

Numbers shown are number of unique probes (or gene symbols annotated to the probesets/probes)
that were associated with at least one SNP at Benjamini and Hochberg false-discovery rate (FDR) <5%.
FDR is calculated by accounting for all probe–SNP pairs on the genome (e.g., for 1000G imputation
results, that is, 54,675 3 7,432,030 probeset–SNP pairs). (Local) The SNP is within 1 Mb of the tran-
scription start or end site of the probes or the annotated genes; (syntenic distant) the SNP is on the same
chromosome but >1 Mb away; (distant) the SNP is on a different chromosome. The ‘‘combined’’
column is the number of unique gene symbols from the union of MRCA (Affymetrix) and MRCE (Illu-
mina) results.
a1000 Genome SNPs imputation include only autosomal SNPs.
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cluded the top 69 PCs in the MRCA (Affymetrix) expression data

set and the top 61 PCs in the MRCE (Illumina) data set. Including

data on batch and experimental conditions in the model did not

change the findings, indicating that the PCs adjustedwell for these

factors. Overall, including PCs in the MRCA model identified

eQTLs for 7406 probesets (6219 mapped locally) compared with

2432 probesets (1975 mapped locally) in the original data set

(Table 1).

Previous studies have suggested that the majority of human

eQTLs map locally and that distant eQTL are less likely to replicate

(Dixon et al. 2007; Schadt et al. 2008). We therefore used the

proportion of distant effects among highly significant eQTLs as an

initial conservative estimate of the false-discovery rate (con-

servativeFDR). Among the top 1200 eQTLs, both our new analysis

and the original analysis detected a similar number of distant

eQTLs (Fig. 1). However, as the number of eQTLs increased, the

fraction of distant eQTL and the estimated conservativeFDR in-

creased rapidly for our original analysis but not for the PC-adjusted

analysis. Among the top 3000 eQTLs, the conservativeFDR esti-

mate in the original analysis was;30% compared with 1% for the

PC-adjusted analysis.

To further assess the false-discovery rate (FDR) for local and

distant eQTLs, we divided theMRCA sample into two independent

data sets with approximately 200 subjects per data set. One data set

was used for discovery; the other, for replication. For multiple

significance thresholds,we calculated the proportion of discovered

eQTLs that could be replicated in the second data set with LOD > 3

(P-value of <;23 10�4) (Fig. 2). Local and distant syntenic effects

had higher replication rates even when using low thresholds for

significance, confirming prior observations that local eQTLs are

more likely to represent true associations. The PC-adjusted analysis

gave higher replication rates for both local and distant eQTLs, in-

dicating that PC-improved analysis helps define reliable distant

eQTLs (note that the replication rate here is likely underestimated

due to sample size limitation) (Ding et al. 2010).

Encouraged by the low FDR of our PC-adjusted analysis, we

used a sequential search to determine the number of PC that

maximized power (Supplemental Fig. 1; Liang et al. 2009). The

number of genes mapped locally (LOD > 6 or P < 1.5 3 10�7, the

threshold we previously used to define genome-wide significance

in the same data set) (Dixon et al. 2007) was used as an indicator of

power. In the MRCA data set, as we gradually included additional

PCs in the model, the number of local eQTLs (autosomes plus

chromosome X) increased gradually from 2175 (with no PCs) to

6238 (when 69 PCs were used to control for nongenetic variation).

Further increases in the number of PCs led to decreases in the

number of eQTLs detected (and likely power). This eventual de-

crease in power may be explained because the later PCs are dom-

inated by contributions from a few transcripts. The optimal

number of PCs seems to vary by sample (e.g., 61 for the MRCE

panel) and can be estimated in other data by using a similar pro-

cedure to that used here (Supplemental Fig. 1).

Imputation accuracy

We used the MaCH program to identify stretches of haplotypes

shared between the study samples and the HapMap or 1000G SNPs

reference panel and to impute their SNPs into the study sample. In

both cases, SNP imputation achieved high estimated imputation

accuracy, with 2,492,059 and 7,432,030 SNPs imputed with R2
>

0.3, respectively, in the MRCA data set, and 2,429,403 and

7,378,292 SNPs, respectively, in the MRCE data set with R2
> 0.3.

(The R2 measure estimates the correlation between imputed and

true genotypes, based on the residual uncertainty in estimated

genotypes.) We further assessed the accuracy of genotype impu-

tation by comparing imputed and experimentally derived geno-

types on a genomic scale. In the first sample (MRCA), individuals

were genotyped on two platforms (Illumina 300K or ILMN300K

and Illumina 100K or ILMN100K). The ILMN300K genotypes were

used to drive imputation. We then used genotypes for markers in

the ILMN100K panel but not present in the ILMN300K panel to

assess the accuracy of imputed genotypes. Accuracy was measured

by correlation between true allele counts and imputed allele

counts.

After QC filtering the ILMN100K SNPs and removing SNPs

used for imputation, we find 58,819 autosomal SNPs from

the ILMN100K panel overlap with the

HapMap, and 69,555 SNPs overlap with

the 1000G panel. In the background of

Figure 3A, we plot the correlation (R2)

between ILMN100K allele counts and

1000G imputed allele dosage by minor

allele frequency (MAF; estimated from

ILMN100K genotypes). Most of the SNPs

have high imputation accuracy, including

rare SNPs. We then calculated the LOESS

(locally weighted polynomial regression)

smooth curve of R2 by MAF for three

settings: (1) SNPs present on HapMap

and imputed using the HapMap refer-

ence panel (red line, R2 calculated using

HapMap imputation), (2) SNPs present

on HapMap but imputed using the 1000G

reference panel (blue line), and (3) SNPs

not present on HapMap and imputed

using the 1000G reference panel (green

line). At the HapMap SNPs (settings 1 and

2), imputation using the 1000G reference

achieved slightly lower quality compared

with using the HapMap reference. This is

Figure 1. Empirical estimate of false discovery rate. (noPC) Using original expression value; (PC)
adjusting nongenetic effect using the top 69 principal components; (1000G) imputation using SNPs
from the 1000 Genomes project; (HapMap) imputation using HapMap2 SNPs; (300K) using autosomal
SNPs from the Illumina 300K panel.
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probably because microarray-based genotyping is still more reliable

than the low-coverage, next-generation sequencing used in the

1000 Genomes Project pilot 1 study. At the non-HapMap sites,

1000G imputation still achieved high quality, but the reduction

of imputation accuracy was more noticeable. For rare variants

(MAF > 1%), average R2 remained above 0.6. The relationship be-

tween imputation quality and allele frequency does not change if

we used allele frequencies from the reference panel (Fig. 3B).

Power gain from genotype imputation

The global assessment of mRNA transcript levels includes a variety

of traits, each with an unknown genetic architecture.We therefore

used our data set as an exemplar to explore the power of different

analytical strategies by tallying the number of local signals that

reach genome-wide significance levels.

We investigated six strategies: traditional and PC-adjusted

expression analysis, each combined with three marker panels

(Illumina 300K genotype, HapMap2 imputation, and 1000G im-

putation). For each strategy, we estimated the significance threshold

for 5% FDR accounting for the number of all transcript–SNP pairs.

We then counted the number of transcripts for which at least one

SNPwithin 1Mbexceeds that threshold as an indicator of the power

of that strategy (Fig. 4).

Across all three SNP panels, adjusting for nongenetic effects

using PC generated threefold more eQTLs than the unadjusted

analysis. For either adjusted or unadjusted expression data, im-

puting 2.4M HapMap SNPs gained 6%–7% additional signals,

while imputing the ;8M 1000G SNPs further increased the

number of signals by 5%–8% (a total increment of 12%–15%).

Power gain from increased marker density thus appeared to be

largely independent of the beneficial effects of reducing measure-

ment error.

The increase of power through imputation and PC adjust-

ment was largest for transcripts with heritability (H2; narrow sense

total heritability) (Dixon et al. 2007) in the middle range (Fig. 5).

The biggest gain in the MRCA data set was observed at 52% of

transcripts with H2 between 0.6 and 0.7 mapped in locally or at

a distance after PC adjustment and imputation compared with

20%before the improved analysis. For theMRCE data set, themost

improved categorywas for H2 between 0.3 and 0.4, with increments

from 15% to 66%.

In addition to the gain in power, genotype imputation also

produced a much denser and better localized map of eQTLs, as il-

lustrated by the TIMM22 locus from the MRCA data set (Fig. 6). In

this example, HapMap imputation produced minimal additional

information, but the 1000G imputation increased the maximum

–log10(P) from nine to 23 and allowed finer localization of the

peak effect to the 39 UTR of TIMM22.

Characteristics of new hits

We next characterized the source of power gains from the 1000G

SNP panel compared with the HapMap SNP panel, focusing on

transcripts not associated with SNPs in the HapMap imputation

but mapped locally within 1 Mb with at least one 1000G imputed

SNP.We paired the peak SNP in the 1000Gpanelwith the peak SNP

in the HapMap panel for each transcript and calculated both the

linkage disequilibrium (LD) (evaluated using the 1000G haplo-

types) between them and the difference in association significance

[–log10(P)]. We found most missed hits were due to low LD be-

tween HapMap SNPs and the peak SNP identified after 1000G

imputation (Supplemental Fig. 4).

The peak-SNPs for these eQTLs showed a full spectrum of

minor allele frequencies with a skew toward relatively rare vari-

ants (MAF < 5%) (Supplemental Fig. 3). This indicates that the

inclusion of rare variants in the 1000G imputation reference

panel does help identify their contribution to eQTLs. Many low-

frequency variants explain a large fraction of the expression trait

variance (Supplemental Fig. 4), some of which can account for

30%–50% of the total variation in an expression trait. This sug-

gests that the application of 1000G SNP-based imputation to

existing GWASs may resolve part of the missing heritability

complex traits.

Cross-platform comparisons

The association analyses above were carried out with individual

transcripts, identified by Affymetrix or Illumina probes. In order to

facilitate comparison between platforms, we next analyzed the

results at the level of individual genes, identified by the Affymetrix

or Illumina annotation.Wedefined that a genewas associatedwith

an eSNP if any probe belonging to the gene was significantly

(FDR < 5%) associated with the SNP. We note that Illumina and

Figure 2. Replication rate by distance from the eQTL to the transcript. (Red lines) Replication of eQTL. (A) Local effect; (B) distant syntenic effect (>1Mb
but gene and SNP on the same chromosome); and (C ) distant effect (on a different chromosome). The analysis is based on autosomal SNPs from the
Illumina 300K panel.
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Affymetrix probesets annotated to the same gene may target dif-

ferent transcripts of that gene with the possibility of different as-

sociation results (Veyrieras et al. 2012).

Using a common set of markers from 1000 Genomes SNP

imputation, the MRCA (Affymetrix) and the MRCE (Illumina)

data together identified genome-wide significant (Benjamini

and Hochberg FDR < 5%) (Benjamini and Hochberg 1995) eQTLs

for transcripts from 13,661 autosomal genes. We found shared

eQTLs for 2483 genes in both MRCA and MRCE data set, while

4819 genes were only mapped by the MRCA data and 6358 genes

were specific to MRCE data (Supplemental Fig. 5). For particular

gene–SNP associations, there were 136,466 gene–SNP pairs mapped

in bothMRCA andMRCE, while 416,952were specific toMRCA and

492,861 were specific to MRCE.

Figure 3. Imputation accuracy by minor allele frequency (MAF; MRCA panel). (A) Correlation (R2) between 1000G imputed allele dosage derived from
Illumina 300K arrays and true allele counts measured by Illumina 100K arrays, plotted by MAF. (B) Histogram of correlation with true allele counts byMAF
in sample (upper panels) and minor allele counts in the 1000G reference haplotype. Note that there are no data in the bottom left panel following removal
of singletons from the reference haplotype.
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The large fraction of eQTLs specific to each platform is likely

due to their particular designs (Veyrieras et al. 2012). There are

7601 genes queried by at least one probe in both Affymetrix U133

Plus2 and Illumina Human6 V1 chips. Among these, 5625 genes

were associated with an eQTL, and 2483 of them were mapped in

both MRCA and MRCE (986 genes specific to MRCA and 2156

genes specific to MRCE). These findings are consistent with other

studies that suggest that these Affymetrix and Illumina arrays

provide complementary information for gene expression (Pedotti

et al. 2008).

We carried out a fixed effect meta-analysis on eQTLs with

FDR < 5% in both platforms, testing whether a SNP is associated

with the expression of any possible transcripts belong to the gene.

Although this did not provide effect sizes that were easily inter-

pretable biologically, the power to detect associations to many

transcripts was increased (Supplemental Fig. 5).

Functional analysis of identified eQTLs

We sought information of the function of the eQTLs identified

in this study by taking the pooled Affymetrix and Illumina ex-

pression results and grouping them into Gene Ontology (GO)

categories using annotation information downloaded from the

manufacturer’s website. We counted the percentage of probes

mapped by at least one SNP (probes representing one of the 14,177

genes in Table 1) for each GO category and tested whether this

percentage was significantly higher than a random category of

probes of the same size. Both Z-score and permutation-based

P-values were used to assess significance. Accounting for 461 GO

terms and a 5% family-wise false-positive rate, the Bonferroni

correction gave a significant P-value threshold of 1.08 3 10�4. We

found that transcripts with the strongest eQTLs were associated

with the regulation of transcription (Supplemental Table 1).

Highly significant enrichment was also found for categories con-

cerning protein, lipid, and carbohydrate metabolism. While the

evolutionary value of genetic variation in metabolism is clear, it

was unexpected that the most variably expressed genes in the

human genome may be regulators of transcription. Immune re-

sponse genes were significantly overrepresented among eQTLs,

although to a lesser extent, reflecting the genome response to

a different kind of environmental pressure.

We also examined the known SNPs from GWASs of complex

diseases and traits (downloaded from http://www.genome.gov/

GWAStudies/ on August 15, 2012). Considering the diseases and

traits with more than 10 GWAS significant SNPs (Supplemental

Table 2), we found that that autoimmune disease–associated SNPs

were most likely to influence eQTLs, whereas psychological and

psychiatric associations showed minimal enrichment of eQTLs.

This may be because our eQTLs are derived from LCL, whereas

neuropsychiatric traits derive from functional variation in brain

tissue. Alternatively, neuropsychiatric traitsmay bemore often due

to rare coding variants or private mutations.

We have systematically tabulated which GWAS SNPs are also

eSNPs (Supplemental Table 3). These data may be sorted and

searched by disease or chromosomal position and contain nu-

merous examples where the eQTL data either confirms the sus-

pected gene or strongly suggests an alternative.

Discussion

In this study we generated two large eQTL databases for LCLs that

identify robust local and distant eQTLs for more than 14,000

genes. This is more than six times larger than our previous eQTL

database (Dixon et al. 2007), which has been used to identify

association with expression for SNPs associated with asthma

(Moffatt et al. 2007), Crohn’s disease (Libioulle et al. 2007), and

type 1 diabetes (Plagnol et al. 2009). Even before publication, our

two newly developed eQTL databases have been used to interpret

findings from large-scale GWAS, including human height (Lango

Allen et al. 2010), body mass index (Speliotes et al. 2010), waist–

hip ratio (Heid et al. 2010), osteoporosis-related traits (Hsu et al.

2010), Graves’ disease (Chu et al. 2011), pancreatic cancer (Wu

et al. 2012), and pathways associated with basal cell skin carci-

noma (Zhang et al. 2012). Our systematic investigation of the

GWAS database presented in Supplemental Table 3 suggests that

eQTL analyses may add to the understanding of many other loci

mapped for complex genetic diseases.

Expression QTL results can be used to prioritize genes in a

region of association before undertaking laborious and expensive

analysis in animal models and other systems (Teslovich et al.

2010). Current results suggest that many eQTLs could be shared

across tissues (Ding et al. 2010) and that constructing a compre-

Figure 4. Comparison of number of local eQTLs identified by directly genotyped SNPs, imputed HapMap2 SNPs, and imputed SNPs from the 1000
Genomes Project. (A) Results from Affymetrix expression data in the MRCA panel. (B) Results from Illumina expression data in the MRCE panel. (Blue bars)
Original unadjusted expression; (red bars) expression values adjusted by the top principal components.
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hensive catalog may increase the chances of capturing relevant

transcripts for diseases that primarily affect particular organs and

for which the relevant transcripts are only incidentally expressed

in blood. Tissue-specific eQTLs nevertheless remain the gold

standard when they are not limited by availability of appropriate

biological samples.

The full spectrumof genetic architectures represented by gene

expression traits provides a unique opportunity to empirically as-

sess the power of different designs for association studies. We have

shown here, for example, that reduction in gene expression mea-

surement noise by PC analysis canmarkedly improve the ability to

identify novel eQTLs.

Similar approaches have previously been shown to improve

power for eQTL mapping (Leek and Storey 2007; Choy et al. 2008;

Kang et al. 2008; Listgarten et al. 2010; Pickrell et al. 2010; Stegle

et al. 2010). Compared to the linear mixed model analyses (Kang

et al. 2008; Listgarten et al. 2010), our approach is more similar to

surrogate variable analysis (SVA) (Leek and Storey 2007) or to the

Bayesian factor analysismodel (VBQTL) used by Stegle et al. (2010)

and Pickrell et al. (2010), in that the unobserved confounders are

modeled explicitly. Our analysis differs from these principal com-

ponent analysis (PCA) or VBQTL models in their control of model

complexity. For genome-wide eQTL analysis, SVA chooses signifi-

cant PCs based on permutation based P-value without involving

Figure 5. Proportion of significant transcripts by overall heritability. (A) Unadjusted expression data and SNPs from the Illumina 300K panel in theMRCA
subjects. (B) PC-adjusted expression data and the imputation of 1000G SNPs in the MRCA subjects. (C ) Unadjusted expression data and SNPs from the
Illumina 300K panel in the MRCE subjects. (D) PC-adjusted expression data and the imputation of 1000G SNPs in the MRCE subjects. The number of
transcripts in each heritability category is given at the bottom of each bar.
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SNP information. Stegle et al. (2010) uses automatic relevance de-

tection (ARD) prior to switching off unused factors, and Pickrell et al.

(2010) chooses the number of PCs that gives the largest number of

eQTLs. Our approach selects the number of PCs that gives the largest

number of local-eQTLs (defined as a SNP within 1Mb of a gene). We

show above (Fig. 2) that for a given P-value threshold, local-eQTL are

more reliable than distant-eQTL. Consequently local-eQTL should

give amore reliable estimate of statistical power and abetter indicator

of the number of PCs to adjust for unmeasured confounders. Un-

fortunately, we have not found SVA and VBQTL to be computa-

tionally feasible for genome-wide eQTLmapping, because inpractice,

SVA will ignore SNPs in order to estimate significant surrogate vari-

ables and the fast estimates ofVBQTL (fVBQTL) required for genome-

wide analyses will also ignore SNPs to estimate nonzero factors.

Wehave also shown the improvement inmappingpower that

can be gained by the choice of genotype imputation strategy and

characterized the source of gains in power. These findings are

generally applicable to GWAS as, despite more than 900 studies

that have detected disease susceptibility loci at genome-wide sig-

nificant level (Hindorff et al. 2009), these discoveries have only

explained a small portion of familial clustering for many traits

(Manolio et al. 2009). Genotype imputation has been widely used

in the past 2 yr to aid in finemapping of candidate regions, to help

improve power of GWASs, and to facilitate meta-analysis of results

from studies using different genotyping platforms (Marchini et al.

2007; Servin and Stephens 2007; Li et al. 2009, 2010; Gaffney et al.

2012). We have shown here that 1000G imputation (based on 112

CEU [Utah residents fCEPHg with Northern and Western Euro-

pean ancestry] haplotypes available from the 1000 Genomes pilot

phase) (1000 Genomes Project Consortium 2010) produces sub-

stantial increases in the number of loci that can be mapped, that it

improves the fine resolution of genetic effects at individual loci,

and that it provides particular improvements in association to

SNPs with MAF > 5%. The full scale of the 1000 Genomes Project,

which will sequence more than 2000 individuals, should further

increase this gain in power (Li et al. 2010).

Methods

Genotyping and gene expression processing

Global gene expression data were measured by two techniques in

two independent samples. The first sample (MRCA) contained 405

children of British descent (Dixon et al. 2007). The 405 children are

organized into 206 sibships, including 297 sib pairs and 11 half-sib

pairs. The families were identified through a proband with child-

hood asthma, and siblingswere included regardless of disease status.

Global gene expression in LCLs was measured using Affymetrix

HG-U133 Plus 2.0 chips. LCL cultures were harvested at log phase

in the first growth after Epstein-Barr virus (EBV) transforma-

tion. Robust multi-array averaging (RMA) (Bolstad et al. 2003;

Figure 6. cis eQTL of the gene TIMM22. A map of association of SNPs to transcript abundance of the TIMM22 gene exemplifies the progressive increase
in information for the experimental genotypes (A), experimental plus HapMap imputed SNPs (B), and experimental, HapMap imputed and 1000G
imputed SNPs (C ). The gray vertical bar at the gene TIMM22 indicates the position of the Affymetrix probe
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Irizarry et al. 2003) was used for background correction and nor-

malization and to compute expression values. All 405 children and

their parents were genotyped using the Illumina Sentrix Human-1

Genotyping BeadChip (ILMN100K, including 105,713 autosomal

SNPs), and 378 childrenwere also genotyped using Illumina Sentrix

HumanHap300 BeadChip (ILMN300K, including 307,981 auto-

somal SNPs) according to the manufacturers’ instructions (Dixon

et al. 2007; Moffatt et al. 2007). Before analysis, we excluded 4050

SNPs with a call rate <95%, 96 SNPs with Hardy-Weinberg equilib-

riumP-value <10�6, and 4310 SNPswithMAF < 2% from ILMN100K

(a total of 8313 SNPs excluded), and 3921 SNPs with call rate

<95%, 34 SNPs with Hardy-Weinberg equilibrium P-value <10�6,

and 483 SNPs with MAF < 2% from ILMN300K (a total of 4420

SNPs excluded).

The second sample (MRCE) of 950 individuals from 320 fam-

ilies of British descent identified through a proband with atopic

dermatitis (eczema) was genotyped using the Illumina Sentrix

HumanHap300 Genotyping BeadChip. The genotyped sample

contained 487 subjects with atopic dermatitis (and 347 subjects

with asthma and 259 subjects with both diseases). Of the 314,552

SNPs with annotation available in the UCSC Genome Browser

(hg18, Mar 2006), 8345 with <95% genotyping success rate or de-

viating fromHardy-Weinberg (P < 10�6) were excluded.We retained

306,207 SNPs and 296,533,535 genotypes (99.1% call rate) for fur-

ther analyses. There were only 0.204 Mendelian errors per SNP:

These genotypes were excluded from subsequent analyses. Expres-

sion arrays using Illumina Human 6 BeadChips were available on

550 children (atopic dermatitis probands and their siblings, among

them 496 are genotyped). Expression values were estimated using

BeadStudio (Illumina), and bead summary data were used for

downstream analysis. From the total of 47,293 probes, we excluded

30,806 probes called as ‘‘absent’’ (detection score less than 0.95) in

>80% arrays to eliminate noise. We retained 16,487 probes repre-

senting 15,576 genes for analysis. The data were then normalized

using quantile normalization (Bolstad et al. 2003). We performed

parallel analysis on both samples and observed similar results. The

research has been approved by the United Kingdom National

MREC, and written fully informed consent was obtained from all

subjects or their parents.

Genotype imputation

We performed genotype imputation in the MRCA and MRCE

samples independently. We used the ILMN300K genotypes to

mimic the data that might be used in a typical GWAS and to im-

pute the polymorphic SNPs in the Phase II HapMap. We imputed

genotypes for all polymorphic HapMap SNPs by using a hidden

Markov model programmed in MaCH (Li et al. 2010). The method

combines genotypes from the study samples with the HapMap

CEU sample ( July 2006 phased haplotype release) and identifies

the stretches of haplotype shared between the study samples and

the HapMap sample. For each individual, the genotype at the

untyped SNP can be summarized by taking (1) the most likely ge-

notype according to the posterior probability of the three possible

genotypes and (2) allele dosage, the expected number of copies of

the reference allele (a fractional value between 0 and 2). To take

into account the uncertainty of imputation, we used allele dosage

in downstream analysis.

We also imputed SNPs from 1000 Genomes Project pilot 1

calls obtained from Sanger Institute (August 12, 2009) based on

112 chromosomes from the HapMap CEU samples. This call set of

SNPs contains 8,221,074 SNPs, and 6,625,013 of them haveMAF >

5% in the imputed sample. In both the HapMap SNP and 1000

Genomes SNP imputation,we excluded SNPswithMACHR-square

<0.3 from downstream analysis.

Adjusting nongenetic effects in gene expression

We estimated nongenetic contributions in gene expression mea-

sures using PC analysis (Leek and Storey 2007; Stegle et al. 2010).

PCs were estimated from the gene expression values, ignoring the

family relationship in the data. Top PCs were included in the eQTL

regression model as covariates. In order to determine the optimal

number of PCs to use, we used genotyped SNPs and, starting with

the first PC, included other PCs one at a time until the number of

transcripts mapped locally no longer increased. Finally, the top 69

PCs were used in the Affymetrix expression data set (MRCA), and

the top 61 PCs were used for the Illumina expression data set

(MRCE).

Association analysis

An inverse normal transformation was applied to the results for

each transcript to avoid the effect of outliers. Briefly, the procedure

involves first transforming all observations to ranks and then

converting these ranks to deviates from a standard normal dis-

tribution. Narrow-sense heritability for each transcript was es-

timated by using a variance component model, and a variance

component–based score test was used to evaluate the evidence

for association at each SNP (Chen and Abecasis 2007). This

variance component–based association analysis results in an

estimate of the additive genetic effect at each SNP and accounts

for the correlation in phenotypes between siblings. Both procedures

are implemented in MERLIN (Abecasis et al. 2002; Abecasis and

Wigginton 2005).

GO enrichment analysis

TheAffymetrix and Illumina expressionprobeswerepooled together

and grouped into GO categories using annotation information

downloaded from the manufacturer’s website. We considered that

a probe could be mapped as an eQTL if it represents one gene

symbol among the 14,177 genes in Table 1; i.e., the probe can be

mapped by either 1000Genomes imputation SNPs on autosomeor

by genotyped SNPs on chromosome X. For each GO category, we

calculated the percentage of probes mapped by eQTL, denoted as

Gi for the ith GO category. The Z-score for the ith GO category is

Zi =
Gi�m

s =
ffiffiffi

ni
p , where m is the overall percent of probes mapped by

eQTL, s is the standard deviation of the indicator variable whether

a probe can be mapped or not, and ni is the number of probes for

the ith GO category. The P-value is computed by comparing the

Z-score with a standard normal distribution for one side test.

We also computed the permutation based P-value by shuf-

fling the correspondence between probes and GO categories. From

10,000 permutations, we counted how many times (M i) the per-

centage of mapped probes were larger than Gi. The permutation

based P-value is M i=10000:

Data access

The database of our results is available to the public through our

website at http://www.hsph.harvard.edu/faculty/liming-liang/

software/eqtl/. The gene expression data for the MRCA and MRCE

cohorts are available through the European Bioinformatics Institute

(EBI) (http://www.ebi.ac.uk) under accession number E-MTAB-1425

for MRCA, and accession number E-MTAB-1428 for MRCE. The

genotyping data for the subjects is accessible through the European

Genome-Phenome Archive (EGA) (https://www.ebi.ac.uk/ega/),

which is also hosted by the European Bioinformatics Institute

(accession number EGAS00000000137 for bothMRCA andMRCE

samples).
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