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Abstract
The interest in the use of composite materials in thin-walled structures has grown over the last decades due to their 
well-known superior mechanical performance and reduced weight when compared with traditional materials. Notwith-
standing, composite structures are susceptible to damage during manufacturing and to fatigue degradation during 
service, which grants inspection and maintenance strategies outstanding importance in the duty of mitigating premature 
failures and reducing whole life cycle costs. This paper aims to provide a cross-sectoral view of the current and potential 
maintenance strategies that are drawing the attention of the different industries and researchers by reviewing the cur-
rent use and limitations of composites structures, the impact of maintenance in the whole-life cycle of the composite 
structures, the health and condition monitoring techniques applied, and the benefits and limitations of the currently 
used and potential maintenance strategies. Finally, the health and condition monitoring techniques and maintenance 
approaches used by the different industries are contrasted to identify trends and divergences and suggest research gaps 
and industrial opportunities.
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1  Introduction

The commitment towards global sustainable development 
was signed by all United Nations Member States in 2015 
and resulted in the 2030 Agenda for Sustainable Develop-
ment.1 This agreement is based on 17 Sustainable Devel-
opment Goals (SDGs) which target the most critical issues 
that we need to face as a society. Fiber-reinforced polymer 
(FRP) composite materials are high-efficiency and high-
durability lightweight materials that have the potential to 
positively impact several SDGs driving a change towards 
sustainability. Notwithstanding, a paradigm shift in the use 
of these advanced materials by the different industries is 
challenged by several issues, among which the following 
stand out: uncertainty about long-term damage behav-
iour and reliability [1], inadequacy or absence of design 
standards in several industries, lack of technological dem-
onstrators [2], unreliable manufacturing [3], shortage of 
long-term durability data [4, 5], high material costs [6], and 
recyclability issues [7, 8]. These issues mainly derive from 
an immature knowledge about the optimal monitoring 
and maintenance strategies throughout the lifetime of 
these materials within a healthy balance between safety 
and cost for safety-critical applications. Hence, the use of 
composite materials by the different industries is still dis-
similar, depending on their attitude towards risk and their 
expectancy about the use of composites.

These reasons call for cross-sectoral research and devel-
opment approaches to overcome the constraints of each 
of the industries with the knowledge and experience of 
the others. The more profound knowledge and technol-
ogy development of the aerospace industry in the use 
of composite structures along with the extensive experi-
ence of lower risk industries such as the automotive and 
wind energy can be utilised in favour of less developed 
industries such as the civil and naval. In general, we can 
envisage that the (open) data and knowledge provided 
by the more advanced industries will boost the adoption 
of composites materials by increasing the confidence of 
the stakeholders of different industries to design, produce, 
manage and utilise composite structures. However, find-
ing common grounds and knowledge to overcome the 
particularities of each type of industry is a significant chal-
lenge, which, to the authors’ best knowledge, has not been 
tackled before in the open literature. This work represents 
a first step in this direction.

In particular, this paper provides a cross-sectoral 
overview of the potential and limitations of different 
maintenance technologies and operation strategies for 

thin-walled composite structures through the analysis of 
their role in four key industries, namely: aerospace, wind 
energy, civil and naval. These industries are currently 
employing FRP materials in their applications [9], and 
accrue a high percentage, between 50 and 60%, of the 
total use of carbon-fiber-reinforced polymers [10]. To this 
end, a cross-sectoral maturity analysis is firstly provided by 
means of a maturity index which measures and ranks the 
position of the refereed industries in the use of compos-
ites. Next, the possibilities brought about by the recent 
advances in Structural Health Monitoring (SHM) across 
industries are investigated in application to the inspection 
and monitoring of composite structures. Finally, an over-
view about the different maintenance strategies suitable 
for composite structures and their impact across the indus-
tries is analysed. In essence, this research has revealed that, 
although relevant developments have been carried out in 
the field of SHM [11–16] and more recently in the field of 
Prognostics and Health Management (PHM) in application 
to composite structures [17–21], these have not yet been 
translated into optimised and predictive maintenance 
strategies. In this context, the development of predictive 
maintenance strategies for composite structures assisted 
by PHM technologies and Physics-Enhanced Artificial Intel-
ligence methods have been concluded as a key element 
to boost the adoption of composites across industries by 
reducing the uncertainty surrounding their future per-
formance and reliability [22]. This predictability allows 
inspection and maintenance strategies to be tailored for 
a particular structure, which, in turn, translates into an 
extended lifetime and therefore increased sustainability. 
In this context of sustainability, evidence is shown here 
through a quantitative analysis that composites across 
the different industries can significantly contribute to two 
important SDGs, in particular, SDG 7 (Affordable and Clean 
Energy) and SDG 9 (Industry, Innovation and Infrastructure).

The rest of the paper is structured as follows. First, 
Sect. 2 identifies the current use and limitations of plate-
like composite structures within the aforementioned 
industries and presents innovative technologies and 
approaches being currently explored. Following this, 
Sect.  3 reviews the current developments on SHM in 
application to composite structures along with its use and 
limitations as per the different industries. After the intro-
duction of SHM, Sect. 4 provides a brief description of the 
different existing maintenance strategies and their char-
acteristics along with an analysis of the impact of mainte-
nance on whole life cycle costs of composite structures in 
the context of these industries. Later, Sect. 5 builds on the 
necessary steps towards intelligent PHM (iPHM) and the 
constraints to be overcome to integrate all the informa-
tion to produce Cyber-Physical Structures (CPS). Finally, 

1  https://​sdgs.​un.​org/​goals.

https://sdgs.un.org/goals
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Sect. 6 briefly summarises the findings and conclusions 
of the paper.

2 � Overview of the main technological 
applications of composite structures: use 
and limitations

In this section, the degree of maturity and the main appli-
cations of composite structures are reviewed within the 
context of four key industries: aerospace, wind, civil con-
struction, and naval.

2.1 � Aerospace industry

Since its early days, this industry has pushed the techno-
logical limits of materials due to the harsh environment to 
which they are exposed. The aerospace industry adopts 
strict requirements for structures [23], such as very high 
reliability (even higher in civil aviation applications), 
mechanical and chemical durability, aerodynamic perfor-
mance, multi-role applications, stealth, and all-weather 
operation. Traditionally, these requirements were partially 
met by the use of advanced metallic alloys; however, these 
are heavier and prone to corrosion. Thus, composites have 
achieved an important role in aerospace due to their high 
strength-to-weight and stiffness-to-weight ratios, greater 
fatigue and corrosion resistance, and ability to tailor 
stiffness and strength to specific design loads [23]. This 
allowed the expansion of application cases of composites 
structures over military and civil aircraft, helicopters, satel-
lites, launch vehicles, etc. [24–26].

Indeed, the use of FRP composites in aircraft has 
increased since 1970 and has reached around 50% of its 
total mass in some cases (e.g., the Boeing 787 structure) 
[27]. Initially, composite materials were used as secondary 
structures to provide weight savings, although nowadays 
they are increasingly being used for primary plate-like 
structures [28]. The early development of composite struc-
tures in aviation was specially notorious in small fighter 
aircraft, achieving weight content of composites above 
20% for F/A-18E/F, Rafale, F-22 and Gripen models pro-
duced during the decades of the 1970s to 1990s [24], as 
depicted in Fig. 1a. It is noticeable that this development 
has seen a maximum participation of composites in the 
military aircraft with content above 50% by weight in the 
Eurofighter [29]. Regarding the application in the civil avia-
tion, the available data from reference aircraft manufactur-
ers such as Boeing and Airbus show a slower adoption of 
composites use with a rampant tendency since the last 
two decades, as shown in Fig. 1b. In fact, in the last years, 
these manufacturers have taken a great shift passing from 
composite participation in weight around 12% and 25% 
in their B777 and A380, respectively, to more than 50% in 
their latest B787 and A350.

These weight reductions translate into fuel savings 
which, apart from the monetary savings for operators, 
directly impact SDG 12 (Responsible Consumption and 
Production). In fact, despite the initial manufacturing 
emissions being higher for hybrid composites and car-
bon-fiber-reinforced polymers (CFRP) than for classical 
aluminium and steel solutions, the whole-life CO

2
 emis-

sions during operation are lower, and break-even times 
range from 60 to 320 flight hours [30].

(a) Military sector (b) Civil aviation sector

Fig. 1   Aircraft’s composite participation in weight [24]
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Besides, despite the positive experience and maturity 
of the production market, there are still some concerns 
with the use of composites in plate-like structures in the 
aerospace industry. Some researchers point to the severity 
and conservatism of the current airworthiness regulations 
[31] as limitation towards an efficient use of composite 
structures thus leading to over-conservative and over-
sized structures [25]. In addition to this, the need for clear 
guidance in the operation and maintenance of compos-
ite structures by their operators has been highlighted in 
works like [32]. Another concern with the use of compos-
ite materials is their lack of ductility during the fracture 
process. Brittle micro-cracks and delamination cracks [33], 
which are difficult to detect visually, appear and progress 
during operation due to fatigue [34], impact [35], and 
lighting strikes [36, 37], leading to an uncertainty increase 
about their mechanical performance. In recent years, dif-
ferent solutions have emerged to partially solve the latter 
drawbacks through the use of hybrid and advanced com-
posites [38, 39] although they typically imply a reduction 
of the strength-to-weight and stiffness-to-weight ratios.

2.2 � Wind industry

Despite the fact that the first steps of electric power gen-
eration from wind date from the late nineteenth century, 
it was in the 1970s when the production of wind turbines 
experienced a rampant increase. Initially, classical mate-
rials such as steel were used for turbine blades, like the 
one manufactured by the U.S. company S. Morgan-Smith 
in 1941 experiencing failure after a few hundred hours of 
intermittent operation. This induced the need for a transi-
tion to high-performance blade materials such as compos-
ites, despite the reduced knowledge about these tailored 
materials at that time. Moreover, in response to the 1973 
oil crisis, NASA started a program in 1975 to develop wind 
turbines [40] with composites as primary blade materials 
based on the knowledge gained from the application to 
the aerospace industry. Since then, the production of wind 
turbines has experienced an unceasing increase which still 
continues nowadays.

The growth of this tendency has been accelerated dur-
ing the last decades since the world is moving towards 
greater utilisation of renewable energy due to its envi-
ronmental and economical advantages. Indeed, the wind 
is one of the most efficient renewable energy resources 
for its numerous advantages [41], and today it is becom-
ing strongly cost competitive in relation to other power 
generation methods [42]. This efficiency explains how 
fast the wind industry is growing worldwide. For exam-
ple, the EU goal is to increase the use of renewable energy 
to 27% of the total energy generation by 2030 and to cut 
greenhouse emissions by 80–95% by the year 2050 [43]. 

China has experienced an increase of 27% in the growth 
rate of the electricity generated from wind between 2016 
and 2017 [44]. The United States set a target to increase 
the electricity generated from wind to 20% of the total 
electricity generated [45]. Figure 2 depicts the tendency 
and growth of installed wind capacity by region from 
2011 until 2020, which reveals an increase of worldwide 
installed capacity from 220,019 MW in 2011 to 733,276 MW 
in 2020 [46]. Moreover, there are expectations of future 
growth for electricity generated from wind and solar pho-
tovoltaics, which will probably continue to expand reach-
ing 29% of the market share in 2021 from 28% in 2020 [46].

These trends indicate an increasing need for composite 
materials mostly applied in turbine blades.

Typically, laminates used on wind turbine blades (refer 
to Fig. 3 for a cross-section schematic view) are made of 
e-glass fibers and thermoset matrices, such as epoxy, 
polyester, or vinylesther, with fiber content of about 75% 
in weight. Notwithstanding, the increasing demand for 
larger wind turbine blades driven by offshore applica-
tions has opened up the possibilities of carbon fibers to 
provide greater strength and stiffness-to-weight ratios, 

Fig. 2   Evolution of wind energy capacity by region. Data taken 
from [46]
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thus improving their resistance to gravitational loads and 
fatigue life [47].

Irrespective of the recent advances in manufacturing 
for large size blades of different composite materials [48], 
there are still some unveiling challenges with the use of 
composites in the wind industry, with the most impor-
tant being damage detection , location and identifica-
tion [49–51], long-term reliability under damage [52], and 
remaining useful life prognosis [53, 54]. There is a long 
perception that the current design safety factors are too 
high; arguably as a consequence of the aforementioned 
challenges, among others. Further improvements and 
developments in those could help to reduce the Levelized 
Cost Of Energy (LCOE) [55].

In particular, with regards to damage diagnostics, SHM 
has shown promising results using different techniques 
(see for example [56–60]). Similarly, there have been some 
attempts to provide fatigue damage and erosion model-
ling [61–64], damage progression [65] and prognosis 
[66, 67]. Even though the feasibility of these approaches 
seems encouraging, the experiments were predominantly 
conducted in controlled laboratory environments using 
simplified loading and damage scenarios. Therefore, the 
long-term and reliable performance of these systems in 
real operating conditions remain to be proven [67]. Not-
withstanding, some research groups such as the Sandia 
National Laboratories have developed several projects 
such as the Continuous Reliability Enhancement for Wind 
(CREW) database [68] that aims to provide data-driven 
tools for the industry to self-assess the performance of 
wind turbines and adapt the operation and maintenance 
accordingly. Other studies focus on the fatigue behaviour 
of wind turbine blades under real conditions [69–71].

The opportunities for availability and revenue improve-
ment that SHM and predictive maintenance can bring 
to the industry are analysed in detail in Sects. 3 and 4.2, 
respectively.

2.3 � Civil construction industry

For around 200 years until today, steel and concrete have 
dominated the civil construction industry. For several dec-
ades, this industry has been reluctant to incorporate com-
posite materials for primary structures except for certain 
applications [72] and pilot projects, with the most relevant 
ones shown in Tables 2, 3 and Fig. 4. Composite materi-
als have unique properties that make them appealing to 
the civil industry [6, 73, 74], in particular their superior 
resistance to corrosion in aggressive environments along 
with their high strength-to-weight ratio [75–77] and high 
fatigue capacity (mainly for CFRP [78]). Also, composites 
provide important weight reductions as compared to tra-
ditional materials which would enable new architectural 
designs [79], easier and faster building procedures [75, 76], 
extended lifetime [80], and therefore, improved sustain-
ability [81]. However, irrespective of their potential, there 
are important reasons that are limiting the adoption of 
composites by this industry, amongst which the following 
are identified as the major ones: (1) lack of standards and 
design codes [82], (2) high material costs [83], (3) lack of 
experience and conservationism of the industry [84].

In regards to the lack of regulatory design codes, the 
NIST (the US National Institute of Standards and Technol-
ogy) has recently warned about the lack of design codes 
and standards as one of the barriers against the adoption 
of composites in sustainable infrastructure [82]. Yet, the US 
Congress passed the Composite Standards Act in August 
2020 that will publish guidelines and standards for using 
composites in infrastructure applications [85]. In Europe, 
there are plans to create such a FRP Design Eurocode [86], 
as stated in a recent report from the European Commis-
sion [87]. In the meantime, some European countries have 
developed their own guidelines, with the most relevant 
ones being summarised in Table 1.

In regards to the high material costs in comparison with 
traditional materials such as concrete and steel, this is a 

Table 1   Published composite design guidelines

Document Details

EUROCOMP Structural Design of Polymer Composites (Design Code and Handbook, Finland, France, Sweden, UK, 1996)
CUR 96 Fiber Reinforced Polymers in Civil Load Bearing Structures (Dutch Recommendation, 2003)
BD90/05 Design of FRP Bridges and Highway Structures (The Highways Agency, Scottish Executive, Welsh Assembly Government, 

the Department for Regional Development, Northern Ireland, May 2005)
DIBt Medienliste 40 für Behälter, Auffangvorrichtungen und Rohre aus Kunststoff, Berlin (Germany, May 2005)
CNR-DT 205/2007 Guide for the Design and Construction of Structures made of Pultruded FRP elements (Italian National Research Council, 

October 2008)
ACMA Pre–Standard for Load and Resistance Factor Design of Pultruded Fiber Polymer Structures (American Composites 

Manufacturer Association, November 2010)
DIN 13121 Structural Polymer Components for Building and Construction (Germany, August 2010)
BÜV Tragende Kunststoff Bauteile im Bauwesen [TKB]—Richtlinie für Entwurf, Bemessung und Konstruktion (Germany, 2010)
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long-standing claimed issue by the construction industry 
that becomes exacerbated by the massive material utilisa-
tion in this industry. A shift from the initial-construction-
cost viewpoint to a holistic lifecycle approach considering 
the higher durability of composite materials in a circular 
economy context would help; however, these lifecycle 
methods are still not widely adopted in civil engineer-
ing practice [80, 88]. Notwithstanding, the development 
of efficient manufacturing techniques such as pultrusion 
[89] and filament winding [90] among others [91, 92], 
along with the need for strengthening and rehabilitation 
of existing structures [74], have opened up opportunities 
for composite materials in the construction sector [93]. In 
particular, the repair and strengthening of ageing struc-
tures using FRP materials is arguably the most promising 

application of composites in civil engineering up to date, 
as revealed by the extensive literature in this area (see for 
example the following reviews papers [77, 94, 95]).

Finally, as for the lack of experience and conservation-
ism in the construction industry, the knowledge gained 
during decades (even centuries) about the use of tradi-
tional materials makes the adoption of new materials a 
difficult and competitive task. However, this barrier could 
be expected to diminish as long as new evidence and 
pilot applications of FRP composites become available. 
In general, most of FRP applications in civil engineering 
structures including the aforementioned pilot projects are 
relatively new, and therefore, the longer the service life 
of these structures, the more useful information can be 
collected. This will contribute to reducing the uncertainty 

Table 2   List of pedestrian composite bridges

Location Year Type Details and notes

Kolding, Denmark 1997 100% GFRP 40 m long and 3.2 m wide, 15 years of operation 
without any damage [87, 96]

Svendborg, Denmark 2009 pultruded GFRP deck 40 m long and 3.2 m wide, installed in just 2 h [87, 
97]

Esbjerg, Denmark 2012 steel beams adhesively bonded to pultruded GFRP 
deck

18 m long and 3 m wide [87]

Grosseto, Italy 2004 GFRP pultruded profile 27 m long, installed in an archeological area [87]
Harderwijk, Netherland 2013 100% GFRP made by vacuum infusion technology 22 m long and 6.3 m wide [87, 98]
Rotterdam, Netherlands 2013 GFRP sandwish inside VARTM made core 62 park bridges with lengths ranging between 1.5 m 

and 4.5 m [87, 99]
University of Salerno, Italy 2014 GFRP pultruded I-beam with GFRP sandwich 

panels deck
148 m long and 37 m main span [87]

Floriadeburg, Netherland 2012 Steel beams covered with GFRP pultruded deck 127.5 m long and 6 m wide, designed to carry heavy 
vehicles (12t weight) [87]

Nørre Aaby, Denmark 2007 100% pultruded Glass FRP (GFRP) 23 m long, installed in just 2 h, it replaces an old RC 
bridge that is 20 times heavier [87, 100]

Moscow, Russia 2008 FRP profiles moulded by infusion 22.6 m long and 2.8 m wide, the first bridge made of 
composite moulded by vacuum infusion [87]

Table 3   List of road composite bridges

Location Year Type Details

Oxfordshire, UK 2002 100% GFRP and CFRP pultruded profiles The first composite public road bridge, no damage 
found when inspecting it after 12 years of service 
life [101, 102]

Klipphausen, Germany 2002 100% GFRP The first GFRP road bridge in Germany [87, 103]
Utrecht, Netherlands 2013 Hybrid GFRP-steel bridge made with VARTM injec-

tion
142 m long and 6.5 m wide, composite deck carry 

Eurocode traffic loads and all the horizontal loads 
[104]

Karrebæksminde, Denmark 2011 pultruded GFRP deck 100% pedestrian and cycle bridge was hung on 
the side to increase capacity, the first Danish road 
bridge made with a composite deck [87, 105]

Delft, Netherlands 2014 Vacuum infused GFRP sandwish structures with 
steel members

34 m long and 12 m wide [106]

Lancashire, UK 2006 GFRP pultruded profile 52 m long, Carry up to 400 KN weight [87, 90, 107]
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about the long-term reliability of composites and there-
fore boost the application of composites in the civil engi-
neering sector.

2.4 � Naval Shipbuilding industry

Steel and aluminium alloys have been the traditional 
materials massively used by the naval industry for decades. 
The use of composites started in the US NAVY between the 
mid-1940s and 1960s in the shape of non-critical struc-
tures and predominantly in small boats [108]. Slightly later, 
the Royal Navy and the French Navy started to make use of 
composites as structural material mainly for their acoustic 
transparency (stealth) [109, 110]. For this reason, compos-
ites started as preferred materials in minehunting ships 
in the 1970s [111]. Since those military applications, and 
mostly during the last few decades, the use of FRP in naval 
shipbuilding has grown significantly, although there are 
authors pointing out that the full potential of these materi-
als is yet to be realised in this industry [112].

Three main benefits drive the interest in the use of FRP 
in this industry, namely weight reduction, good fatigue 
resistance, and high durability in the marine environment 
[113]. The weight reduction due to the greater strength-
to-weight ratio directly translates into increased payload, 
range, hydrodynamic performance, greenhouse-gas emis-
sions savings, and durability [111, 112]. Some authors have 
reported that expected weight reduction with FRP could 
reach up to 30% and could result in fuel consumption 
savings up to 15% ([112]), which directly impacts SDG 12. 
As a drawback, moisture absorption degrades the FRP by 
reducing tensile and bending strengths [114]. Notwith-
standing, this type of damage is less severe than the expe-
rienced by metals (e.g., corrosion [115–117]) and repairs 
are easier and less expensive [116, 118], providing FRP an 
overall better suitability for the marine environment. Even 
the lower stiffness of e-glass FRP can favour areas with 
high local stress concentrations where the structures are 
prone to suffer fatigue cracking such as deckhouses [119].

Fig. 4   Applications of composite material in bridges. a–j pedes-
trian bridges. k–p Road bridges. locations: Kolding, Denmark (a), 
Svendborg, Denmark (b), Esbjerg, Denmark (c), Grosseto, Italy (d), 
Harderwijk, Netherland (e), Rotterdam, Netherlands (f), Univer-

sity of Salerno, Italy (g), Floriadeburg, Netherland (h), Nørre Aaby, 
Denmark (i), Moscow, Russia (j), Delft, Netherlands (k), Karrebæks-
minde, Denmark (l), Utrecht, Netherlands (m), Klipphausen, Ger-
many (n), Oxfordshire, UK (o), Lancashire, UK (p)
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Thus, considering the positive balance provided by 
FRPs, there is a natural tendency to favouring their wider 
application, but still for small/sport vessels or for non-
structural components [120, 121]. As with other industries, 
these reasons are predominantly centred on the shortage 
of knowledge and lack of reliable data about FRP perfor-
mance in the marine environment [120]. The lack of knowl-
edge poses to all stages of the production of the structure, 
starting from its design, following by its validation, and 
ending with its manufacturing. With regards to the design 
stage, there is a lack of design codes and reference mod-
els to optimise the designs of large complex vessels [120]. 
To overcome this problem, the traditional approach has 
been to increase the safety factors in the design [122, 123], 
which results in diluting the weight-saving benefits of FRP. 
In the verification stage, Safety Of Life At Sea (SOLAS) regu-
lations did not contemplate the use of a material other 
than steel until 2002. After 2002, FRP composites can be 
considered structural materials but the verification process 
has been reported as long, expensive, and with a signifi-
cant level of uncertainty to get the final approval [124]; in 
fact, this reduces the motivation of designers to use com-
posite materials. Finally, there is a lack of open databases 
to estimate the cost of fabricating naval structures with 
composites and a lack of high-quality and low-cost manu-
facturing processes for massive composite structures. In 
this context, the European Union has recently funded two 
research projects to address the lack of knowledge that is 
limiting the expansion of FRP, namely, RAMSSES and fib-
erShip [2]. These projects aim at providing the tools, data, 
and demonstrators of FRP vessels to overcome the code 
and knowledge constraints mentioned and familiarise the 
stakeholders of the industry with the requirements and 
processes of FRP structures.

2.5 � Cross‑sectoral maturity overview of composites 
and contribution to SDGs

As shown before, the different industries have unequal 
experience and track record in the use of composite mate-
rials. To quantify this observation, a maturity index m is 
proposed here to measure and rank the relative position 
of these industries in regards to the use of composites. 
Three contributing factors ranging from 1 to 5 have been 
considered in this index: the relative participation of com-
posites in structures suitable for these materials (Participa-
tion P ); the time since the first standards or regulations of 
the use of composites were released (Standards S ); and 
the equivalent number of publications during the last 40 
years in the field of composite structures applied to the 
industry (equivalent number of Publications Pueq ), where 
Pueq is computed as:

with ni being the number of composite publications at 
year i. Table 4 summarises the aforementioned factors and 
the criteria used to assign the different scores.

Finally, the maturity index, m for each industry is calcu-
lated as m = (P + S + Pueq)∕15 and the results are shown 
in Table 5.

These results reveal that, according to the proposed 
index, the aerospace industry has achieved the greatest 

(1)Pueq =

∑2020

i=1981
ni(2021 − i)

40

Table 4   Score values for maturity factors

Factor Description Score

5 4 3 2 1

Participation Relative par-
ticipation of 
composites in the 
industry

Very high High Medium Low Very low/nonex-
istent

Standards Time since first 
standards were 
published

More than 20 years Between 10 and 20 
years

Between 5 and 10 
years

Less than 5 years Nonexistent

Publications Equivalent number 
of publications in 
40 years

Greater than 7000 Between 5000 and 
7000

Between 3000 and 
5000

Between 1000 and 
3000

Below 1000

Table 5   Maturity factor values by industry

Industry Participation Standards Publications Maturity

Aerospace 3 5 5 0.867
Wind 5 4 1 0.667
Civil 2 1 2 0.333
Naval 1 1 1 0.200
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maturity followed by the wind industry, which is the one 
with the highest rate of participation of composites. On 
the contrary, results show a gap between the aforemen-
tioned industries and the civil and naval industries in the 
use of composites, with the naval being the worst posi-
tioned industry in the use of composites.

Apart from the maturity, the contribution of the use 
of composite materials across industries in the achieve-
ment of the SDGs is presented next. To this end, the 17 
SDGs (described in Table 7 in Appendix 2) are considered 
by the achievement indicators of their corresponding tar-
gets [125]. These indicators are assigned a unitary value if 

composites directly contribute towards their achievement 
and 0 otherwise. The analysis for each of the industries 
is presented in Appendix 2, specifically in Tables 8 to 10. 
The results are summarised using polar bar charts in Fig-
ure 5. These results show that a wider use of composite 
structures across the different industries can significantly 
contribute to SDGs 7 (Affordable and Clean Energy) and 9 
(Industry, Innovation and Infrastructure). Besides, to a lower 
extent, composites have a positive impact on SDGs 11 
(Sustainable cities and communities) and 12 (Responsible 
consumption and production), with the remaining SDGs 

(a) Aerospace (b) Wind

(c) Civil (d) Naval

Fig. 5   Schematic view of the analysis of contribution of composite materials towards the achievement of the SDGs
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being minimally affected by composites (unitary indices 
equal to or lower than 0.25).

In contrast, there are a few concerning issues that need 
to be addressed to reduce the potential negative impact 
of the use of composite materials: the recyclability of 
composite materials after decommissioning; the ram-
pant increase in the extraction of raw materials for the 
production of constituent materials (matrix, fibers); and 
the higher demand of energy for the manufacturing of 
FRPs as compared to traditional materials. These issues 
have captured the attention of the research community 
as seen in a number of recent publications [81, 126–130] 
and constitute impacting research challenges to address 
in a near future.

3 � Health monitoring of FRP composites 
across industries

The long-term reliability and the complexity of the inspec-
tion and maintenance of thin-walled composite structures 
have emerged as barriers to the expansion of these mate-
rials among different industries. In this context, the SHM 
technology has the potential to overcome these barriers as 
it enables a quasi-real-time data acquisition by attaching 
sensors to the structure or even by incorporating them 
into their internal structure [11, 131]. This data provides 
the basic information for damage prognostics and predic-
tive maintenance [22]. Table 6 provides a synoptic view of 
the most established SHM sensing techniques for com-
posite structures across industries, including their advan-
tages and limitations. In the following, the role of SHM 
technology and its connection with CBM is discussed for 
the industries considered in this study.

3.1 � Aerospace industry

As with the use of composites, military aircraft has pio-
neered the use of SHM. It was in the late 1950s when the 
UK Royal Air Force started using a device based on accel-
erometers to evaluate the in-flight loads experienced in 
fighter airplanes [163]. Since then, the interest of the aero-
nautic industry in non-destructive testing (NDT) and SHM 
(both civil and military) has steadily grown [164]. At the 
same time, the literature on this topic has seen a rampant 
development and a number of new sensing techniques 
and damage identification methods have been proposed 
during the last few decades. Rocha et al. [11] provides a 
recent review of the literature on SHM in aerospace com-
posites. They conclude that the adequacy of the selection 
of an SHM system lies in a set of multidisciplinary factors 
such as the specificity of the structure, shape, size, constit-
uent materials, expected damage location and type, and 

maintenance. In Towsyfyan et al. [164], a comprehensive 
review of the capabilities and limitations of certificated 
NDT technologies for aerospace composite structures is 
provided.

As evident from the literature, there is a general consen-
sus about SHM as an effective technology for optimised 
condition-based maintenance. In fact, the main manufac-
turers of the aviation industry have identified the potential 
benefits of SHM predominantly in the field of maintenance 
[165, 166]. In this industry, damage detection, primarily 
based on visual inspection, takes a considerable part of the 
maintenance budget. Indeed, access to inspection areas is 
one of the major drivers of maintenance costs for aircraft. 
A clear example is provided by Cawley [167], which reports 
that Boeing calculated that out of the 25,000 h required 
for corrosion inspection for a 747-400 aircraft, 21,000 h 
were spent gaining access to the inspection areas (over 
80% of the inspection time). These figures make clear the 
industry’s interest in SHM. Another driver for SHM as ena-
bling technology for advanced maintenance is life exten-
sion of existing aeroplanes that are close to their nominal 
end-of-life. SHM provides valuable information about the 
actual degree of damage that can be used for informed 
life-extension decision-making [168].

Despite the aforementioned benefits of SHM and the 
feasibility of their use in composite structures, there are 
also concerns that limit their use in the aerospace industry 
(and to some extent in other industries). The first concern 
is about the reliability of the damage detection, location, 
and quantification of damage for in-service real structures. 
Most of the current progress about SHM in aerospace 
composites has been carried out in coupons, plates, and 
scaled structures under laboratory conditions [20, 169, 
170]. However, irrespective of some insightful progress on 
in-situ damage monitoring technologies [19, 171], there 
is still much uncertainty about the performance of on-
board SHM technology during long periods of time and 
against harsh and changing environmental conditions. 
In this sense, Unmanned Aerial Vehicles (UAV) are seen 
as an interesting opportunity to test SHM systems in real 
conditions while reducing economic and safety risks [172, 
173]. Secondly, there is a lack of publicly available data for 
SHM developers to work with. The research community 
would highly benefit from the use of open datasets to 
build robust models for damage detection, quantification 
and prognosis, and therefore increasing the reliability of 
the systems. Thirdly, there is uncertainty surrounding how 
SHM systems can deal with patched or bolted repairs. In 
this context, the SHM system shall be able to evaluate and 
monitor the repaired condition of the structure so that the 
system has the same reliability as the original structure; 
otherwise, the main advantage of SHM (reducing inspec-
tion costs) will be jeopardised. Finally, there is a need for 
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a publicly available demonstrator project investigating 
the whole SHM process for composite structures. A direct 
comparison of the whole life cycle costs of the application 
of SHM against the current inspection strategies would 
help close the existing gap between academic research 
and industrial needs in SHM.

3.2 � Wind industry

In the wind industry, the turbine blades along with the 
gearbox and electrical generators, have been identified 
as the turbine components with the highest failure rates 
[174, 175]. Moreover, the damage in the blades is regarded 
as one of the most expensive and difficult to detect among 
the potential failures of the turbine and has the potential 
to act as a precursor of secondary damages in other parts 
of the turbine [176]. Thus, deploying SHM technology on 
turbine blades will translate in maintenance optimisation 
and fewer operation costs for the entire system [177]. A 
variety of damage types have been identified as suscepti-
ble to appear in composite blades during their lifetime [50, 
178]; these are, damage in the adhesive layer between the 
skin and flanges of the spar (debonding); damage in the 
adhesive layer between the top and bottom skins along 
the leading or trailing edge (debonding); damage in sand-
wich panels between the face and the core (debonding); 
delamination caused by tensional or buckling load; fiber 
failure in tension; laminate failure in compression; buck-
ling of the skin (debonding); and cracks in the gelcoat or 
debonding of the gelcoat from the skin. Among them, 
delamination and adhesive joint failures are reported as 
the most usual ones [52]. A number of SHM techniques 
have appeared in the literature dealing with one or more 
of the damages mentioned above [16], including vibration 
analysis [179–181], strain monitoring [182, 183], acoustic 
emission [184, 185], ultrasonic detection [186, 187] and 
infrared thermography [188]. Several authors [50, 189] 
have provided recent literature surveys about the state-of-
the-art damage detection techniques for turbine blades. 
Of the existing techniques, acoustic emission and strain 
monitoring have demonstrated efficiency on damage 
detection in real case scenarios [177, 190], whilst Lamb-
wave monitoring is recently being explored for its effi-
ciency in damage location in large thin-walled composite 
structures. [191, 192]

In practice, there are commercially available monitor-
ing systems for the drive train and gearbox components 
using information from Supervisory Control and Data 
Acquisition (SCADA) along with other vibration control 
systems [193]. However, the monitoring of the blades is 
still in its infancy although an increasing research effort 
is reported in the literature with sound solutions [16, 50, 
180, 189, 194, 195]. The existence of data already available 

registered through the SCADA system has encouraged 
some researchers to further explore the data so as to find 
meaningful features for the blades [196–198]. Nonethe-
less, an effective blade damage detection and evaluation 
need dedicated blade SHM systems [189]. Indeed, a dedi-
cated SHM system for the blades opens up the possibilities 
of blade pitch control (derating) as a way of no-growth 
control of existing damage or lifetime extension [199]. In 
addition, it has been reported to provide a more balanced 
and stable load for the rotating parts of the drive train and 
gearbox and thus extending their lifetime [200].

As a general comment, current SHM systems for wind 
turbine blades are able to provide data in controlled envi-
ronments and meaningful damage indicators [201]. Not-
withstanding, there is no proof of the systems performing 
during long time periods and under harsh-condition envi-
ronments. How the system is going to react to uncertain 
and harsh environments remains unknown and conform 
one of the technological challenges of this industry. A 
non-durable SHM system will end up adding more main-
tenance costs and downtime on its own.

3.3 � Civil construction industry

Generally, civil engineering structures are designed for 
long service life periods, about 100 years, and they usu-
ally require minimum maintenance throughout a signifi-
cant part of their service life. In this context, the structural 
asset management strategy followed by this industry 
has been oriented to reactive maintenance mainly [202]. 
Notwithstanding, an increasing amount of structures are 
nowadays reaching their nominal lifetime and the use of 
SHM is gaining attention as a rational tool to support a reli-
able and cost-efficient life extension [203]. Life extension 
reduces the environmental impact of decommissioning 
and constructing a replacing structure and, therefore, it 
can be considered as a sustainable development strategy 
[204].

After damage has been detected and evaluated (e.g., 
corrosion in concrete structures), structural retrofitting is 
the natural step towards the life extension of the damaged 
component. In this regard, FRP composite materials have 
proven efficiency for retrofitting or rehabilitation of civil 
engineering structures [94, 205–207], as explained before. 
Notwithstanding, a key challenge that still remains open 
is the long-term reliability assessment of the retrofitted 
structure [208], to which dedicated SHM and PHM solu-
tions are needed [94, 205, 209].

The literature about SHM in FRP structures for the civil 
industry is still very limited and mainly focused on the 
vibration analysis and the performance monitoring of 
FRP bridges. In [210], state-of-the-art SHM technologies 
in some demonstration FRP bridge projects in Canada are 



Vol.:(0123456789)

SN Applied Sciences           (2022) 4:180  | https://doi.org/10.1007/s42452-022-05063-3	 Review Paper

reported. Guan and Karbhari [211] provide a framework 
for a web-based SHM of an FRP composite bridge based 
on the vibration analysis and modal identification along 
with its variation throughout time considering the degra-
dation of the structure. Following this, the same authors 
presented an application of this framework for the Kings 
Stormwater Channel Composite Bridge [212]. Separately, 
Mikołaj et al. [213] investigated the rheological effects of 
long-term loading on an FRP bridge using SHM. Accord-
ing to their study, no rheological effects were found for 
a 3-month test load. Long-term degradation was studied 
in [214], where the performance of the first all-composite 
bridge in Poland was controlled for 8 months finding no 
relevant degradation of the structural behaviour.

As a general comment, SHM has the potential to con-
tribute to overcoming some of the main barriers posed 
in this industry to the extensive use of FRP composites; 
however, the literature on this topic is still limited and this 
potential is not fully exploited.

3.4 � Naval shipbuilding industry

It is well known that the environmental impact of ship fail-
ures is massive, perdurable in time, and especially difficult 
to revert. Each year, around a hundred large ships end up 
sinking according to Allianz’s Safety and Shipping Review 
[215] being ship hull damage among the top five causes 
of sinking. The predominant types of structural issues of 
ships made of traditional metal materials are related to 
corrosion and fatigue cracking. Currently, the ship’s design 
life cycle is estimated at around 30 years over which the 
reliability of the structure should be maintained. The cur-
rent practice in structural health assessment of ships is 
the deployment of NDT when the ship is dry-docked. The 
approach followed, unless there is an existing and known 
flaw in the ship, consists of the inspection of strategic areas 
of the hull to determine the thickness of the plate and 
extrapolate the corrosion rate to other parts of the ship; 
inspecting the complete hull including its welds would be 
impractical, time-consuming and expensive [216].

As with other industries, SHM in naval ships can provide 
insightful information regarding the actual condition of 
the structure and the loads that the structure is support-
ing. This translates into optimal design, maintenance and 
operation of the structures and uncertainty reduction in 
fatigue-life prediction [217]. The SHM approaches pre-
dominantly followed in naval vessels are vibration analysis 
[218, 219] and wave propagation analysis [216]. Passive 
systems (e.g., acoustic emission) instead of active systems 
(e.g., guided waves) have been reported as more practical 
for at-sea implementations since they require less energy 
and infrastructure to work [220].

Despite the existence of some SHM systems deployed 
on metallic hulls, they represent a tiny proportion that 
does not allow the potential of this technology to be fully 
explored. One of the reasons why SHM has not been inten-
sively used in naval vessels is the difficulty to deal with 
the size and shape complexity of their structural systems 
[220, 221]. Thus, there is a clear space for this technology 
to be further developed in this industry and demonstrate 
its potential for reliability and serviceability increase and 
maintenance cost savings [222–224].

As explained before, FRP structures are currently lim-
ited to small vessels and therefore, the application of 
SHM is practically nonexistent. Even though corrosion is 
not expected to be such a relevant issue for FRP vessels, 
degradation due to water ingress and fatigue need fur-
ther exploration in practice. The latter could constitute a 
rich research and application area in the context of SHM; 
however, to the best of the authors’ knowledge, SHM in 
FRP hulls has been mostly limited to the study of small 
components and connections, as reported in [131, 222, 
225, 226].

3.5 � Cross‑sectoral SHM overview

Whilst the studied industries present different levels 
of expertise in the use of SHM in composites, the wide 
range of sensing technologies and their development 
level increases the likelihood of its effective application. 
In terms of experience in the use of SHM solutions, the 
aerospace industry has been using it for longer in mili-
tary and civil aircraft. The military sector, more prone to 
innovation due to lower certification constraints, pro-
vides a real testing environment for SHM solutions. In this 
sense, these military SHM solutions are being used to gain 
knowledge and transfer similar solutions to the civil sec-
tor. In the case of the wind industry, most existing SHM 
solutions are installed in components different from the 
blade, such as the drivetrain or the bearings. This industry 
is currently more reliant on visual inspection and further 
NDT in case of detecting any issue on the blade rather than 
on the use of SHM solutions. In contrast, the civil indus-
try has adopted on-board SHM for singular and critical 
structures, typically based on vibrations (accelerometers) 
to detect changes in the native response of the structure. 
Considering the dimensions of the civil structures, SHM 
technology is being used to detect large damages on 
metal or concrete structures. Finally, the naval industry 
shows less experience in the use of SHM and is currently 
reliant on the visual inspection of hotspots of the hull of 
the boat while dry-docked to detect damage. The litera-
ture does not show evidence that this industry will adopt 
SHM technology in the near future at a rate similar to the 
other analysed industries.
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Some common concerns across industries are related to 
the reliability, optimisation and absence of open data for 
the further development and deployment of SHM systems. 
The higher initial costs and the difficulty of access to the 
structure in some of the industries such as the aerospace, 
wind or naval, have directed the spotlight onto their reli-
ability. They shall be designed so that an additional burden 
is not posed on the maintenance of the structure and the 
limited experience in their long-time application is seen as 
a potential risk for their deployment. Separately, the added 
weight of sensors and wiring could dilute the potential 
benefits of their use, primarily in the case of the aerospace 
industry. Whilst one of the principal arguments in favour 
of the transition to composite materials is the positive 
environmental effects of weight reduction, the higher 
complexity and evolution of non-visible damage types in 
these materials require a more profound knowledge of the 
state of the structure. Finding a balance to provide effec-
tive damage detection, location and quantification with 
the increase of weight caused by the addition of sensors 
requires a careful study of the structure. This issue feeds 
back into the absence of data with which developers could 
optimise and compare the results of different SHM system 
solutions, creating a complicated environment for the inte-
gration of these systems within the structures.

4 � Maintenance of composite structures 
across industries

Long-term reliability and durability have been highlighted 
among the most relevant factors that drive the industry 
towards the use of composites in their structures. Main-
tenance is directly related to both of them, and its impact 
can be decisive enough to condition the design of the 
structure and the materials used. In this section, the 
impact of maintenance and its relation with composite 
structures of some of the most relevant industries using 
composite structures will be analysed.

4.1 � Overview of existing maintenance strategies

In general terms, there are four broad categories of main-
tenance strategies currently in use by the industry. These 
categories evolved throughout time starting from the less 
efficient ones, Corrective Maintenance (CM) and Preven-
tive Maintenance (PvM) to the more efficient and tech-
nological ones, Condition-Based Maintenance (CBM) and 
Predictive Maintenance (PdM) [227]. The selection of the 
most suitable type of maintenance for a given applica-
tion is non-trivial and has been studied by many authors. 
For instance, Zhu et al. [228] presented and compared 
different maintenance strategies (CM, PvM and PdM) for 

wind turbine blades based on the necessary leading time 
to prepare and perform maintenance actions and the 
associated costs of these. This study showed that inspec-
tion costs may greatly influence the choice of the most 
cost-efficient maintenance policy. Also, Chen et al. [229] 
presented a comparison of different maintenance strate-
gies (PvM, hybrid CBM combining scheduled inspections 
and continuous monitoring, and pure CBM) for aircraft 
made of composite parts. Their findings show that the 
hybrid CBM strategy, which could resemble the current 
way in which CBM is applied in the aerospace industry, is 
the most expensive maintenance strategy, and that this 
could be related to the reluctance to use SHM in the sector. 
Additionally, Florian and Sørensen [230] studied the cost 
implications of optimising the inspection intervals for PvM 
considering debonding damage of wind turbine blades. 
PvM costs were found lower than those for CM for most of 
the range of inspection intervals considered.

The most basic maintenance strategy, CM, also known 
as run-to-fail maintenance, has as fundamental principle 
not to interfere until the failure of the system. Its main 
disadvantage is the risk of sudden failure leading to 
unscheduled maintenance and the structure being out of 
service during unpredictable time. This results in signifi-
cant unforeseen costs that include those related to pro-
duction, downtime, and inventory since workers should 
be always prepared with spare parts for a sudden failure. 
Besides, it may lead to more severe damage modes result-
ing in higher repairing costs. In contrast, the advantage of 
CM is that it does not require strong planning due to its 
simplicity, so it makes sense for non-safety-critical assets 
only when the repair and downtime costs are less than 
the operating costs using other maintenance types. In 
essence, CM would be suitable for composite or any type 
of structure; however, it is acceptable for non-critical and 
lightly loaded structures only [14].

As a more advanced maintenance concept, researchers 
and industry started to focus on PvM in the 1960s [231]. 
PvM is also known as time-based or scheduled mainte-
nance because it is performed periodically based on a pre-
specified schedule [232]. The main advantage of PvM over 
CM is the scheduled planning, therefore, eliminating the 
unforeseen costs of the run-to-fail strategy. It also reduces 
maintenance time by preparing beforehand the required 
parts, supplies, and manpower. In addition, it enhances 
the safety level with respect to CM since failure is pre-
vented by routine inspection and maintenance activities 
[233]. On the other hand, an important disadvantage of 
PvM is that it is scheduled based on previous experience, 
which, depending on the case, can be reduced or even 
biased [234]. In practice, this uncertainty translates into 
unnecessary maintenance actions to keep failure risk to 
an acceptable level. For example, matrix micro-cracks, as 
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the first sign of fatigue in composites, tend to accumulate 
sharply at the beginning of the fatigue life of the structure. 
Thus, inspections should ideally be unevenly distributed to 
properly track this damage mode, instead of inspections 
at periodic intervals. Furthermore, the actual maintenance 
costs depend on the degradation level when performing 
maintenance and the duration of the required mainte-
nance action; both of them are time-varying variables 
[235] whereas PvM is performed periodically ignoring 
this variability. These limitations, among others, make PvM 
unsuitable for composite structures where degradation 
evolves in a highly nonlinear fashion. A sample of the rel-
evance of adjusting inspection and maintenance intervals 
is a comprehensive study on the reduction of operation 
and maintenance costs for wind turbine blades through 
the optimisation of these intervals based on the mainte-
nance cost by Yi and Sørensen [236]. Another example is 
provided in [237], where the inspection interval for an FRP 
aircraft wing is optimised and compared with the MSG-3 
PvM planning philosophy (the classical maintenance plan-
ning approach for aircraft), providing a quantitative proce-
dure to optimise the inspection and maintenance of civil 
aircraft.

In this context, the development of SHM enabled 
monitoring continuously or as needed opened the doors 
to CBM, in which maintenance is applied based on the 
actual degradation condition of the structure. CBM was 
introduced around 1975 [238–242] and it is defined as 
the maintenance triggered by the evidence of the cur-
rent state of the system exceeding a predefined thresh-
old. With CBM, unnecessary inspections can be avoided 
thereby reducing unnecessary downtime and costs. 
However, defining the proper threshold for maintenance 
requires accurate knowledge in order to guarantee a 
healthy balance between safety and cost under different 
(and uncertain) conditions [243]. In addition, performing 
maintenance based on the knowledge of the current dam-
age state only could result in unscheduled maintenance 
activities leading to higher running costs due to the lack of 
anticipation. An example of the importance of the defini-
tion of an optimum maintenance threshold was provided 
by Zhang and Chen [244], who developed an optimised 
CBM policy for wind turbine blades based on a fatigue 
crack growth model including imperfect repairs in which 
the crack length repair threshold was tuned.

To overcome the drawbacks of CBM, more attention 
is recently moving toward PdM. Both CBM and PdM rely 
on monitoring the state of the system through SHM, but 
they differ in the way maintenance is planned. In CBM, 
the maintenance decision is made depending on the cur-
rent damage state, so there might not be enough time 
before the maintenance threshold is reached. Whereas in 
the case of PdM, the decision is planned not only based 

on the current damage state, but also on an anticipation 
of the future degradation of the system. The prediction 
of the RUL of the structure is therefore central to allow-
ing a dynamic adaptation of the maintenance planning in 
advance. An example of the potential of PdM was provided 
by Griffith et al. [245], where the optimisation of wind tur-
bine blades O&M strategies based on SHM and PHM was 
studied. The inclusion of smart operation modes during 
high wind periods to increase fatigue life and contain dam-
age progression was explored showing promising O&M 
cost reduction.

In summary, the literature provides evidence showing 
that the criticality safety of some applications such as aero-
space, along with the current state of maturity of SHM for 
large structures, pose a barrier in the adoption of innova-
tive and optimised maintenance strategies, being PvM and 
CBM the most frequently used in FRP structures currently. 
In the aerospace sector, the requirements for maintenance 
and reliability are notably strict and these are limiting the 
full potential of PdM. Notwithstanding, considering the 
high inspection costs of this industry, the situation could 
change in the future with the development of SHM and 
the acquired knowledge using composite structures 
[229]. In contrast, the wind industry has the potential to 
evolve rapidly into the adoption of PdM given the lower 
risk of unexpected failures and the numerous opportuni-
ties highlighted in the sector for life cost reduction. To the 
authors’ best knowledge, the research in the remaining 
industries covered in this review is very limited due to the 
immaturity of the use of composite structures in those, as 
explained in Sect. 2.

4.2 � Impact of maintenance in whole‑life cycle costs

There are many examples in the literature showing evi-
dence about the impact of maintenance on the life-cycle 
cost of industrial and physical assets. See for example 
[246–250], to cite but a few. The same applies to composite 
structures; however, the literature on this field is still incipi-
ent. In the following sections, this literature is reviewed 
across the industries considered in this work.

4.2.1 � Aerospace industry

Worldwide air traffic has been continuously growing dur-
ing the past years with an annual average of 4.6% and it 
is expected to double in 15 years [251]. With this growth 
in the aviation industry, some authors have foreseen that 
by 2050 the amount of accumulated aircraft composites 
waste will reach 500,000 tons [252]. Besides, the uncer-
tainty about the long-term reliability of composite materi-
als [1] along with their faster fatigue damage accumulation 
rate (in relation to metals) may speed up the formation 
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of composite wastes from this industry. Optimising main-
tenance and inspection strategies can help extend the 
service life of composite aerostructures considerably by 
controlling and slowing down deterioration. This aspect 
has been treated in the aerospace literature but for materi-
als different from composites. For example,

Guo et al. [253] provided several examples of military 
aircraft like the Canadian CF-188 [254], the Australian 
F-111C [253], and the American F-4 and B-52 fleets [255] 
that are operating beyond their nominal lifespan by virtue 
of intensive maintenance. However, frequent inspections 
may require disassembly and reassembly of the parts, 
which, in composites, it may result in an increased prob-
ability of damage [256]. Also, frequent inspections can 
result in delays, which in turn lead to additional operating 
costs that can reach up to 78 $/min [252, 257].

A proof of this is the development of Boeing’s B787, in 
which the inclusion of maintenance costs and aeroplane 
availability among the evaluated factors in the design 
stage has resulted in a composite participation of over 
50% in weight [258]. This shift in the design has proven to 
be effective, resulting in a number of damage occurrences 
equal to or lower than those for an equivalent metal struc-
ture [259].

Also, it is estimated that $5 million dollars can be saved 
during the lifetime of an aircraft by reducing the down-
time and maintenance costs using SHM with CBM [260], 
but the installation of permanent sensors can cause an 
additional load to the aircraft. Dong and Kim [260] found 
that it will require 10,000 PWAS (piezoelectric wafer active 
sensors) to cover the fuselage areas of a Boeing 737, and 
this can lead to an extra 1000 lbs load which will result 
in losing the savings from maintenance and downtime. 
This illustrates the necessity of lightweight and long-
range sensors for SHM in aerospace. Composites provide 
a good alternative in this context since FBG sensors can 
be directly embedded inside the material from the manu-
facturing stage [261] requiring no additional cabling and 
reducing the weight with respect to a traditional PWAS 
solution. Another equally important action is the optimal 
positioning of the sensors thus reducing the number of 
sensors (and therefore the weight, cable length, etc.) to a 
minimum with enhanced detectability [262]. Approaches 
related to this topic are based on either the value of infor-
mation [263, 264], cost-benefit analysis [265, 266], or a 
combination of both.

4.2.2 � Wind industry

The growing trend in the wind industry, as depicted in 
Sect. 2.2, is accompanied by the increase in wind turbine 
size that has led to a rise in FRP utilisation in the bigger 
blades. The majority of the structural components of the 

wind turbine can be easily recycled except the composite 
blades since the recycling of composite materials is still 
difficult with the current technology [8]. Only consider-
ing the wind industry, the amount of composite waste is 
expected to increase rapidly and reach around 483,000 
tons of accumulated CFRP by 2050 [252]. To address this 
problem, Jensen and Skelton explored the possibility of 
using composite waste in a circular economy context by 
using different alternatives (reusing/repurposing, recy-
cling and recovering); notwithstanding, they note that the 
experience in reusing wind turbine composite materials in 
new applications such as bridges, fibres in concrete, play-
ground, urban furniture, etc. is very little [8]. Their reuse for 
public infrastructure presents the main difficulty of verify-
ing its state and strength whilst recycling and recovering 
technologies are not ready for all composite materials. 
In this context, elongating the lifespan of turbine blades 
can be considered the only feasible choice today to post-
pone and control the future explosion of composite waste, 
thus, offering the opportunity and time for finding better 
recycling solutions for this problem. Besides, life exten-
sion can increase the ratio of the energy generated per 
waste produced, increases the Return On Investment (ROI) 
and decreases the LCOE [267]. Utilising SHM/CBM systems 
to continuously assess the health of the structure can be 
an efficient way to extend the service life of the wind tur-
bine when accompanied by an evaluation of the factors 
that influence O&M costs and the critical failure modes 
of the system [267]. Griffith et al. [245] found that moni-
toring the health of the blade to regulate the load and 
power generation can help in elongating its fatigue life 
by 300%. Besnard et al. [268] considered different strate-
gies of inspection and online condition monitoring and 
the result was different optimal maintenance schedules 
with different life-cycle costs for each of the strategies. In 
regards to the offshore wind turbines, the impact of one 
or another maintenance strategy on life-cycle costs is even 
more accentuated, especially when considering end-of-life 
scenarios and the possibility of life extension [246, 269]. In 
offshore wind farms, the operation and maintenance costs 
are predicted to be about 30% of the total life cycle costs 
[270], and this can vary from two to five times the land-
based costs [271]. This makes the energy costs of offshore 
turbines larger than land-based ones [272]. These costs 
can be reduced by using SHM technology and proactive 
maintenance in a profitable way taking into account the 
state of the structure, and this can also lead to an increase 
in the overall profit and availability of the turbine [245].

4.2.3 � Civil construction industry

As stated in Sect. 2.3, the main drawback of the massive 
adoption of FRP materials in civil engineering construction 
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is the high material costs, which can represent up to a 50% 
increase when compared to traditional solutions in the 
case of bridges [273]. Therefore, a key to the success and 
expansion of these materials in the construction industry 
will be the accurate prediction of the life cycle costs of 
the composite structures. Indeed, the choice of the wrong 
maintenance strategy can further increase the cost of 
these structures by incrementing unnecessary inspection 
and maintenance costs [274]. In this sense, the adoption 
of CBM strategies using state-of-the-art “on-board” SHM 
techniques seems a suitable approach in this direction. 
Orcesi and Frangopol [275] developed a generic approach 
to include the effects of SHM in the life cycle costs and to 
optimise the maintenance strategies based on monitor-
ing data. In their study, the knowledge about the critical-
ity and occurrence of the failure modes and the integra-
tion of SHM data were highlighted as the challenges for 
decision-making requiring further analysis for O&M cost 
reduction. Zhao et al. [276] performed a life cycle assess-
ment comparing traditional concrete-filled steel tubular 
columns with several options including concrete and 
FRP from an economic and environmental perspective 
considering PvM maintenance. The results revealed that, 
considering uncertainties, the traditional approach using 
steel and concrete is likely to be more economically and 
environmentally efficient. It is important to note that dif-
ferent parts, loading scenarios and maintenance policies 
can result in different life cycle analysis outcomes and that 
the optimised solution for a specific structure may be a 
combination of traditional and composite material parts 
and different maintenance strategies.

4.2.4 � Naval shipbuilding industry

As stated in Sect. 2, the use of FRP composites as primary 
structural materials in shipbuilding is still limited in spite 
of their potential [113]. Accordingly, to the best of the 
authors’ knowledge, there are no references in the liter-
ature investigating the impact of FRP composites in life 
cycle cost reduction, service life and sustainability in the 
naval shipbuilding industry. However, several papers in the 
literature presented generic methodological approaches 
for ship maintenance optimisation that could be extended 
in the case of marine composite structures. For exam-
ple, Liu et al. [277] integrated risk and maintenance cost 
reduction and increase in availability to optimise the 
repair actions that help in extending the ship’s service 
life. Garbatov et al. developed a risk-based framework for 
maintenance optimisation from the design stage and for 
updating future maintenance plans while satisfying safety 
transportation requirements [278]. Dong and Frangopol 
[279] developed an approach for maintenance optimisa-
tion and optimal inspection scheduling while minimising 

the life cycle costs and risk of failure. They formally found 
that an optimum inspection and maintenance plan can 
reduce the risk of prolonged exposure of the structure to 
corrosion and fatigue. In summary, a high impact would 
be expected from a massive application of FRP composites 
in the naval industry with life-cycle cost reduction being 
prominent; however, this needs to be confirmed by more 
research and new applications.

5 � Discussion

As previously discussed in Sect. 4, most inspection and 
maintenance approaches currently adopted by the com-
posite industry are based on preventive/corrective main-
tenance methodologies with maintenance activities being 
scheduled in planned calendars. These approaches can 
be seen as economically and managerially efficient in the 
short term; however, they heavily penalise the serviceabil-
ity and availability, and therefore, the life cycle cost and 
sustainability of the composite structures in the longer 
term when compared with predictive maintenance. The 
need for continuously reducing the costly and possibly 
unsafe maintenance and inspection cycle of key compos-
ite structures, like those from aircraft and turbine blades, 
requires ad-hoc, on-board, yet intelligent systems, able to 
efficiently transfer data to knowledge [280] and knowl-
edge to decision-making as a paradigm shift towards the 
Maintenance 4.0. The latter is aligned with Goal 9 (Indus-
tries, Innovation and Infrastructure) of the United Nations’ 
SDGs [281], which enforces a radical new vision for struc-
tural asset management leading to more predictable, 
sustainable, and resilient assets. In such a context, these 
obsolete asset management solutions can be replaced 
by predictive maintenance, where decisions are taken 
based on the actual and predicted state of health of the 
structures.

Among the potential needs to successfully materialise 
the PdM paradigm in composite structures, we can high-
light two key technology enablers, namely the PHM and 
CPS technology. The following subsections revise these 
two technology enablers in the context of composite 
structures and provide critical perspective and discussion 
about desirable research needs towards the aforemen-
tioned objective.

5.1 � Intelligent Prognostics and Health Management 
(iPHM)

Prognostics is the science of predicting the remaining use-
ful life (RUL) of physical assets (e.g., a turbine blade) given 
the information about the current degree of damage of 
the asset, the load history, and the anticipated future load 
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and environmental conditions [282]. Technically speaking, 
PHM is a natural extension of SHM where the focus is not 
only on detecting, isolating and sizing a fault mode, but 
also on predicting the remaining time before the failure 
occurs with quantified uncertainty, which is further used 
for rational and anticipated PdM decision-making [22]. 
From a practical viewpoint, it is a continuous process of 
update-predict-reassess which requires periodical meas-
urement updates to increasingly improve the predictions 
of the RUL.

In application to composite structures, RUL predictions 
are subject to significant uncertainty that comes not only 
from uncertain inputs (upcoming loads, environmental 
conditions, material’s voids, etc.) but also from the lack of 
knowledge about the physics of the damage process. This 
uncertainty, and the associated computational complexity 
of the prediction problem, is exacerbated when dealing 
with large-scale thin-walled composite structures under 
real operating conditions using noisy, sparse or missing 
SHM data [283]. This is mainly the reason explaining why 
probability-based frameworks have been preferred for 
prognostics in composites, rather than deterministic or 
point-valued RUL estimations. Damage prognostics for 
structural applications have been recently explored by 
several researchers [17, 170]. In the current literature, avail-
able damage prognostics approaches for composites are 
capable of only capturing some (but few) of the specific 
damage modes such as micro-crack propagation, delami-
nation, etc., which are only representative of some of the 
potential deterioration patterns of a full-scale composite 
structure [18–20, 171, 284]. Moreover, the vast majority 
of PHM research to date deals with predicting the RUL of 
structural coupons or small structural parts and generally 
under laboratory-controlled damage conditions. Thus, 
there is a clear research opportunity to effectively deploy 
iPHM methods in real-world composite structures subject 
to realistic load and environmental conditions.

At this standpoint, it is important to remark that a key-
stone to deal with the abovementioned achievement 
relies on the availability of an effective sensing system to 
obtain real-time online data about the structural health 
state. Indeed, as previously specified in Sect. 3, ultrasonic 
guided waves and acoustic emission have exhibited strong 
potential as SHM solutions for detecting damage signa-
tures in composite structures [19, 169, 171]. However, to 
the best knowledge of the authors, available SHM systems 
in composites still lack integrated, yet long-term reliable 
solutions adequate for working under operational con-
ditions. Thus, there is a fundamental technological and 
scientific issue that still remains open, which is to effec-
tively integrate these SHM sensors on-board a composite 
structure properly working in operational (loading and 
environmental) conditions in the long-term.

The latter requires a deeper understanding of the sens-
ing technology capable to cover a wider range of dam-
age signatures (as no single sensor type can cover all), and 
most importantly, technology development for effective 
manufacturing methods which enable sensor network 
integration with minimal or no affection to the structural 
response of the composite. The aforementioned chal-
lenges imply a need for the development of novel manu-
facturing methods to render smart composite materials 
[285, 286], which include robust, accurate and minimally 
invasive embedded systems for on-board, continuous, yet 
reliable monitoring.

Finally, we remark that the energy supply of on-board 
installed sensors and communication nodes supposes a 
major concern for efficiently deploying PHM solutions 
in composite structures. Energy harvesting methods are 
today a major research topic within the composites field 
providing suitable solutions mostly for structures sub-
jected to dynamical excitation [287–291]. This, together 
with the development of low-consume sensors, might 
shed light on making on-board long-term embedded SHM 
systems feasible.

5.2 � Structural composites as cyber‑physical 
structures

The concept of CPS is at the core of AI and its related dis-
ciplines, like the Internet-of-Things (IoT) and robotics. CPS 
integrate physical assets with embedded sensing, process-
ing, communication, and networking capabilities, whereby 
cyber and structural components form a collaborative 
integration transforming the monitored structure from 
being a physical asset to a cyber-physical entity [292].

Recent works [293, 294] propose that CPS can result 
in autonomous self-managed systems with diagnostics, 
prognostics, and decision-making capabilities using online 
SHM and PHM information. Indeed, the anticipation of CPS 
to structural damage can be granted by self-adaptiveness 
of operational decisions (e.g. go/no go for inspection) 
based on PHM predictions. Through self-adaptation, the 
predicted information is updated to dynamically accom-
modate health state changes and provide autonomous 
maintenance decisions, therefore increasing the sys-
tem efficiency and making it more resilient to the new 
conditions.

However, important research breakthroughs are needed 
for CPS to be directly applied to composites structures. 
Apart from scaling up the PHM techniques under demand-
ing real conditions, as previously discussed in the last sub-
section, a key challenge still lies in formulating system-
level mathematical tools to represent and simulate the 
dynamics of the CPS entity. The latter implies the devel-
opment of expert system models capable of integrating 
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SHM data, PHM predictions (whether model-based or 
data-based), and expert knowledge with system-level 
I &M non-linearities2. There are some available system-
level modelling paradigms in the literature to mathemati-
cally represent expert systems [295, 296], like for example 
Hybrid automatas, Mixed logical dynamical models, Piece-
wise affine models, Petri Nets and max–min–plus-scaling 
systems [297–300].

Among the aforementioned approaches, Petri nets 
(PN) [301] are typically regarded as powerful modelling 
tools for expert systems due to their ability to account for 
resource availability, concurrency, and synchronisation, 
which are common aspects that underline the major-
ity of the aforementioned system-level non-linearities. 
Moreover, new PN variants like the fuzzy Petri nets (FPN) 
[302–304], Possibilistic Petri nets [305, 306], and Plausible 
Petri nets (PPNs) [307] have appeared in the literature to 
account and react to uncertain information (e.g. from sen-
sors, experts, etc.), which are of special interest of CPS of 
composites due to the unavoidable presence of uncer-
tainty in the damage predictions. Particularly, the recently 
formulated PPNs have demonstrated good results as self-
adaptive expert-level models using off-line degradation 
data and expert knowledge [307], and might constitute a 
useful tool to mathematically represent the dynamics of 
cyber-physical composite structures at system-level.

It is important to note that, in a literature search, one 
can realise that the idea to integrate expert systems with 
other technologies is as old as AI, and this trend still con-
tinues in the new generation of expert systems [308, 309]. 
Particularly, expert systems applied as decision support 
tools for structural damage assessment date back earlier 
than the boost of the SHM technology [292], but not as 
cyber-physical systems.

Nowadays, the cyber-physical technology is being 
superseded by the digital twin concept [310] which com-
bines interactive knowledge-based and geometrical 
virtual (digital) models with their physical counterparts 
within an IoT-based sensing environment [311], typically 
using cloud-computing and data intelligence. Within the 
context of composite structures, a desirable scenario 
would be so that PHM predictions and damage models 
were integrated within a system-level virtualisation that 
can be updated using data from the physical twin (namely 
the IoT-based monitored composite structure) to enable 
optimal dynamic task allocation, operations sharing, and 
PdM decision-making.

The latter is the so-called Level-5 Digital Twin technol-
ogy and, together with new efficient-lightweight PHM and 
learning algorithms that can do on-board edge or cloud 
computing [293], constitute a potentially fruitful research 
direction to enable efficient and reliable I &M strategies in 
composite structures.

6 � Concluding remarks

The use of FRP composites in thin-walled structures for 
safety-critical applications has seen a notable rise over 
the last few decades, especially in the aerospace and wind 
industries with evidence of reliability, durability, life cycle 
cost reduction and sustainability. Other industries such as 
the civil and naval have not seen such a rampant increase 
so far presumably due to the uncertainty about the long-
term performance, the lack of technological demonstra-
tors, and the absence of codes and standards.

To overcome this, the development of policies and 
codes regulating the design with composites along with 
a cross-sectoral knowledge transfer among industries 
could be the levers that unlock a greater use of these 
high-efficiency materials. Moreover, while still relatively 
immature for industrial application, converting composite 
structures into cyber-physical structures seems promising 
to promote the transition into predictive and optimised 
inspection and maintenance strategies and overcome the 
long-term performance uncertainty of FRP structures.

Author Contributions  All authors contributed to the study concep-
tion and design. The first draft of the manuscript was written by 
Javier Contreras, Juan Chiachío, Ali Saleh and Manuel Chiachío and 
all authors commented on previous versions of the manuscript. All 
authors read and approved the final manuscript.

Funding  This work was supported by the European Union’s Hori-
zon 2020 research and innovation programme under the Marie 
Skłodowska-Curie Grant Agreement No 859957.

Data Availability  All data generated or analysed during this study are 
included in this published article.

Declarations 

Conflict of interest  The authors have no relevant financial or non-
financial interests to disclose.

Research involving human participants and/or animal rights  The 
authors declare that no research involving human participants and/
or animals has been performed for these studies.

Informed consent  Informed consent is not required and/or applica-
ble for these studies.

2  System-level I &M non-linearities are understood here as artifi-
cial I &M actions and other human-based events that influence the 
“natural” damage and ageing progression of the composite struc-
ture.



Vol:.(1234567890)

Review Paper	 SN Applied Sciences           (2022) 4:180  | https://doi.org/10.1007/s42452-022-05063-3

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as 
long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 

article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 

holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​
org/​licen​ses/​by/4.​0/.

Appendix 1: Acronyms

See Abbreviations.

Table 7   The 17 Sustainable Development Goals (SDGs)

Source [125]

Sustainable Development Goals

Goal 1: No poverty
 End poverty in all its forms everywhere.

Goal 2: Zero hunger
 End hunger, achieve food security and improved nutrition and promote sustainable agriculture.

Goal 3: Good health and well-being
 Ensure healthy lives and promote well-being for all at all ages.

Goal 4: Quality education
 Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all.

Goal 5: Gender equality
 Achieve gender equality and empower all women and girls.

Goal 6: Clean water and sanitation
 Ensure availability and sustainable management of water and sanitation for all.

Goal 7: Affordable and clean energy
 Ensure access to affordable, reliable, sustainable and modern energy for all.

Goal 8: Decent work and economic growth
 Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all.

Goal 9: Industry, innovation and infrastructure
 Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation.

Goal 10: Reduced inequalities
 Reduce inequality within and among countries.

Goal 11: Sustainable cities and communities
 Make cities and human settlements inclusive, safe, resilient and sustainable.

Goal 12: Responsible consumption and production
 Ensure sustainable consumption and production patterns.

Goal 13: Climate action
 Take urgent action to combat climate change and its impacts.

Goal 14: Life below water
 Conserve and sustainably use the oceans, seas and marine resources for sustainable development.

Goal 15: Life on land
 Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and 

reverse land degradation and halt biodiversity loss.
Goal 16: Peace, justice and strong institutions
 Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable 

and inclusive institutions at all levels.
Goal 17: Partnerships for the goals
 Strengthen the means of implementation and revitalize the global partnership for sustainable development.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Appendix 2: Sustainable Development Goals

See Tables 7, 8, 9, and 10.
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