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1. Introduction

The quantum description of type IIB string theory on AdS5×S5 remains a challenge because

quantisation of the Metsaev-Tseytlin action [1] in the conformal gauge faces a number of

intricate problems. Insight into a way to overcome this obstacle has arisen along the last

years from the observation that the classical sigma model for the string on AdS5 × S5

is integrable [2]. Integrability of the string implies that it admits a Lax connection, and

allows a resolution of the spectrum of classical strings in terms of spectral curves [3, 4]. The

integral equations satisfied by the spectral density for the monodromy of the Lax connection

remind of a thermodynamic limit of some Bethe equations, and a set of discrete Bethe

equations for the quantum string sigma model were in fact suggested in [5, 6]. Integrable

structures also arise on the gauge theory side of the AdS/CFT correspondence because the

leading planar dilatation operator of N = 4 supersymmetric Yang-Mills has been identified

with the Hamiltonian of an integrable spin chain [7 – 9]. Moreover, integrability has also

been shown to hold at higher loops in some restricted sectors [10 – 13]. Assuming that

integrability holds, Bethe equations have been proposed as an efficient means to describe

the spectrum of N = 4 Yang-Mills operators. For further details and references we would

like to refer the reader to the reviews [14, 15].

The asymptotic Bethe ansätze for gauge and string theory are very similar, and the

asymptotic S-matrices on each side of the correspondence differ simply by a scalar factor [13,

6]. Actually, this is as much as they could possibly differ: The two-excitation S-matrix of

an infinite spin chain system with the psu(2, 2|4) symmetry that characterises both string

theory on AdS5 × S5 and N = 4 super Yang-Mills can be fixed up to a scalar factor [16]

S12 = S0
12 Ssu(2|2)

12 Ssu(2|2)′
12 . (1.1)

The spin chain vacuum breaks the psu(2, 2|4) symmetry algebra down to psu(2|2)2 n R,

where R represents a shared central charge [14]. In order to describe elementary excitations

of the chain, it is necessary to extend the unbroken symmetry algebra with two central

charges. The symbol Ssu(2|2)
12 denotes the uniquely fixed flavour structure of the S-matrix

for each centrally extended su(2|2) sector.

The determination of the scattering matrix by the symmetries up to a scalar factor

is not unique to the AdS/CFT chain, but a generic fact in integrable systems [17]. In

order to determine the dressing factor, additional dynamical information, such as crossing

symmetry for relativistic systems, is required. The status of crossing symmetry in the

AdS/CFT context is not a priori clear since the dispersion relation of elementary excitations

does not have precise relativistic invariance. However it has been argued that crossing

symmetry should still hold for strings on AdS5 × S5 [18]. A strong argument in favour

is that a purely algebraic implementation of crossing symmetry based on the underlying

Hopf algebra structure of integrable systems, known to work in well studied examples,

leads to a non-trivially consistent picture [18 – 20]. Furthermore, it was shown in [16]

that the constraint from crossing symmetry is equivalent to a certain bootstrap condition

implying that a particle-hole pair should scatter trivially. Moreover, the classical string

phase factor [5] plus its one-loop string sigma model quantum correction [21] have been
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shown to satisfy crossing to the appropriate order [22]. Recently, a function satisfying

crossing has been presented in [23]. The aim of this work is a proposal for a general

dressing factor which obeys the crossing relation found in [18] and agrees with the available

perturbative data from string theory.

The plan of the paper is as follows. In section 2 we will review the description of

elementary excitations developed in [16] and the formulation of crossing symmetry [18] in

order to make our presentation self-contained. We will end this section with a discussion

of the separate kinematical regimes that characterise the strong and weak coupling limits.

In section 3 we will describe the dressing phase of the scattering matrix in terms of a per-

turbative series at strong coupling and propose a concrete expression for the coefficients

that govern the series. These coefficients are a natural extension of those determining

the classical dressing phase [5] and its one-loop correction [21]. We will provide evidence

that the proposed series satisfies crossing symmetry. An analytic expression is presented

in section 4 and argued to represent the resummed series. Using this result we are able

to identify the bound states of giant magnons recently found in [24] as poles of the scat-

tering matrix. Although our dressing phase was constructed to satisfy the main physical

requirements on the string side, such as crossing symmetry, we should stress that it does

not correctly connect with gauge theory in the weak coupling regime. A possible way out

is the addition of a homogeneous solution of the crossing equation to the dressing phase.

The study of homogeneous solutions is addressed in section 5. In section 6 we discuss our

results and comment on the many open issues. The paper concludes with two appendices

that collect useful formulae for the weak and strong coupling expansions.

2. Particle model

We will start by reviewing the model of physical excitations above a half-BPS vacuum

state. This section describes the setup as well as the basic definitions and conventions to

be used in later sections of this paper.

2.1 Setup

States in type IIB string theory are naturally described by a set of 8 bosonic and 8 fermionic

excitations propagating on a circle. For N = 4 gauge theory the setup is similar except

that the circle is replaced by a periodic spin chain [25]. The vacuum state is a protected

half-BPS state in both cases and each particle has an associated momentum pk. Due to the

compactness of the circle or the spin chain, the spectrum of states is discrete. Discreteness

is achieved by imposing quantisation conditions on the particle momenta.

However, it is more convenient to replace the circle with an infinite line. This relaxes

the quantisation condition of particle momenta and makes the spectrum continuous. To

recover the circle we need to impose periodicity conditions on the multi-particle wave

function, the so-called Bethe equations. The Bethe equations rely on the scattering matrix

S of particles on the infinite line [13].

The symmetry of the full model is psu(2, 2|4) and a subalgebra R n psu(2|2)2 n R

preserves the particle numbers [14]. The external automorphism is the so(6) charge J and
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the central charge C measures the energy of a state. On the infinite line, the residual

algebra enlarges by two central charges R n psu(2|2)2 n R
3 [16]. These central charges

describe the momentum of a particle.

2.2 Particles

A particle is described by its momentum p, energy C (alias the su(2|2) central charge)

and its flavour. There are sixteen particle flavours which form a multiplet of the residual

symmetry. The momentum and energy are related by the dispersion relation [26]

4C2 − 16g2 sin2(1
2p) = 1 , (2.1)

where g is proportional to the square root of the ’t Hooft coupling constant,

g =

√
λ

4π
. (2.2)

This dispersion relation is in fact an atypicality condition for a short multiplet of the

residual algebra [16] and thus appears to be protected from quantum corrections.

This equation is neither a standard lattice nor a standard relativistic dispersion re-

lation, but it shares features of both: It is periodic in the momentum p, i.e. it has the

Brillouin zones of a discrete system. It is also relativistic if we consider sin(1
2p) (rather

than p) to be the relevant relativistic momentum. These two properties square nicely with

the observation that the kinematic space of the elementary excitations defines a complex

torus [18]. The torus has two non-trivial cycles, let us call them “real” and “imaginary”.

The real cycle corresponds to periodicity of the momentum p for a lattice model. The

imaginary cycle corresponds to periodicity of the mass shell condition (2.1) for imaginary

relativistic momentum, i.e. (2C)2 + (4ig sin(1
2p))2 = 1 defines a unit circle.

We will use complex variables x± to codify the momentum p and energy C of physical

excitations via

eip =
x+

x− , C =
1

2
+

ig

x+
− ig

x− . (2.3)

These two variables are subject to the constraint

x+ +
1

x+
− x− − 1

x− =
i

g
, (2.4)

which is equivalent to the dispersion relation (2.1). Furthermore we would like to introduce

the auxiliary variable u as

u = x+ +
1

x+
− i

2g
= x− +

1

x− +
i

2g
. (2.5)

Finally, we shall present two relevant discrete symmetries.One of them is parity which

maps the particle variables as follows

x± 7→ −x∓, p 7→ −p, C 7→ C, u 7→ −u . (2.6)

For the definition of crossing symmetry we will furthermore need the antipode map between

particles and particle-holes given by

x± 7→ 1

x± , p 7→ −p, C 7→ −C, u 7→ u. (2.7)
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2.3 Scattering and crossing

The pairwise scattering matrix S12 for the above particles was derived in [16]. It is fully

constrained by symmetry up to a scalar prefactor S0
12. We will not need its full form here,

but only consider the scalar factor. It will be convenient for us to use the definition in

terms of the dressing factor σ12 = σ(x±
1 , x±

2 ) and dressing phase θ12 introduced in [6]

S0
12 = (σ12)

2 x+
1 − x−

2

x−
1 − x+

2

1 − 1/x−
1 x+

2

1 − 1/x+
1 x−

2

, σ12 = exp(iθ12) . (2.8)

The aim of the present paper is to derive an expression for the dressing phase θ12 consistent

with string theory. Note that in our conventions the dressing phase appears with a factor

of +2i in the exponent of the psu(2, 2|4) scattering matrix

S12 ∼ exp(2iθ12) . (2.9)

A constraint on the form of σ12 is gained by imposing crossing symmetry [18]. Crossing

symmetry relates the two-particle S-matrix with the S-matrix for a particle and a particle-

hole. Assuming crossing symmetry holds, the following constraint on the dressing factor

σ12 = σ(x±
1 , x±

2 ) was derived in [18],

σ12 σ1̄2 = h12 , (2.10)

where the bar stands for the replacement of a particle by a particle-hole, cf. (2.7). The

function h is given by [22]

h12 =
x−

2

x+
2

x−
1 − x+

2

x+
1 − x+

2

1 − 1/x−
1 x−

2

1 − 1/x+
1 x−

2

. (2.11)

The crossing relation (2.10) looks superficially puzzling because the l.h.s. is naively

symmetric under the particle-hole interchange, while the r.h.s. is not. It was shown in [18]

that the operation x± 7→ x̄± = 1/x± corresponds to a displacement on the imaginary cycle

of the complex torus by half a period. Therefore applying twice this operation we move

once around a non-trivial cycle of the torus, which can result in a non-trivial monodromy,

i.e. x± 7→ x̄± 7→ ¯̄x±. This is indeed the case since (2.11) implies

σ¯̄12 =
h1̄2

h12
σ12 6= σ12 . (2.12)

The operation x± 7→ ¯̄x±, which is superficially the identity map, has the interpretation of a

change in Riemann sheet for the function σ12 = σ(x±
1 , x±

2 ). It is therefore instructive to split

the dressing factor into an “odd”, an “even” and a “homogeneous” part, σ = σoddσevenσhom,

where the odd part is responsible for generating the monodromy in the double crossing

relation (2.12), while the even part is a homogeneous solution of double crossing. These

factors individually obey the crossing relations

σodd
12 σodd

1̄2 = hodd
12 , σeven

12 σeven
1̄2 = heven

12 , σhom
12 σhom

1̄2 = 1 , (2.13)
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with the odd and even parts of the crossing function

hodd
12

√

h12

h1̄2
=

√

x−
1 − x+

2

x+
1 − x+

2

x+
1 − x−

2

x−
1 − x−

2

1 − 1/x+
1 x+

2

1 − 1/x−
1 x+

2

1 − 1/x−
1 x−

2

1 − 1/x+
1 x−

2

,

heven
12

√

h12 h1̄2 =
x−

2

x+
2

√

x−
1 − x+

2

x+
1 − x−

2

1 − 1/x−
1 x+

2

1 − 1/x+
1 x−

2

=
x−

2

x+
2

√

u1 − u2 − i/g

u1 − u2 + i/g
, (2.14)

where u is the crossing-invariant variable (2.5). Clearly, the relations (2.13), (2.14) are

equivalent to the full crossing relation (2.10). The general solution of the crossing relation

is not unique and consequently includes a homogeneous part. In the absence of further

physical constraints this homogeneous piece can be chosen arbitrarily.

2.4 Limits

Before we consider solutions to these equations, we shall investigate the strong-coupling

and weak-coupling regimes. In these limits, the kinematic space of particles splits up into

disconnected regions. These regions give rise to different kinds of particles with differ-

ent properties. They will play an important role in perturbative representations of the

phase. Here we will only present a list of such regimes. Explicit formulae can be found in

appendix A.

At strong coupling, the kinematic space of particles splits up into four interest-

ing regions. For later convenience we will denote these four regimes by MT (Metsaev-

Tseytlin plane-wave excitations [1]), HM (Hofman-Maldacena regime [24]) and GKPr,

GKPl (Gubser-Klebanov-Polyakov flat space limit [27] with distinct right and left-movers):

g → ∞ =⇒ particle ∈



























MT if p = O(1/g1) ,

GKPr if p = O(1/g1/2) and p > 0 ,

GKPl if p = O(1/g1/2) and p < 0 ,

HM if p ∈ (0, 2π) = O(1/g0) .

(2.15)

Particles within different regimes can, in principle, scatter with themselves or with other

types of particles, but it is expected that their scattering phase is suppressed by powers of

the coupling constant. The MT elementary excitations and HM giant magnons also serve

as constituents for Frolov-Tseytlin spinning strings [28, 29] and Gubser-Klebanov-Polyakov

spinning strings [27], respectively.

At weak coupling we find two regions for particles with real momenta. These corre-

spond to magnons and magnon-holes:

g → 0 =⇒ particle ∈
{

magnon if C > 0 ,

hole if C < 0 .
(2.16)

An additional complication is that both at strong and at weak coupling some branch

points of the phase, for example the ones that will be discussed in section 3.4, move

outside the kinematical regime and thus become inaccessible. The associated monodromies
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will then lead to additional integer labels for the particles in a perturbative treatment.

For instance, at strong coupling the real period grows infinitely large with respect to the

imaginary one. In this way periodicity along the real axes is lost and the momentum p is

confined to a specific region. It will turn out that a shift by 2π can change the dressing

factor. Therefore we have to specify for all particles what multiple of 2π we are considering

in order to pin down the phase. Similarly, the two types of particles at weak coupling are

related by the antipode map. The double antipode map is non-trivial and the dressing

phase does change under it. Therefore we have to distinguish between magnons and their

images under the double antipode map. As we shall see, both at strong and weak coupling,

there will be more discrete choices to be made which lead to additional labels for the

distinct regimes of particles. For the sake of clarity we shall not write out these labels

explicitly.

3. Crossing-symmetric series

In this section we will search for a general solution to the crossing equation of the form

θ =

∞
∑

n=0

θ(n) + θhom , (3.1)

where the summands θ(n) represent a n-loop contribution in the perturbative string world

sheet theory at strong coupling. We will postpone the discussion of the homogeneous

piece to a later section and focus in what follows on one particular solution of the crossing

relation given by the θ(n).

3.1 Series representation

A reasonably general form of the dressing factor σ is [5, 30]

σ12 = exp iθ12, θ12 =

∞
∑

r=2

∞
∑

s=r+1

cr,s

(

qr(x
±
1 ) qs(x

±
2 ) − qs(x

±
1 ) qr(x

±
2 )

)

, (3.2)

where the magnon charges are defined as

qr(x
±) =

i

r − 1

(

1

(x+)r−1
− 1

(x−)r−1

)

, (3.3)

and cr,s are some real coefficients depending on the ’t Hooft coupling constant.

Before we proceed, let us motivate why the above form of the phase is useful: First

of all, the phase is defined purely in terms of magnon charges which form a natural basis

of conserved quantities. Secondly, zero-momentum particles representing symmetry gener-

ators have a trivial dressing factor. In addition, the first derivative of the phase around

zero momentum vanishes. These two properties are required for the correct realisation of

psu(2, 2|4) symmetry, see e.g. [6]. Thirdly, the phase is naturally doubly periodic on the

complex torus. The form (3.2) thus represents a basis of periodic two-parameter functions

with a couple of desired additional symmetry properties. It can also be viewed as a mode
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decomposition for functions on a torus; it is somewhat similar to a Fourier decomposition

but with two periods.1 Fourth, an analysis of perturbative integrable spin chains gives (3.2)

as the most general expression [30]. Although this is not directly applicable to string theory

models, we consider it a valid indication. Finally, this form collaborates nicely with the

scattering of bound states in the bootstrap approach [31, 32].

The form of the above phase (3.2), (3.3) suggests to write it as a symmetrisation of a

function χ(x1, x2) [22]

θ12 = +χ(x+
1 , x+

2 ) − χ(x+
1 , x−

2 ) − χ(x−
1 , x+

2 ) + χ(x−
1 , x−

2 )

− χ(x+
2 , x+

1 ) + χ(x−
2 , x+

1 ) + χ(x+
2 , x−

1 ) − χ(x−
2 , x−

1 ) . (3.4)

We will generally use this definition of θ in terms of χ. In order to match with (3.2), (3.3)

we have to set

χ(x1, x2) =

∞
∑

r=2

∞
∑

s=r+1

−cr,s

(r − 1)(s − 1)

1

xr−1
1 xs−1

2

. (3.5)

3.2 Strong-coupling expansion

The coefficients cr,s in (3.2) are known to first order at strong coupling [5, 33, 21, 34]. At

leading order they are given by [5]

c(0)
r,s = g δr+1,s . (3.6)

The first quantum correction turns out to be [21]

c(1)
r,s =

(−1)r+s − 1

π

(r − 1)(s − 1)

(r + s − 2)(s − r)
, (3.7)

which follows from a one-loop comparison with spinning string energies [33, 21, 34].

It was shown in [22] that the first two contributions can be summed up to analytic

expressions. The leading order contribution is given by

χ(0)(x1, x2) = − g

x2
+ g

(

−x1 +
1

x2

)

log

(

1 − 1

x1x2

)

, (3.8)

and the first order reads

χ(1)(x1, x2) = − 1

2π
Li2

√
x1 − 1/

√
x2√

x1 −
√

x2
− 1

2π
Li2

√
x1 + 1/

√
x2√

x1 +
√

x2

+
1

2π
Li2

√
x1 + 1/

√
x2√

x1 −
√

x2
+

1

2π
Li2

√
x1 − 1/

√
x2√

x1 +
√

x2
, (3.9)

where Li2(z) is the dilogarithm function.2

1Let us note that, although the function is periodic by definition, infinite sums may lead to branch cuts

which may render the analytic continuation of the function aperiodic. We shall be interested in this type

of analytic continuation.
2We have made use of the identity Li2(z) + Li2(1− z) = 1

6
π2 − log(z) log(1 − z) to absorb all the terms

bilinear in logarithms that appear in [22].
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These contributions have recently been shown to satisfy the crossing relation up to

order O(1/g3) for MT excitations [22]. Furthermore in [23] it was argued that the n = 1

contribution to the phase is actually sufficient to satisfy exactly the odd crossing rela-

tion (2.13), (2.14) for finite values of the coupling. We shall provide a full proof of that

statement in section 3.4. It was also demonstrated that in order to satisfy the original

crossing relation (2.10) further even-n contributions are needed. We may therefore identify

θodd = θ(1) and θeven =

∞
∑

n=0

θ(2n). (3.10)

3.3 Proposal

The central result of this paper is a proposal for the coefficients c
(n)
r,s in (3.2) with even

n ≥ 2 such that the crossing relation (2.10) is satisfied. These take the following form

c(n)
r,s =

1

gn−1

(

(−1)r+s − 1
)

Bn

4 cos(1
2πn) Γ[n + 1] Γ[n − 1]

× (r − 1)(s − 1)
Γ[12(s + r + n − 3)]

Γ[12(s + r − n + 1)]

Γ[12(s − r + n − 1)]

Γ[12(s − r − n + 3)]
, (3.11)

where Bn denotes the n-th Bernoulli number. Note that c
(n)
r,s = 0 if r + s is even or if

n ≥ s− r+3. The factor (r− 1)(s− 1) cancels the denominators in qr and qs, and the sum

over r and s can be performed easily. For every θ(n) we find some rational function in x±
1,2.

For the first two terms in the expansion of χ we obtain the following rational functions

χ(2)(x1, x2) = − x2

24g(x1x2 − 1)(x2
2 − 1)

,

χ(4)(x1, x2) = −x3
2 + 4x5

2 − 9x1x
6
2 + x7

2 + 3x2
1x

7
2 − 3x1x

8
2 + 3x2

1x
9
2

720g3(x1x2 − 1)3(x2
2 − 1)5

. (3.12)

We have obtained similar expressions up to χ(12), but they are too bulky to be presented

here.

A few features of the coefficients are worth mentioning: The fact that the odd Bernoulli

numbers are zero relates nicely to the fact that odd-n contributions are not required for

a solution of crossing.3 The notable exception is n = 1 with B1 = −1
2 . Remarkably,

the properly regularised expression for (3.11) with n = 1 yields precisely (3.7)! Also the

leading order coefficients (3.6) are contained in (3.11) as the regularised contribution at

n = 0.4 Therefore (3.11) can be considered a natural extension of (3.6), (3.7) to higher

orders. Finally we mention that each coefficient cr,s(g) has a finite expansion in 1/g with

the last contribution at n = s − r + 1.

3In fact this is not straightforward because (3.11) contains cos( 1
2
πn) in the denominator, which is zero

for odd n. Thus the coefficients are ambiguous for odd n, and we may only define them to be zero. We will

return to this issue in section (5).
4The contribution with r = 1, s = 2 is zero for all n with the exception of n = 0 where it is defined

ambiguously. Adding this contribution with c
(0)
1,2 = g to the sum (3.5) solves heven without the only term

which makes direct reference to x±, cf. x−

2 /x+
2 .
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3.4 Proof of odd crossing

We now turn towards confirming the crossing relation for our proposed series. In this

section we will prove that the odd crossing relation (2.13), (2.14) is satisfied by θ(1) alone.

We will address the proof of this statement in two steps. First we will show that θ(1)

satisfies double crossing (2.12), and afterwards we will turn to the odd crossing relation.

Double crossing. Under double crossing the x± variables are mapped to themselves:

x± 7→ 1/x± 7→ x±. We therefore have to investigate the monodromies of the phase. We

will discard shifts by multiples of 2π because they will drop out after exponentiating the

phase.

The phase θ(1) is composed from dilog functions, therefore let us review its mon-

odromies first. It has the following two: When z is taken once around z = 1 (counterclock-

wise) the analytic continuation of Li2(z) shifts by
∮

z=1
dLi2(z) = −2πi log(z) . (3.13)

Likewise for circles around z = ∞ it shifts by the same amount in the opposite direction,
∮

z=∞
dLi2(z) = +2πi log(z) . (3.14)

Altogether the sum of shifts for all points cancels as it should.

Equipped with these formulae we can now consider the monodromies of χ(1). The

relevant points are those where the argument of the dilog is 1 or ∞. This happens at

x1 = ∞, x2 = ±1, 0 or x1 = x2. The monodromies at x2 = ±1 are
∮

x2=±1
dχ(1)(x1, x2) = ±i log

x1 − 1/x2

x1 − x2
. (3.15)

More explicitly this means that the monodromies at
√

x2 = +1 and
√

x2 = −1 both take

the above value with the + sign. Similarly for
√

x2 = ±i and the − sign. The monodromy

for x1 = x2 however needs to be split into the two cases
√

x2 = +
√

x1 and
√

x2 = −√
x1

for which we get opposite monodromies
∮

√
x2=±√

x1

dχ(1)(x1, x2) = ±i log
1 + 1/

√
x1

√
x2

1 − 1/
√

x1
√

x2
. (3.16)

The potential monodromies at x1 = ∞ and x2 = 0 both cancel out.

We are finally in the position to consider double crossing of θ
(1)
12 . The monodromy (3.16)

cannot contribute here because it is symmetric under the interchange of x1 and x2 whereas

θ
(1)
12 is anti-symmetric. In other words, the monodromies for

√
x1 circling around ±√

x2

cancel out between each term χ(1)(x1, x2) and the corresponding term −χ(1)(x2, x1) in (3.4).

We are thus left with (3.15). The monodromies of θ12 for x+
1 = ±1 and x−

1 = ±1 are

∮

x+
1 =±1

dθ
(1)
12 = ∓i log

x−
2 − x+

1

x+
2 − x+

1

x+
2 − 1/x+

1

x−
2 − 1/x+

1

,

∮

x−

1 =±1
dθ

(1)
12 = ∓i log

x+
2 − x−

1

x−
2 − x−

1

x−
2 − 1/x−

1

x+
2 − 1/x−

1

. (3.17)
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Now we need to investigate what path x±
1 takes under the double crossing map. Let us

parametrise the momentum p using Jacobi’s amplitude function am with elliptic modulus

k and rapidity variable z,

p = 2am(z, k), k = 4ig . (3.18)

Then the half-periods of the torus are given by

ω1 = 2K(k), ω2 = 2iK(
√

1 − k2) − 2K(k) . (3.19)

We note that p increases by 4π under a shift of the full real period 2ω1. Therefore this

parametrisation of the torus is a double covering. A single covering can be achieved as

well, but at the cost of expressions which are substantially longer than e.g. (3.18).

Double crossing takes the rapidity z once around the imaginary period of the torus.

The direction is not immediately obvious, it could be either of the two maps z 7→ z ± 2ω2.

Let us for convenience assume the positive sign. To define a path between the two points we

shall furthermore assume that the real part of z remains constant. Then it turns out that

for Re z ∈ (−1
4ω1,+

1
4ω1) + ω1Z the variables x± circle clockwise around +1. Conversely,

for Re z ∈ (1
4ω1,

3
4ω1) + ω1Z they circle counterclockwise around +1. Here we take −1 as

the reference point for defining the outside of the path.

The overall monodromy is therefore

θ
(1)
¯̄12

− θ
(1)
12 = ±i log(hodd

12 )2. (3.20)

The plus sign is valid for Re z ∈ (−1
4ω1,+

1
4ω1) + ω1Z (roughly speaking for p ≈ 2πZ) and

agrees literally with (2.12). The minus sign holds for Re z ∈ (1
4ω1,

3
4ω1) + ω1Z (roughly

speaking for p ≈ π + 2πZ) and we should therefore reverse the crossing path for these

momenta in order to achieve agreement with (2.12). This is not a problem as the definition

of the crossing relation in fact allows both signs in z 7→ z ± ω2. Nevertheless, it would

be illuminating to find out why we have to choose different orientations depending on the

particle momentum. Alternatively, we could specify a path such that x± always circle

clockwise around +1. This completes the proof that θ(1) satisfies the double crossing

relation (2.12).

Odd crossing. Above we have investigated the structure of monodromies of the function

χ(1)(x1, x2). This was sufficient for the proof of double crossing because the double antipode

map takes x to itself. The regular crossing relation on the other hand maps x non-trivially

and therefore monodromies are not sufficient for proving the full relation. Nevertheless

they are essential for our understanding:

We have seen for instance that there are monodromies at xk = ±1 and that the

monodromies at
√

x1 = ±√
x2 cancel in the combination χ(1)(x1, x2) − χ(1)(x2, x1). Thus,

the symmetrised combination has a simpler analytic structure and one should be able to

simplify the expression (3.9). We obtain the following form

χ(x1, x2) − χ(x2, x1) = ψ(q1 − q2) +
Li2(x2) − Li2(−x2) − Li2(x1) + Li2(−x1)

2π
, (3.21)
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with the auxiliary function ψ(q)

ψ(q) =
1

2π
Li2

(

1 − eiq
)

− 1

2π
Li2

(

1 − eiq+iπ
)

− i

2
log

(

1 − eiq+iπ
)

+
π

8
, (3.22)

and where qk is related to xk as follows

eiq =
x + 1

x − 1
. (3.23)

Note that all the terms besides ψ(q1 − q2) in (3.21) depend on either x1 or x2 only and

thus they cancel out in the dressing phase (3.4)

θ
(1)
12 = ψ(q+

1 − q+
2 ) − ψ(q+

1 − q−2 ) − ψ(q−1 − q+
2 ) + ψ(q−1 − q−2 ) . (3.24)

Here q± are related to x± as in (3.23).

A very tedious method to compare (3.21) to (3.9) is to apply dilogarithm identities

such as the Abel identity.5 However, it is much easier to confirm that (3.21) has the right

monodromies. Here the variable q comes into play. It shifts by +2π for a full clockwise

rotation around x = +1 w.r.t. x = −1. This matches nicely with the monodromies of the

dilogs in ψ(q), cf. (3.13), namely

Li2
(

1 − eiq+2πin
)

= Li2
(

1 − eiq
)

− 2πin log
(

1 − eiq
)

. (3.25)

In this new notation, the double crossing map reads

ψ(q + 2π) = ψ(q) − i log
1 − eiq

1 + eiq
= ψ(q) − i log

(

−i tan(1
2q)

)

, (3.26)

where

i tan(1
2q1 − 1

2q2) =
x1 − x2

1 − x1x2
. (3.27)

After multiplying the various terms for x±
1,2 in (3.4) this function becomes

x+
1 − x+

2

1 − x+
1 x+

2

1 − x+
1 x−

2

x+
1 − x−

2

1 − x−
1 x+

2

x−
1 − x+

2

x−
1 − x−

2

1 − x−
1 x−

2

=
1

(hodd
12 )2

, (3.28)

in agreement with the double crossing relation (2.13), (2.14).

Before we turn towards the odd crossing relation, let us investigate unitarity and parity

invariance of the above expression (3.21). Both translate to ψ(q) being an odd function in

q which is not manifest. To prove it, we have to use the dilog identity

Li2(1 − eiq) + Li2(1 − e−iq) = 1
2q2 (3.29)

to flip the sign of the exponents in the dilogs. Before we can do this in the second term

in (3.22) we have to shift via (3.25). The remainder of the proof reads as follows

ψ(q) + ψ(−q) = +
q2

4π
− (q + π)2

4π
− i

2
log

(

1 + eiq
)

+
i

2
log

(

1 + e−iq
)

+
π

4

= +
q2

4π
− (q + π)2

4π
+

q

2
+

π

4
= 0 . (3.30)

5We have used 16 Abel identities to show the equivalence, but for a better choice of identities there may

be a shorter path.
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Finally, we can attack the odd crossing relation. The discussion at the end of the

double crossing proof leads to the conclusion that the variable q as defined in (3.23) shifts

by +2π under double crossing. The sign for shifts of q has to be positive in all cases. This

is in contradistinction to the shift in the above rapidity variable z for which the path on

the universal cover of the torus has to be chosen carefully. Thus q appears to be a more

fundamental quantity than z. Under regular crossing eiq maps to −eiq and thus q has to

shift by +π to match with the above. Let us see how ψ(q) behaves under such a shift.

After cancelling an intermediate term and shifting according to (3.25) we find

ψ(q) + ψ(q + π) =
i

2
log

(

1 − eiq
)

− i

2
log

(

1 + eiq
)

+
π

4

= − i

2
log

(

i cot(1
2q)

)

+
π

4
. (3.31)

In analogy to (3.26) this proves the odd crossing relation.

As the odd part of the crossing relation is solved, we can focus on the even part for

the remainder of this paper.

3.5 Confirmation of even crossing

We will now provide evidence that our proposed coefficients (3.11) satisfy also the even

crossing symmetry. For the n-loop expressions, n even, we find the following contributions

to the crossing relation

θ
(0)
12 + θ

(0)
1̄2

= i log
x+

2

x−
2

+ g∆ log
∆2 + 1/g2

∆2
+ i log

∆ + i/g

∆ − i/g
,

θ
(n)
12 + θ

(n)

1̄2
= − inBn

n(n − 1) gn−1

(

2

∆n−1
− 1

(∆ + i/g)n−1
− 1

(∆ − i/g)n−1

)

, (3.32)

with ∆ = u1 − u2. These expressions are exact, therefore they apply in any of the strong-

coupling regimes, but we have made use of the defining identity of x± (2.4). Although we

do not have a general proof of the last expression in (3.32), we have confirmed it up to

n = 12. The even crossing phase to compare to reads

−i log heven
12 = i log

x+
2

x−
2

+
i

2
log

∆ + i/g

∆ − i/g
. (3.33)

Our claim is that

−i log heven =

N
∑

n=0

(

θ
(2n)
12 + θ

(2n)
1̄2

)

+ O(1/g2N+3) , (3.34)

for any upper limit of the sum N . Assuming the validity of (3.32) it is easy to verify (3.34)

to very large values of N . However, the sum in (3.34) is in fact problematic if we set N = ∞
to confirm the exact crossing relation. In that case we cannot, a priori, interchange the

expansion in 1/g and the summation. This is related to the fact that (3.32), (3.34) is not a

pure power series. In fact, it is straightforward to show that the sum does not converge for

arbitrarily large values of g. The reason is that the Bernoulli numbers Bn grow like n! and
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thus faster than an for any number a. An alternative path for testing crossing symmetry

is to Borel sum the above series. Remarkably, this leads to precise agreement with (3.33).

We believe that this is convincing evidence for the validity of our proposed solution.

It is conceivable that the lack of convergence of (3.32) also implies that the original

series defining the phase (3.4), (3.5), (3.11) is problematic. In order to investigate the

phase, in particular its analytic structure, we would therefore benefit very much from a

more explicit representation of the sum. This will be the topic of the next section. In

appendix B we will present another representation of the series which is most useful for

weak coupling.

4. Crossing-symmetric function

In this section we will present an analytic expression for the resummed series which allows us

to study the structure of singularities in the phase. In particular, we find exact expressions

for the bound state poles of giant magnons recently derived in [24].

4.1 Claim

Our claim is that the proper analytic expression corresponding to the above series is

χeven(x1, x2) = lim
N→∞

[

g

2x1
log

gx2

N
− i

4

N
∑

n=1

log
1 − 1/x1x

(+2n)(x2)

1 − 1/x1x
(−2n)(x2)

]

(4.1)

+
g

2

(

− 1

x1
− 1

x2

)

+
g

2

(

−x1 − x2 +
1

x1
+

1

x2

)

log

(

1 − 1

x1x2

)

.

Here N is a cut-off parameter which should be taken to infinity. In that limit, the first

term correctly regularises the logarithmically divergent sum. The terms on the second line

are such that they give no contribution to the physical phase θeven via (3.4), but they are

necessary for reproducing correctly the expected behaviour of the function χ in the series

representation given in the previous section. Note also that the explicit appearance of the

cut-off N in the first term is of this sort. The divergence of the sum would thus cancel out

the full phase θeven even without introducing a regularisation. The analytic function χeven

is expressed in terms of the new quantities x(n), which are related to x as

x(n) +
1

x(n)
− x − 1

x
=

in

2g
. (4.2)

4.2 Gluing two infinite genus surfaces

Before we compare the function χeven to the series expression of the previous section, we

would like to investigate its analytic structure. First, consider the map C → C
∞

x 7→
(

. . . , x(−2), x(−1), x(0), x(+1), x(+2), . . .
)

. (4.3)

This map has branch points where x+1/x+ in/2g = ±2 for any integer n. When x moves

once around one of these branch points, the component x(n) is mapped to its inverse, which
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is the other solution of (4.2). All the other components will remain unchanged. The only

exception is the map x(0)(x) which we shall define as the identity map

x(0)(x) := x . (4.4)

This is possible because the branch points degenerate for n = 0. The analytic completion of

the map thus has infinitely many branch points with distinct monodromies and is defined

on a Riemann surface of infinite genus. The function χeven is essentially defined with x2

on this Riemann surface because for every even n we have made a choice between x(n) and

its inverse. The fact that we only require even n does not alter the picture qualitatively,

therefore let us stick to the more general surface.

Next we need to consider θeven
12 which consists of terms of the sort f(x+) − f(x−),

cf. (3.4). The problem is now that these functions are defined on two different Riemann

surfaces. In general, the combined function would be defined on the product of two infinite-

genus surfaces. Nevertheless, the two variables x+ and x− are related in a special way such

that all the branch points of f(x+) and f(x−) coincide. Therefore the monodromies of

the two functions are not unrelated. Namely, if we move x+ once around a branch point

that inverts x(n−1)(x+) then x− has to move around the corresponding branch point that

inverts x(n+1)(x−). Consequently, it is consistent to make a specific choice

x(n−1)(x+) =
(

x(n+1)(x−)
)s(n)

, (4.5)

where s(n) = ±1 determines whether the x(n)’s are inversely related or not.6 Moreover we

are forced to make this choice in order to define the function f(x+)−f(x−) properly because

variations of x± cannot flip the signs s(n). In conclusion, the combination f(x+) − f(x−)

requires us to fix the signs s(n) and is then defined on an infinite-genus surface. In contrast,

the function f(x) − f(y) with uncorrelated x, y is uniquely defined on the product of two

infinite-genus surfaces without sign ambiguities.

It is important to stress that we should consider not only the x±’s but also the signs

s(n), at least for n odd, as kinematic parameters of the particle. Particles with different

signs are not equivalent to each other, which manifests in a different scattering behaviour.

For simplicity of notation, using (4.5), we can systematically write x(n−1)(x+
k ) in terms of

x(n+1)(x−
k ). Consequently we shall define a single set of kinematic parameters x

(n)
k which

are related to x(n)(x±
k ) by

x(n)(x−
k ) = x

(n−1)
k , x(n)(x+

k ) = (x
(n+1)
k )s

(n+1)
k . (4.6)

with x
(−1)
k = x−

k , but not necessarily x
(+1)
k = x+

k .

We should consider the transformation of the new parameters under the discrete sym-

metries of the system, in particular parity and the antipode map, cf. (2.6), (2.7). The

antipode simply maps the x
(n)
k to their inverse

x
(n)
k 7→ 1/x

(n)
k . (4.7)

6Notice that (4.5) for n = 1 is not in conflict with (4.4). Since x+ and x− are related by (2.4), moving

x− around the branch cut of x(2)(x−) will also invert x+. This does not need to affect x(n)(x+) for n 6= 0,

because they depend of the combination x + 1/x.
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Parity maps x± 7→ −x∓ and it is consistent to define x(n)(−x) = −x(−n)(x). Hence parity

will act on the x
(n)
k and on the signs s(n) as

x
(n)
k 7→ −(x

(−n)
k )s

(n)
k , s(n) 7→ s(−n) , (4.8)

implying that particles with s(+n) 6= s(−n) do not map to themselves under parity.

After making the choice of signs s
(n)
1,2 for each particle we can compute the phase θeven

12

θeven
12 = − i

2
log

1 − 1/x−
1 x+

2

1 − 1/x+
1 x−

2

+
g

2

(

1

x+
1

− 1

x−
1

)

log
x+

2

x−
2

− g

2

(

1

x+
2

− 1

x−
2

)

log
x+

1

x−
1

− i

4

∞
∑

n=−∞
sign(2n − 1)

1 − s
(2n−1)
1

2
log

x−
2 − x

(2n−1)
1

x+
2 − x

(2n−1)
1

x+
2 − 1/x

(2n−1)
1

x−
2 − 1/x

(2n−1)
1

(4.9)

− i

4

∞
∑

n=−∞
sign(2n − 1)

1 − s
(2n−1)
2

2
log

x+
1 − x

(2n−1)
2

x−
1 − x

(2n−1)
2

x−
1 − 1/x

(2n−1)
2

x+
1 − 1/x

(2n−1)
2

,

This phase is consistent with unitarity if we notice that when exchanging the particles

we should interchange the momenta as well as the signs. It has also the right behaviour

under parity. Parity invariance implies that the overall scattering phase should change sign

under (4.8). The phase (4.9) indeed fulfils this property. We can now consider the crossing

relation. It is straightforward to verify the even crossing relation (2.13), (2.14). In fact all

the terms on the second and third line in (4.9) represent homogeneous solutions of crossing.

For generic values of the signs, the phase (4.9) gives rise to square root singularities

in the scattering matrix. We cannot offer an explanation for this puzzling behaviour,

however, there are two points to be remarked: On the one hand one might consider giving

up manifest parity invariance and use the expression (B.11) for χeven instead of (4.1) in

which case there would be no fractional singularities. On the other hand, one could adjust

the signs s(n) such that the square root singularities go away. This happens for scattering

of parity self-conjugate particles with equal sign assignations s
(n)
1 = s

(n)
2 , as well as for

particles with all signs equal, s
(n)
1 = s1, s

(n)
2 = s2. In these cases several terms appearing

in (4.9) can be seen to cancel among themselves using

(

x±
k − x

(n)
j

)(

1 − 1/x±
k x

(n)
j

)

= uk − uj −
i(n ∓ 1)

2g
, (4.10)

and we are left with a reduced expression whose singularities lead to poles and zeros only.

In particular a model whose particles have s
(n)
k = sk = ±1 would be free from fractional

singularities, which also leads to simple expressions for the dressing phase. We will argue

in the next section that the two choices sk = ±1 are related to MT excitations and HM

giant magnons respectively.

When all s(n) = +1 the total phase depends on x±
1 and x±

2 only

θelem
12 = − i

2
log

1 − 1/x−
1 x+

2

1 − 1/x+
1 x−

2

+
g

2

(

1

x+
1

− 1

x−
1

)

log
x+

2

x−
2

− g

2

(

1

x+
2

− 1

x−
2

)

log
x+

1

x−
1

, (4.11)

and is thus naturally defined on a torus. This choice produces a minimal set of poles and

zeros in the scattering matrix. We will therefore refer to the phase above as “elementary”.
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It differs from the solution of the crossing relation proposed in [23] by a term δθ12 =
1
2 (C1p2 − C2p1). This piece δθ12 repairs some of the manifestly unphysical behaviour of

the phase proposed in [23]. Since (C, p) 7→ −(C, p) under the antipode map, it is clear

that δθ12 is a homogeneous solution of the crossing relation. Remarkably, the phase (4.11)

has appeared previously in the context of light-cone gauge quantisation at leading order

in [35].7 As emphasised in this article, the rightmost term in (4.11) combines nicely with

the phase contribution −p1L from the Bethe equations. Together, the terms multiplying p1

form the light-cone momentum p+,2. Although the term manifestly removes periodicity of

the phase by shifts of momenta by 2π, its appearance is actually useful because the length

L is not a physical quantity, whereas the light-cone momentum is a charge under one of

the Cartan generators of psu(2, 2|4).
The choice s(n) = −1 leads to the following result

θgiant
12 = θelem

12 − i

2

∞
∑

n=−∞
sign(2n − 1) log

x+
1 − x

(2n−1)
2

x−
1 − x

(2n−1)
2

x−
2 − x

(2n−1)
1

x+
2 − x

(2n−1)
1

. (4.12)

It gives rise to an infinite array of additional poles and zeros in the scattering matrix. The

proper definition of (4.12) needs the full-fledged, infinite-genus surface introduced above.

We will connect it to the HM giant magnons and thus denote it by “giant”.

Before we make this more explicit by considering the strong coupling limit of the phase,

we would like to make a final comment regarding the choice of signs s(n) for the Bethe

equations: Although all assignments of s(n) may be meaningful to distinguish different

kinds of particles propagating on the infinite line, there should be one specific choice to be

used for the Bethe equations in [6]. This is analogous to the situation for bound states of

magnons which can exist as elementary objects on the infinite line, but not on the circle.

We consider it very likely that one of the above two choices (4.11), (4.12) is the correct one.

On the one hand, the “elementary” choice has minimal genus and would therefore lead to a

relatively simple analytic structure of the Bethe equations. On the other hand, the “giant”

choice naturally incorporates the giant magnon solitons and might be favourable from a

physics standpoint. However, as already contemplated in [24], the giant magnon may turn

out to be a composite object; below we will find some further indications strengthening

this point of view. In that case, the elementary choice s(n) = +1 would most likely be the

correct one for the Bethe equations.

4.3 Strong coupling

In this section we will compare the analytic expression (4.1) for χeven to the perturbation

series (3.5). The latter is defined at strong coupling where the definition of the former

simplifies drastically.

At strong coupling the above infinite-genus surface degenerates into many disjoint

regions. This is related to the fact that either x(n) = x + O(1/g) or x(n) = 1/x + O(1/g).

Thus the function χeven(x1, x2) does not have infinitely many branch cuts anymore. In

other words, the branch points of the maps x 7→ x(n)(x) have all moved to 1 + O(1/
√

g)

7We thank M. Staudacher as well as S. Frolov, M. Zamaklar for pointing this out to us.
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where they cannot be used to change sheets individually.8 Therefore for every n 6= 0 we

can definitely choose between x(n) ≈ x or x(n) ≈ 1/x.

Although the analytic function (4.1) intrinsically leads to the previous infinite set

of strong coupling choices, only one of them directly connects with the perturbative se-

ries (3.5), (3.11) for χeven. This is the simplest case x(n) ≈ x. A restriction like this might

seem unnatural, however recall that the perturbative sum does not converge literally. The

interpretation we are advocating for in this section is that once we associate an analytic

expression to the problematic sum, we unavoidably get an enlarged phase space.

The agreement between the case x(n) ≈ x and the series (3.5), (3.11) can be checked

using the Euler-MacLaurin summation formula

∞
∑

n=1

f(n/g) = g

∫ ∞

0
dz f(z) −

∞
∑

k=1

B2k

(2k)! g2k−1
f (2k−1)(0) , (4.13)

where f (k) denotes the k-th derivative of f(z) and we have assumed that the function

vanishes at zero and infinity and in addition all its derivatives vanish at infinity. In our

case f(z) is defined via9

f(n/g) = − i

4
log

1 − 1/x1x
(+2n)(x2)

1 − 1/x1x
(−2n)(x2)

. (4.14)

The integral by itself is divergent. The divergence is however cured by the counterterm

in (4.1) and we should compute the following finite combination

lim
N→∞

[

g

2x1
log

x2

N/g
+ g

∫ N/g

0
dz f(z)

]

=
g

2

(

1

x1
− 1

x2

)

+
g

2

(

−x1 + x2 −
1

x1
+

1

x2

)

log

(

1 − 1

x1x2

)

. (4.15)

Together with the terms on the second line in (4.1) we reproduce exactly χ(0) of the

AFS phase in (3.8). Finally each term in the sum over derivatives produces precisely

χ(2k), cf. (3.12), which we have confirmed up to χ(12). Note that the presence of the

Bernoulli numbers in the Euler-MacLaurin formula nicely fits their appearance in our

proposed coefficients.

MT regime. As we have chosen x(n) ≈ x, which applies to x = x+ as well as x = x−,

all the s(n) in (4.5) will coincide being equal to either +1 or −1. The MT excitations are

characterised by x+ ≈ x−, see (A.1), and therefore we require all s(n) = +1. The scattering

phase then reduces to the simple analytic expression (4.11). This phase agrees with all the

available data for spinning strings and near plane wave states, i.e. so far only the leading

order in θelem [36, 35, 37, 38] together with the odd contribution θ(1) [21, 34].

8In fact there is a tail of branch points for n ∼ g which extends throughout the complex plane. This

allows to invert contributions on a global scale for very large n, but not for finite n.
9Note that g does not appear explicitly in the function, cf. (4.2).
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HM giant magnons. The giant magnons have x+ ≈ 1/x−, see (A.3), implying that

this case should be represented by s(n) = −1. The cancellations that took place for MT

excitations do not occur now and we are left with an infinite array of poles and zeros in

the scattering matrix, as can be seen in (4.12).

Based on the connection to the sine-Gordon model [39 – 41] it was shown in [24] that the

semiclassical behaviour of the giant magnons was described by the AFS dressing phase [5].

The latter reads in this limit10

θ
(0)
12 = 2g

(

cos(1
2p1) − cos(1

2p2)
)

log
sin2

(

1
4(p1 − p2)

)

sin2
(

1
4(p1 + p2)

) + O(1/g0) . (4.16)

The leading phase (4.16) has branch cuts starting from p1 = ±p2. It is natural to interpret

these branch cuts as condensates of poles and zeros.11 Notice that the square in the

argument of the log implies that it has two branch cuts originating from p1 = p2, and

correspondingly from p1 = −p2. One of them is associated with poles and the other with

zeros depending on the sign of the prefactor of the log.

The poles of the scattering matrix have the interpretation of bound states. The bound

states corresponding to the phase (4.16) were derived in [24]. Recalling that u = 2cos(1
2p),

they appear at

u1 − u2 =
in

2g
+ O(1/g2) . (4.17)

Indeed, the semiclassical counting of these states agrees with the discontinuity of the cut

in (4.16). Namely, the prefactor of the log increases by i/2 between the positions of two

adjacent bound states. We have shown above that the leading piece of χeven, the integral

term in the Euler-MacLaurin formula, leads to the AFS phase. Therefore the array of poles

and zeros in (4.12) precisely reconstructs the branch cuts in (4.16): The exact scattering

phase leads to double poles at

u1 − u2 =
in

g
. (4.18)

This is not in contradiction with the results of [24]. Relation (4.17) was derived using

semiclassical quantisation, and can only be trusted for the overall counting of states, but

not for their precise positions. The result (4.17) should be understood as an average density

of approximately 2g poles per imaginary unit of u. We find double poles with a density of

exactly g which means that (4.17) and (4.18) are fully compatible.

In [24] it was raised the question about the fate of the bound states as the coupling

decreases. From (4.9) we observe that there is nothing that prevents them from being

present all the way to small coupling. Moreover, as the signs s(n) are stable, they must

appear in the scattering of particles at weak coupling. This does not necessarily represent

a problem for a smooth interpolation to gauge theory though: Firstly, the infinite genus of

the function leads to various inequivalent weak-coupling limits (this problem is discussed

in the next paragraph, although for strong coupling instead of weak coupling). Most of

the poles could be invisible, their influence being however still present in the perturbative

10The sign conventions for the phase in [24] seem to be reversed from ours.
11We thank N. Dorey and J. Maldacena for discussions and explanations.
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series. Secondly, it is not clear which configuration of signs s(k) connects to gauge theory

magnons in the first place: the “elementary” choice, the “giant” choice or an altogether

different choice. Finally, we do not understand the analytic structure of homogeneous

solution, see section 5. Including the right homogeneous solution could, in principle, cure

the disagreement between the asymptotic phases for both models.

Note that the phase θgiant
12 in (4.12) is defined on an infinite-genus surface. This has

the interesting implication that there exist infinitely many inequivalent strong-coupling

limits for it, although only the one considered above is directly associated with the se-

ries (3.5), (3.11). These limits can be deformed into each other by going to finite coupling,

changing the sheet, and going back to infinite coupling. We could for instance take the HM

limit x+ ≈ 1/x− while making sure that x(4n+1) ≈ 1/x(4n+3) ≈ x(−4n−1) ≈ 1/x(−4n−3) ≈
x− for n ≥ 0. By this staggering, adjacent poles and zeros will cancel each other in the

strong coupling limit and only a few singularities near n = 0 will remain. The latter will

however not contribute at order O(g) and the strong coupling limit becomes simply

θgiant
12 = g

(

p2 sin(1
2p1) − p1 sin(1

2p2)
)

+ O(1/g0) = θelem
12 + O(1/g0) . (4.19)

This particular phase actually has the same leading O(g) contribution as the (unique) HM

limit of the elementary phase in (4.11) with all s(n) = +1. Notice that, correspondingly,

the HM limit for a particle with s(n) = +1 is not compatible with the choice x(n) ≈ x(n+1).

Hence the elementary phase is not either directly representable by the series (3.5), (3.11)

in this kinematical regime. Although in the HM regime θelem and the limit of θgiant just

considered coincide at leading order, the agreement between the two expressions will clearly

break down at higher orders in 1/g and lead to the much richer structure of θgiant.

4.4 Bound state scattering

To understand better the additional terms in the general dressing phase (4.9) it will be

instructive to consider scattering of bound states [42]. This will reveal that particles with

s(n) 6= +1 for any n may potentially correspond to some non-minimal bound states.

A bound state can be thought of as composed from m elementary particles. The

particles are parametrised by x±
1(k), k = 1, . . . m, with [42, 31, 32]

x+
1(k) = x

(−m+2k)
1 , x−

1(k) = x
(−m+2k−2)
1 , (4.20)

where the x
(k)
1 are parameters obeying (4.2). In particular, we shall denote the extremal

parameters which define the multiplet under the residual symmetry algebra by

x−m
1 = x−

1(1), x+m
1 = x+

1(m) . (4.21)

The total dressing phase for the scattering of two such bound states is given by

θ12 =
m

∑

k=1

n
∑

l=1

θ1(k)2(l) . (4.22)
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When expressing the phase in terms of χ using (3.4) one finds that both sums telescope

to [31, 32]

θ12 = +χ(x+m
1 , x+n

2 ) − χ(x+m
1 , x−n

2 ) − χ(x−m
1 , x+n

2 ) + χ(x−m
1 , x−n

2 )

− χ(x+n
2 , x+m

1 ) + χ(x−n
2 , x+m

1 ) + χ(x+n
2 , x−m

1 ) − χ(x−n
2 , x−m

1 ) . (4.23)

When we now substitute the explicit expression (4.1) leading to the (even part of the)

phase, we find in analogy to (4.11)

θeven
12 = − i

2
log

1 − 1/x−m
1 x+n

2

1 − 1/x+m
1 x−n

2

− i

2

m−1
∑

k=1

log
1 − 1/x

(+m−2k)
1 x+n

2

1 − 1/x
(+m−2k)
1 x−n

2

− i

2

n−1
∑

l=1

log
1 − 1/x−m

1 x
(+n−2l)
2

1 − 1/x+m
1 x

(+n−2l)
2

+
g

2

(

1

x+m
1

− 1

x−m
1

)

log
x+n

2

x−n
2

− g

2

(

1

x+n
2

− 1

x−n
2

)

log
x+m

1

x−m
1

. (4.24)

Here we have assumed x(k−m)(x+m
1 ) = x(k+m)(x−m

1 ) = x
(k)
1 and likewise for x2. This is

equivalent to setting all signs defined by the analogous to (4.5) in this more general case

to +1. This answer is indeed consistent with substituting θelem from (4.11) in (4.22).

Superficially (4.23) suggests that all the intermediate x
(k)
1,2 do not matter for scattering

of bound states. This is however not true as can be seen from (4.24). In particular, the

expression does make a distinction between x
(k)
1,2 and 1/x

(k)
1,2 . The infinite genus of the

function χeven allows for the x
(k)
1,2 to be reintroduced; this feature has some interesting

consequences:

Let us for instance briefly compare to the results in [31, 32] for the total scattering

factor for bound states. When we supplement the above dressing phase θeven
12 with the

expression in [31, 32] based on the BDS phase [26], we find

SBDS+even
12 =

x+m
1 − x−n

2

x−m
1 − x+n

2

m−1
∏

k=1

x
(+m−2k)
1 − x−n

2

x
(+m−2k)
1 − x+n

2

n−1
∏

l=1

x+m
1 − x

(+n−2l)
2

x−m
1 − x

(+n−2l)
2

(4.25)

× exp

[

ig

(

1

x+m
1

− 1

x−m
1

)

log
x+n

2

x
(−n)
2

− ig

(

1

x+n
2

− 1

x−n
2

)

log
x+m

1

x−m
1

]

.

One can observe that the double poles found in [31, 32] may now split up into two separate

poles depending on the intermediate x
(k)
1,2 . For example, the equality of x−m

1 = x
(+n−2l)
2

does not necessarily imply x
(−m+2l)
1 = x+n

2 and the corresponding poles in the third and

second terms might not overlap.

It is also curious to see that the terms involving intermediate parameters of one bound

state, e.g. x
(k)
1 , depend on the other bound state only via the extremal parameters, e.g. x±n

2 .

This is in fact the same pattern as for the additional terms in (4.9), so let us write the
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analogous terms for this case explicitly

δθeven
12 = − i

4

∞
∑

k=−∞
sign(2k − 1)

1 − s
(+m−2k)
1

2
log

x
(+m−2k)
1 − x+n

2

x
(+m−2k)
1 − x−n

2

1/x
(+m−2k)
1 − x−n

2

1/x
(+m−2k)
1 − x+n

2

− i

4

∞
∑

l=−∞
sign(2l − 1)

1 − s
(+n−2l)
2

2
log

x−m
1 − x

(+n−2l)
2

x+m
1 − x

(+n−2l)
2

x+m
1 − 1/x

(+n−2l)
2

x−m
1 − 1/x

(+n−2l)
2

, (4.26)

Interestingly, we can remove the explicit reference to all the intermediate x
(+m−2k)
1 by

setting s
(+m−2k)
1 = −1 for all 0 < k < m. In that case, the terms on the first line in (4.25)

combine with the ones in (4.26) to give

SBDS+even
12 =

x+m
1 − x−n

2

x−m
1 − x+n

2

m−1
∏

k=1

√

x−n
2

x+n
2

u1 − u2 + i(m − 2k + n)/2g

u1 − u2 + i(m − 2k − n)/2g

×
n−1
∏

l=1

√

x+m
1

x−m
1

u1 − u2 + i(−n + 2l + m)/2g

u1 − u2 + i(−n + 2l − m)/2g
× . . . . (4.27)

Here we have expressed all the intermediate parameters x
(k)
1 through u1 and thus through

the extremal parameters x±m
1 via u1 = x−m

1 + 1/x−m
1 + im/2g only. The choice of inter-

mediate signs s
(+m−2k)
1 = −1 for 0 < k < m in bound states therefore lowers the genus

of the scattering phase. If we also set s
(+m−2k)
1 = +1 otherwise, we obtain a scattering

phase with minimal genus one, i.e. it is defined on a complex torus just as the elementary

phase. Furthermore, most of the square roots in the above expression appear twice, such

that there will almost be no fractional poles. Therefore this appears to be a natural choice

for particles transforming in bigger representations of the residual symmetry such as the

bound states.

What if we set the exterior sign s
(+m−2k)
1 for k < 0 or k > m to −1? It activates

explicit dependence of the phase on x
(+m−2k)
1 suggesting that the bound state becomes

non-minimal. This view is reinforced by the fact that there are additional singularities at

x
(+m−2k)
1 in the scattering phase which indicate the presence of some new substructure in

the bound state. However, the new parameter lies outside the range of the constituent

parameters in (4.20) so it is not expected to appear in the minimal case. A possible

conclusion would be that the scattering phase belongs to a novel kind of extended bound

state.

In any case, it seems that non-trivial signs s(k) = −1 play a role especially for bound

states. Along these lines, one might consider the choice s(k) = −1 for all k to correspond

to some bound state. As the giant magnons phase requires precisely this choice, one may

draw the conclusion that the giant magnons represent some extended type of bound state.

This agrees with the fact that its scattering phase has many more singularities than one

might expect for fundamental particles. We however feel that more rigorous investigations

are required to probe the nature of the signs, giant magnons and the proposed extended

bound states.

We would also like to mention that the terms in (4.26) resemble the monodromies

of the one-loop phase θ(1) in (3.17) which may appear as ambiguities in the definition of
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phase for bound states. For the choice x±
1 → x

(+m−2k)
1 and x±

2 → x±n
2 we find the same

contributions but with a prefactor which is four times as large. Clearly, more work is

needed to fully understand the analytic structure of the dressing phase, especially in the

case of bound states.

5. Homogeneous solutions

In the previous sections we have discussed a particular solution to the crossing rela-

tion (2.13). However, the weak-coupling limit of this solution apparently does not agree

with planar N = 4 Yang-Mills. Indeed, the series (3.5), (3.11) can be continued to weak

coupling without encountering negative powers of g. Each χ(n), with n > 1, leads to a

weak coupling contribution of order g2 (see appendix B), while the gauge theory phase

vanishes at least at order g4 [26]. In addition, χ(1) (3.9) gives rise to a non-analytical

weak-coupling contribution at order g3. The fact that the phase we have proposed does

not connect with gauge theory strongly points towards the need for additional pieces with

a different weak-coupling behaviour. If crossing symmetry holds, they must correspond

to homogeneous solutions (2.13). The study of these solutions will be the subject of this

section.

5.1 General perturbative solution

The form of the strong-coupling coefficients (3.11) suggest that the c
(n)
r,s may be written as

polynomials in r and s with the degree determined by the loop order n. It is not difficult

to find a general expression for chom
r,s of this form

chom
r,s =

∞
∑

m=0

∞
∑

n=m+1

bm,n

(

1−(−1)r+s
)(

(r−1)2n+1(s−1)2m+1−(r−1)2m+1(s−1)2n+1
)

, (5.1)

where bm,n are some arbitrary real coefficients which may depend on the coupling constant

g. These contributions sum up to

χhom(x1, x2) =
∞

∑

m=0

∞
∑

n=m+1

bm,n

(

Li−2m(x1) Li−2n(x2) − Li−2m(−x1) Li−2n(−x2)
)

+ . . . ,

(5.2)

where the dots represent terms which are symmetric under the interchange of x1 and x2

and which consequently drop out in the full phase θ12, cf. (3.4). Using the identity

Li−n(1/x) + (−1)n Li−n(x) = −δn,0 for n ≥ 0 (5.3)

it is straightforward to show that θhom
12 + θhom

1̄2
= 0.

Let us now consider the analytic structure of θhom. Note that Li−n(x) is a polynomial

in 1/(x − 1) of degree n. Therefore the homogeneous solution corresponding to a single

coefficient bm,n has multiple poles at x1,2 = ±1. Thus each non-zero coefficient bm,n gives

rise to essential singularities in the phase factor σhom
12 . The only way to get rid of them is by

taking either no homogeneous terms, or infinitely many. Taking infinitely many terms may
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lift essential singularities, but usually at the price of branch cuts. However the appearance

of branch cuts has the potential to destroy the homogeneous nature of the solutions. It is

thus rather difficult to figure out suitable non-trivial solutions.

The most trivial solution, with θhom = 0, contains a relatively small number of singu-

larities, and could seem thus a reasonable solution within string theory. However, since it

does not connect with gauge theory at weak coupling it needs to include additional pieces

with a different weak-coupling behaviour if the AdS/CFT correspondence is correct. In

the following section we will comment on a natural non-trivial homogeneous solution which

could have a chance of being part of the correct physical answer.

5.2 Special solution

A special perturbative solution of crossing is given by the odd-n contributions of (3.11)

with n ≥ 3

θhom =

∞
∑

n=1

θ(2n+1). (5.4)

Superficially it may seem that all these are zero due to the coefficient Bn = 0 for odd

n ≥ 3. However, the term cos(1
2πn) in the denominator also vanishes for odd n ≥ 3 and

therefore we need to regularise c
(n)
r,s . A natural extension of the Bernoulli numbers is to use

the identity

Bn = −2Γ(n + 1) cos(1
2πn)

(−2π)n
ζ(n) (5.5)

to replace them by the Riemann zeta function. Then the coefficients c
(n)
r,s can be seen to be

anti-symmetric under the interchange of r and s. Furthermore, they are odd polynomials

in r − 1 as well as in s − 1. Therefore the properties of c
(n)
r,s agree with all the properties

of the general homogeneous solution (5.1) and consequently the above θhom represents a

special homogeneous solution.

As this homogeneous solution is a natural extension of the inhomogeneous one, it could

point towards the correct physical answer. The first contribution of this type appears at

three world sheet loops and reads

χ(3)(x1, x2) = −x2 + x1x
2
2 + 6x3

2 − 6x1x
4
2 + x5

2 − 3x1x
6
2

32g2(x1x2 − 1)2(x2
2 − 1)3

ζ(3)

π3
. (5.6)

The higher-loop contributions have a similar form, however, we do not know the analytic

structure of the sum χhom. Let us only mention that, in contrast to the even-n contri-

butions, the expansion of chom
r,s (g) does not stop at gs−r as in the case of ceven

r,s (g). Thus,

adding this piece will substantially alter the weak-coupling behaviour.

5.3 Rational solutions

In the preceding sections we have already seen a couple of explicit solutions to the homo-

geneous crossing equation. Let us collect and investigate them briefly here. None of these

solutions will actually be of the perturbative form proposed in section 3.1.
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One of the homogeneous solutions is proportional to

C1p2 − C2p1 = g

(

1

x+
1

− 1

x−
1

− i

2g

)

log
x+

2

x−
2

− g

(

1

x+
2

− 1

x−
2

− i

2g

)

log
x+

1

x−
1

. (5.7)

In principle, this term could also be written using x
(±m)
12 instead of x±

12. Nevertheless

the function alters the strong-coupling limit substantially unless suppressed by sufficiently

many powers of 1/g or if it appears in a suitable linear combination. On its own, we can

exclude it.

It is also clear that the monodromies of the one-loop contribution (3.17) are homoge-

neous solutions as well. By themselves they violate unitarity,12 but they can be symmetrised

w.r.t. unitarity and one obtains the function hodd governing the odd part of the crossing

relation, cf. (2.14). A slight generalisation gives the following homogeneous solution

− i

2
log

x
(+m)
1 − x

(+n)
2

x
(+m)
1 − x

(−n)
2

x
(−m)
1 − x

(−n)
2

x
(−m)
1 − x

(+n)
2

1 − 1/x
(+m)
1 x

(−n)
2

1 − 1/x
(+m)
1 x

(+n)
2

1 − 1/x
(−m)
1 x

(+n)
2

1 − 1/x
(−m)
1 x

(−n)
2

, (5.8)

Note that this expression is somewhat reminiscent of the CDD poles [43] for ordinary

S-matrices; here the position of the poles is determined by the two integer parameters

m,n. The transformation of this solution under parity symmetry depends on how the x(k)

transform, i.e. to −x(−k) or to −1/x(−k). To preserve parity, one of the two x(k) needs to

transform to −x(−k) and the other one to −1/x(−k). In the analytic expression for the even

part of the phase (4.9) this was the case: The variable x± transforms without inverse while

x(2n−1) transforms with inverse if s(2n−1) = −1. If the sign was s(2n−1) = +1 instead, the

variable x(2n−1) would transform without inverse, but also the homogeneous term would

be absent due to the prefactor. Similarly, the above term (5.8) should be activated only if

it does not violate parity, i.e. if s
(±m)
1 = −s

(±n)
2 .

6. Conclusions and outlook

In this paper we have constructed a dressing phase factor for the world sheet scattering

matrix of type IIB string theory on AdS5 × S5. The general expression that we propose

solves the condition imposed by crossing symmetry on the dressing factor [18], and admits

an expansion in the strong coupling regime. The main result of the paper is a proposal for

the coefficients governing this series. The coefficients provide an explicit all-loop expansion

of the dressing phase factor, and contain the leading order term [5] as well as the first

quantum correction [33, 21, 34]. A direct two-loop test of this proposal would be highly

desirable and it might even be feasible.

The structure of the perturbative series is not straight-forward because it does not

converge properly. In order to support the proposed expansion, we have shown how the

coefficients satisfy the different pieces in the crossing relation. In particular, in order to

12Note that the one-loop solution does not violate unitarity due to its branch cuts. More explicitly, the

variables q±, cf. (3.23), will be exchanged. The function ψ(q) in (3.22) then produces extra instances of the

monodromy terms and unitarity is recovered.
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satisfy the odd piece of the crossing relation it suffices to consider the one-loop contribution

to the phase. This was already suggested in [23] and the present work contains a proof of

the statement. Moreover, we specify clearly how the antipode map must act in order to

obey the correct crossing relation. The even piece of the crossing relation is satisfied when

including the even terms in the loop expansion of the phase.

In addition, we have found an analytic expression for the resummed series. The strong-

coupling limit of the perturbative series agrees with this analytic expression. Furthermore,

the analytic form for the resummed series allows an analysis of the spectrum of bound

states of giant magnons. Bound states arise as poles of the scattering matrix, and have

been found for giant magnons in [24]. We have identified these bound states of giant

magnons using the analytic form of the dressing phase. What complicates the discussion is

that our analytic expression for the phase involves an arbitrary or even an infinite number

of branch points. Specially the kinematical space for giant magnons becomes an infinite-

genus surface. In contrast, there is also a minimal particle for which the phase merely

requires a genus-one surface. In order to probe the structure of the dressing phase, we have

furthermore considered scattering of bound states. This seems to point out toward the

possibility that the giant magnon states of [24] are not elementary, but rather composites

of some minimal particles. A better understanding of this issue as well as the analytic

structure of the phase in general clearly deserves further study.

We have also presented an abridged study of homogeneous solutions to the crossing

relation. We know only few physical constraints on the homogeneous piece of the crossing

condition, and thus most of the homogeneous solutions can be introduced arbitrarily. A

careful look at them is worthwhile because they might be at the root of a discrepancy

between our proposed phase and gauge theory: The weak coupling limit of the analytic

phase disagrees with gauge theory, as opposed to the agreement in the strong-coupling

regime with string theory. In particular, our perturbative phase includes homogeneous

pieces which we were not able to sum up to an analytic expression. These homogeneous

solutions most likely change the weak-coupling behaviour, and open the possibility for a

cure of the disagreement in the gauge theory limit. Homogeneous solutions could also clarify

the nature, or even the existence, of the fractional singularities in the scattering matrix

for the general parity-invariant dressing phase that we have constructed. Further research

on homogeneous solutions to the crossing condition could clarify the existence of a smooth

interpolating function from the string to the gauge theory scattering matrices. A three-

loop string theory calculation would verify or disprove the first homogeneous piece in our

perturbative phase, but unfortunately this is most likely beyond the current computational

abilities.

Finally let us note that in the present work we have not considered particles whose

energy and momentum scale as λ±1/4 (GKP regime). An investigation of this kinematical

regime at strong coupling may be particularly interesting because it contains some of the

special points in the phase. Furthermore, it seems that the structure of the perturbation

series should be changed which possibly enables different tests of our proposal. Another

interesting class of states are the ‘antiferromagnetic’ states [44 – 49] whose study in the

current framework might lead to further insight.
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A. Strong and weak coupling

In this appendix we collect useful expressions to parametrise the kinematics of particles in

the strong and weak-coupling limits.

A.1 Strong coupling

Let us start with strong coupling, g → ∞. In this case there are four interesting and

distinct regions for the kinematic space. This can most easily be seen by considering

relation (2.4). For large values of g we can solve constraint (2.4) by setting either x+ ≈ x−

or x+ ≈ 1/x− or x+ ≈ x− ≈ ±1. These regions remind curiously of the different types of

particles considered in [50].13

Note that we will use a relativistic rapidity variable ϑ (different in all four cases) to

parametrise the momenta of particles. The energy and momentum must be periodic in

shifts of ϑ by 2πi and real for real values of ϑ. Furthermore, increasing ϑ should increase

the momentum.

Metsaev-Tseytlin regime. The first class of solutions to (2.4) is

x± = coth(1
2ϑ)

(

1 ± i

4g
sinhϑ

)

+ O(1/g2) , (A.1)

The resulting momentum, energy and u-parameter are given by

p =
sinhϑ

2g
+ O(1/g2) , C = 1

2 cosh ϑ + O(1/g) , u = 2coth ϑ + O(1/g2) . (A.2)

Most importantly, the momentum p = O(1/g) is very small. This combination corre-

sponds to particles which behave like elementary excitations [1] in the plane-wave limit,

see [25]. They also serve as the quantum constituents for the Frolov-Tseytlin spinning

string solutions [28, 29], see [53, 54].

13In general, it would be interesting to recover our proposal from a covariant framework as in [50, 45,

51, 52] which has proved to work at least to the leading order.
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Hofman-Maldacena regime. The second solution is

x± = − tanh ϑ ± i

cosh ϑ
+ O(1/g) = e±ip/2 + O(1/g) (A.3)

The resulting momentum, energy and u-parameter are given by

p = π + 2arctan sinhϑ + O(1/g) , C =
2g

cosh ϑ
+ O(1/g0) , u = −2 tanh ϑ + O(1/g) .

(A.4)

In this case the momentum is finite, p = O(1/g0), and its range is given by 0 < p < 2π.

This is the limit investigated by Hofman and Maldacena [24] with “giant” magnons as

excitations. It is also the region of the spinning string solutions first found in [55].

Gubser-Klebanov-Polyakov regime. The last two solutions involve square roots of g,

x± = s +
se−sϑ ± iesϑ

2
√

g
+ O(1/g) , (A.5)

where s = ±1 distinguishes the two solutions. In this case we find

p = s
esϑ

√
g

+O(1/g3/2) , C =
√

g esϑ +O(1/g1/2) , u = 2s− sinh(2ϑ)

2g
+O(1/g2) . (A.6)

Now the momentum is small, p = O(1/g1/2), but not as small as in the above case. This

region comprises the states whose energy scales as
√

g ∼ 4
√

λ studied by Gubser, Klebanov

and Polyakov [27]. As found in [5], the particles split up in right movers with s = +1 and

left movers with s = −1.

A.2 Weak coupling

For weak coupling g → 0, we find two distinct regions where the particle momenta are real.

We shall use the momentum p as the fundamental parameter.

Magnons. The standard magnons correspond to the solution

x± =
e±ip/2

2g sin(1
2p)

+ O(g) (A.7)

The resulting energy and u-parameter are given by

C = 1
2 + 4g2 sin2(1

2p) + O(g4) , u =
cot(1

2p)

2g
+ O(g) . (A.8)

Holes. The other relevant solution comprises magnon-holes with

x± = −2g sin(1
2p)

e∓ip/2
+ O(g3) (A.9)

Their energy and u-parameter read

C = −1
2 − 4g2 sin2(1

2p) + O(g4) , u = −cot(1
2p)

2g
+ O(g) . (A.10)
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B. Weak-coupling expansion

At weak coupling and for standard magnons, the x± variables scale as x± ∼ 1/g. The

combination c
(n)
r,s qr(x

±
1 )qs(x

±
2 ) consequently scales as gr+s−n−1. The lowest-order terms in

χeven therefore appear for n as large as possible, i.e. for n = s − r + 1. This means that

for fixed r, s the lowest order is g2r−2 and globally it is O(g2) with terms of r = 2 and

arbitrary odd s contributing

χweak−LO(x1, x2) = −
∞
∑

s=3

c
(s+1)
2,s

(s − 1)x1x
s−1
2

=

∞
∑

n=2

inBn

2ngn−1x1xn
2

. (B.1)

This series is not well-defined due to the asymptotics of the Bernoulli numbers Bn ∼ n!

A standard procedure in field theory is to Borel sum the series. This can be done in the

present case. Let us first define a function

H(x) = log(igx) −
∞
∑

n=2

inBn

n gnxn
(B.2)

such that

χweak−LO(x1, x2) =
g

2x1
log(igx2) −

g

2x1
H(x2) . (B.3)

First of all we perform an inverse Laplace transformation assuming that igx has a positive

real part. Then the sum can be performed due to improved convergence

H(x) = log(igx) −
∫ ∞

0
dt exp(−igxt)

∞
∑

n=2

Bn

n!
tn−1

= log(igx) −
∫ ∞

0
dt exp(−igxt)

(

1

2
coth(t/2) − 1

t

)

. (B.4)

Finally, we perform the Laplace transformation integral to recover an analytic function

H(x) = Ψ(igx) +
1

2igx
(B.5)

involving the digamma function Ψ(z) = ∂z log Γ(z). The expansion of this function for large

and positive igx in fact agrees with the series (B.2). For large negative igx the function

oscillates strongly which explains the divergence of the series.

We can now convert χweak−LO to the dressing phase using (3.4). It is curious to see that

the digamma function appears in the combination Ψ(igx+) − Ψ(igx−) and that at weak

coupling igx− − igx+ ≈ 1. Together, the two facts lead to a large cancellation between the

digamma functions and one is left with the simple term i/gx+. In any case, the resulting

phase is non-zero at O(g2). It is therefore clear that this result does not agree with planar

gauge theory for which the phase is zero at least at O(g4) [26, 11, 56].

Nevertheless, it may be important to find the higher-order corrections at weak coupling.

It turns out that these can also be written in terms of the function H(x) and its derivatives.

We find that the correct expansion of χeven is encoded in the function

T (x1, x2, t) =
∞
∑

r=2

∞
∑

m=0

m
∑

k=0

g (−1)r−1tr+2m−k−2

2(m − k)! k! (r + m − k − 1)!xr−1
1 xk

2

(B.6)
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which acts on H(x2) as follows

χeven(x1, x2) =
g

2x1
log(igx2) + :T (x1, x2, ∂/∂x2): H(x2) (B.7)

+
g

2

(

− 1

x1
− 1

x2

)

+
g

2

(

−x1 − x2 +
1

x1
+

1

x2

)

log

(

1 − 1

x1x2

)

.

The bracket : . . . : implies normal ordering between the variable x2 and its derivative

operator ∂/∂x2. The equivalence between (B.7), (B.6), (B.5) and (3.5), (3.11) can be

checked straightforwardly using the identity

m
∑

k=0

(−1)k−1(n + r + 2m − k − 3)!

(m − k)! k! (r + m − k − 1)!
=

Γ(m + n − 1) Γ(m + n + r − 2)

Γ(n − 1) Γ(m + 1) Γ(m + r)
(B.8)

and substituting m = (s − r + 1 − n)/2 in the final expression.14

Let us remark that the function T can be summed up using an integral of the Bessel

function I0

T (x1, x2, t) = − g

2x1
exp

(

t

x2
− t

x1

)
∫ 1

0
dq exp

(

t

x1
q

)

I0

(

2t
√

q
)

. (B.9)

The expansion of T for large x1, x2 and small t reads

T (x1, x2, t) = − g

2x1
+

gt(x2 − tx1x2 − 2x1)

4x2
1x2

+ . . . (B.10)

in agreement with the series (B.6).

It is now not difficult to compare also the weak coupling expansion of the analytic

expression (4.1) with the above procedure. We find perfect agreement with the expansion

of the function

χeven−left(x1, x2) = lim
N→∞

[

g

2x1
log

igx2

N
+

i

2

N
∑

n=1

log

(

1 − 1

x1x
(−2n)
2

)]

(B.11)

+
g

2

(

− 1

x1
− 1

x2

)

+
g

2

(

i

2g
− x1 − x2 +

1

x1
+

1

x2

)

log

(

1 − 1

x1x2

)

.

at the leading six orders. The expression (B.11) does not literally agree with (4.1), but

only after symmetrising as follows

χeven(x1, x2) = 1
2χeven−left(x1, x2) − 1

2χeven−left(−x1,−x2) . (B.12)

The reason for this additional step in comparing can be explained as follows: The exact

expression has an essential singularity at x2 = ∞ due to accumulation of singularities.

Therefore the power series around x2 = ∞ could possibly not converge. In performing the

above Borel summation and Laplace transform we specified that the real part of igx2 is

positive. Effectively, this regularised the resummed expression such that the singularities

14The terms with n = 0 are reproduced by the expression only up to terms which are symmetric under

the interchange of x1 and x2. These are cancelled by the terms on the second line in (B.7).
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approach x2 = ∞ with negative igx2. If we had chosen to use negative igx2 in the Laplace

transform, the resummed expression would have the singularities approaching x2 = ∞ with

positive igx2. In other words the resummed expression is ambiguous and in (4.1) we chose

to present the symmetrised expression which has manifest parity invariance. This matching

provides further evidence for the agreement between the proposed coefficients (3.11) and

the proposed analytic expression (4.1).
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