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Abstract- For Real-coded Genetic Algorithms,
there have been proposed many crossover opera-
tors. The blend crossover (BLX-α) proposed by
Eshelman and Schaffer shows good search ability
for separable fitness functions. However, because
of its component-wise operation, the BLX-α faces
difficulties in optimization of non-separable fit-
ness functions. The present paper proposes a
novel crossover operator that combines the BLX-
α with the Independent Component Analysis
(ICA). That is, by applying the ICA to the popu-
lation, the coordinate system of the search space
is transformed so as to increase separability of
the fitness function, and then the BLX-α is ap-
plied. Computer simulation shows good search
ability of the proposed method for non-separable
fitness functions.

1 Introduction

Real-Coded Genetic Algorithms (RCGAs) that uti-
lize floating point representation attract attention as
methods for global optimization in continuous search
spaces as well as the Evolution Strategies[14], and there
has been proposed many crossover operators for the
RCGA[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The RCGAs with
sophisticated crossover operators have shown excellent
optimization abilities[5, 6, 7, 8, 9, 10, 11]. Further, as
for the design guidelines of the crossover operators for
RCGAs, Kita et al. has proposed those of ‘preservation
of statistics’ and ‘diversity of offsprings’ based on theo-
retical analysis[13, 9].

Crossover operators for the RCGA and recombina-
tion operators for the ES[14] can be categorized into two:
Operators in the first category combine parental infor-
mation in a component-wise manner in generating off-
spring. Among these operators, the blend crossover[6, 7]
and the simulate binary crossover[5] shows good search
ability. However, because of their component-wise op-
eration, these crossover operators face difficulty in opti-
mization of non-separable functions[12, 7, 8].

In the second category, for mixture of the parental
information, linear combination is used. The unimodal

normal distribution crossover[8], its multi-parental
extension[9], and the simplex crossover[10] shows good
search ability. Because of their linear combination op-
eration, these operators cope with non-separability well.
On the other hand, they loses fundamental concept of
crossover that crossover operation combines the build-
ing blocks composing parents in generating offspring.

This paper proposes a novel approach to cope with
non-separability using the component-wise crossover.
That is, through statistical analysis of the population
by means of the principal component analysis (PCA)
and/or the independent component analysis (ICA)[16,
17, 18], the coordinate system of the search space is
transformed so as to eliminate the non-separability of
the fitness function. Then the component-wise crossover
operator is adopted.

2 Crossover Operators for RCGA

In this section, as representatives of the aforesaid two
categories of the crossover, two crossover operators show-
ing good search ability are introduced briefly.

2.1 Blend Crossover

In the BLX-α[6], offspring are generated as follows:

(1) Choose two parents x1,x2 randomly from the pop-
ulation.

(2) A value of each element xc
i of the offspring vector

xc is chosen randomly from the interval [X1
i , X2

i ]
following the uniform distribution, where

X1
i = min(x1

i , x
2
i ) − αdi

X2
i = max(x1

i , x
2
i ) + αdi (1)

di = |x1
i − x2

i |

and x1
i and x2

i are the i-th elements of x1 and x2,
respectively, and α a positive parameter.

For the value of α, Eshelman and Schaffer have used
0.5[6]. With our calculation, the value of α that pre-
serves the variance of the parental population is 0.366.
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Preliminary experiments shows that the latter value
achieves better performance.

Because of the component-wise nature of the BLX-α,
mutual dependency among the variables are not well con-
sidered. Hence, the BLX-α faces difficulty in optimiza-
tion of non-separable fitness functions[8]. Considering
this problem, Eshelman et al. have proposed a method
that restrict generation of offspring around the diagonal
region connecting the parents[7]. However, it introduces
more parameters to be adjusted, and therefore, tuning
of the parameters by trial-and-error gets difficult.

2.2 Unimodal Normal Distribution Crossover

Ono et al. have proposed the unimodal normal distribu-
tion crossover (UNDX)[8], and Kita et al. has extended
the original UNDX to utilize the information of multi-
ple parents[9]. It is called the UNDX-m. The UNDX-
1 corresponds to the original UNDX. The procedure of
generating offspring in the UNDX-m is as follows:

(1) Choose m+1 parents x1, · · ·, xm+1 randomly from
the population.

(2) Let the center of mass of these parents be p =
1

m+1

∑
i xi, and let the difference vectors between

xi and p be di = xi − p.

(3) Choose another parent xm+2 from the population
randomly.

(4) Let D be the length of elements of dm+2 = xm+2−
p orthogonal to d1, · · ·, dm.

(5) Let e1, · · ·, en−m be the orthonormal basis of the
subspace orthogonal to d1, · · ·, dm.

(6) Generate offspring xc as follows:

xc = p +
m∑

i=1

wid
i +

n−m∑
i=1

viDei (2)

where wi and vi are normal random numbers fol-
lowing N(0, σ2

ξ ) and N(0, σ2
η), respectively, and σ2

ξ

and σ2
η are parameters.

For the parameters of the UNDX-m, Kita et al. has
proposed

σξ = 1/
√

m, ση = 0.35/
√

n − m

which are obtained from the condition of preserving the
variance-covariance matrix of the parental population
and empirical values suggested for the UNDX[8]. As
for the value of the parameter m they shows that 4 ∼ 5
gives good results empirically.

Linear combination of the parents (the first and the
second terms of the RHS of Eq. 2.2 plays dominant role

in the UNDX-m, and therefore, the UNDX-m well pre-
serves the mutual relationship among variables. How-
ever, since it uses relatively small m, diversity of off-
spring generated by the UNDX-m may not sufficient.
Further, the basic concept of crossover that crossover
operation combines the building blocks of parents is lost
in the crossover operators of the linear combination type.

3 Proposed Method

3.1 Concept of the Proposed Method

In the previous section, we have discussed that the BLX-
α has an advantage in generating offspring having diver-
sity on one hand, and has a disadvantage in consideration
of mutual relationship among variables. This paper pur-
sues a method of finding the mutual relationship through
statistical analysis of the population, transforming the
coordinate system of the search space so as to reduce
the identified relationship, and then applying the BLX-
α.

Due to the selection operation in GAs, the population
distribute in a region of small fitness values (minimiza-
tion problems are considered). If there exists mutual
relationship among the variables, the distribution is not
parallel to the axes. Applying multivariate analysis to
the population, we extract such structure, and transform
the coordinate system so as to reduce the mutual rela-
tionship among variables. As for statistical methods, we
employ the principal component analysis (PCA), a well
established method for extracting the structure of mul-
tivariate data, and the independent component analysis
(ICA). The ICA is a method for such purpose studied in-
tensively these years[16, 17, 18]. The reason of adopting
the ICA is discussed in Appendix.

Population

Component-wise
Crossover

Statistical Analysis

Transformation
to Eliminate

Nonseparability

Transformed
Population

Figure 1: Concept of the Proposed Method

3.2 Principal Component Analysis

Suppose there exists m sets of data of n variables, which
is represented by an n×m matrix X = {xij} (i = 1, ···, n，
j = 1, · · ·, m). The variance-covariance matrix S = {sij}
of X is given by

sij =
1

m − 1

m∑
k=1

xikxjk (3)

where data are normalized in advance so that the mean
of each variables becomes zero. Transforming the data
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X with a n × n matrix A to Y = AX , the variance-
covariance matrix S′ = {s′ij}, s′ij = 1

m−1

∑m
k=1 yikyjk of

Y = {yij} is given by

S′ = ASAT (4)

The principal component analysis (PCA) is to find a
matrix A that makes S′ the identical matrix. That is,
to find a matrix that eliminates the correlation among
variables of Y .

Since S is a real symmetric matrix, there exists a or-
thogonal matrix P and a diagonal matrix Λ such that
PTSP = Λ. A diagonal matrix Λ whose diagonal ele-
ments are eigen values lambda1, · · · , λn of S, and a ma-
trix P whose columns are corresponding eigen vectors
are a pair of such matrices. Hence, we obtain

S′ = (AP )Λ(AP )T. (5)

To make S′ the identical matrix, a transformation matrix
A can be obtained as follows:

A = diag(1/
√

λ1, 1/
√

λ2, · · · , 1/
√

λn)PT (6)

Assuming all the eigen values are positive, we can ob-
tained the inverse transformation A−1 also as follows:

A−1 = P diag(
√

λ1,
√

λ2, · · · ,
√

λn) (7)

3.3 Independent Component Analysis

As shown in the previous section, the PCA is a method
of eliminating the correlation among the data. The in-
dependent component analysis (ICA) is a method that
makes the p.d.f. of variables mutually independent. Let
the transformation matrix and the transformed data be
C and Z = CX , respectively.

In the fixed point algorithm proposed by Hyvärinen
et al.[17], first, the data are made uncorrelated by the
PCA:

Y = AX (8)

Then, by obtaining a unit weight vector b that minimizes
or maximizes the kurtosis of bY , and with n such vectors
B = (b1, · · ·, bn)T, we obtain

Z = BY = BAX (9)

That is, C = BA. Since B is obtained as an orthogonal
matrix, we obtain the inverse transformation as

C−1 = A−1B−1 = A−1BT

= Pdiag(
√

λ1, · · · ,
√

λn)BT (10)

In our study, the method of obtaining b1, · · ·, bn one
after another takes long computation time, and therefore
we employed the method of calculating the basis vectors
in parallel[18].

An example of the PCA and the ICA is shown in Fig.
2. The dimension of the space and the number of the
data are n = 2 and m = 2000, respectively. The data
X is generated in a parallelogram uniformly. With the
PCA, an uncorrelated distribution Y is obtained. How-
ever, it is still not parallel to the axes. With the ICA, a
distribution parallel to the axes is obtained. Thus, trans-
formation to an independent distribution is achieved.

4

-4

0 4-4 x_1

x_2

(a) Initial distribution X

2

-2

0 2-2 y_1

y_2

2

-2

0 2-2 z_1

z_2

(b) After PCA (c) After ICA
Y = AX Z = CX = BAX

Figure 2: Transform of the population with the PCA
and the ICA.

3.4 Crossover Combined with the PCA/ICA

Population X

B(X)

BLXPCA

BLXICA

x2

x1

A(X) y2

y1

z 2

z 1

BLX- αBLX- α

A    (X)
-1

B    (X)
-1

z c
yc

xc
BLX- α

BLX- α

Figure 3: Procedures of BLX-α，BLXPCA and BLXICA

Let X be an n × m matrix representing the popula-
tion of m individuals in the n dimensional search space.
Using X , calculate transformation matrices A(X) and
C(X) = B(X)A(X) of the PCA and the ICA, respec-
tively.
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Then, choose parents x1 and x2 randomly from the
population, and apply the ICA transformation:

z1 = C(X)x1 (11)
z2 = C(X)x2 (12)

Next, with the BLX-α applied to the transformed par-
ents, we obtain a child in the transformed space

zc = BLX−α (z1, z2) (13)

Finally, applying the inverse transformation to it, we
obtain a child in the original search space:

xc = C−1(X)zc = A−1(X)B−1(X)zc (14)

We call this procedure ‘the BLXICA.’ A similar opera-
tion can be obtained using the PCA instead of the ICA.
We call it ‘the BLXPCA.’ Figure 3 illustrates the process
of the original BLX-α, the BLXPCA and the BLXICA.

The following is a realization of a genetic algorithm
using the BLXICA (or BLXPCA). For generation al-
ternation, the minimal generation gap (MGG) model,
a variation of the steady state GA, proposed by the
Satoh et al.[15] is used. No mutation is used because
the BLX-α shows basically good search ability with-
out mutation, and simple-minded mutation without self-
adaptation having difficulty in the RCGA:

1. Generate an initial population X .

2. Obtain matrices A(X) and B(X) applying the
PCA and ICA to the population.

3. Choose parents x1 and x2 randomly and apply the
ICA (or PCA) transformation to them.

4. Generate c children of the parents with the BLX-α
in the transformed space, where c is a parameter
of the MGG.

5. Apply the inverse transformation to the children.

6. Evaluate the fitness values of the children, and re-
place the parents with the individual having the
best fitness and an individual chosen by roulette
selection among the union of the parents and chil-
dren.

7. If the generation reaches the prescribed value, ter-
minate the algorithm. Otherwise, go to step 2.

It should be also noted that the proposed approach
is an intermediate one between the conventional RC-
GAs and the optimization technique called ‘the esti-
mation of distribution algorithms (ESA)’ in continuous
domain[19, 20, 21]. In the latter approach, first, the
probability density function (p.d.f.) of good solutions
is estimated through statistical analysis of the popula-
tion, and second, novel solutions are sampled using the

estimated p.d.f. The approach proposed in this paper
shares a common idea of applying statistical analysis to
the population with EDA on one hand, and on the other
hand, it shares crossover operation for sampling novel
solutions with the conventional RCGAs.

4 Numerical Experiments

So as to examine the search ability of the BLXPCA and
BLXICA, we have carried out numerical experiments.
The purpose of the experiments is to capture the charac-
teristics of the search of the proposed method. Compre-
hensive test to confirm the search ability of the proposed
method for broad range of the test functions is a subject
of future study.

4.1 Test Functions

For experiments, three non-separable functions are cho-
sen to examine the effects of the proposed method. The
dimension of the space n is 20 for all the functions. All
the functions are to be minimized.

Rotated Rastrigin Function : it is a function ob-
tained by the rotation transformation by π/6 for
all the pairs of the axes to the Rastrigin function:

f(x) = 10n +
n∑

i=1

{x2
i − 10cos(2πxi)}

It is highly multi-modal. Non-separability is in-
troduced by the rotation transformation. Optimal
solution is the origin of the coordinate system. Ini-
tial population is generated following the uniform
distribution on [−5.12, 5.12]20.

Rosenbrock Function : it is given by

f(x) =
n∑

i=2

{100(x1 − x2
i )

2 + (xi − 1)2}

−2.048 < xi < 2.048

While this function is unimodal, it is strongly non-
separable. The optimal solution is (1, · · ·, 1), which
is located on a curved and steep-walled valley.

Ill-scaled Rosenbrock Function : it is given by

f(x) =
n∑

i=2

{100(x1 − (ixi)2)2 + (ixi − 1)2}

−2.048/i < xi < 2.048/i

This function is a poorly scaled version of the pre-
vious Rosenbrock function.
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Figure 4: Comparison of the crossover operators. The abscissa shows the generation, and the ordinate shows the
best fitness value among the population.

4.2 Setup of Experiments

Using the aforesaid test functions, performances of the
proposed methods (BLXPCA and BLXICA) are com-
pared with those of the conventional crossover operators.

• Compared Crossover Operators: Original BLX-α,
UNDX, UNDX-m, BLXPCA and BLXICA.

• Population Size: 300．

• Number of Children c: 200/generation.

• Trials: 10 runs with different random seeds for each
test function and crossover operator.

• Initial Population: Generated randomly in the pre-
scribed region following the uniform distribution.

• Parameter value of the BLX-α: α = 0.366.

• Parameter values of the UNDX: σξ = 1.0 and ση =
0.35/

√
20 − 1

• Parameter value of the UNDX-m: m = 4, σξ = 1.0
and ση = 0.35/

√
20 − 4
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4.3 Results

The results of the experiments are shown in Fig. 4. For
the rotated Rastrigin function, besides a few runs that
fails in finding the optimum, the UNDX-4 finds solution
faster than the the BLX-α and the UNDX. Performance
of the BLXPCA is simular to that of BLX-α. Contrary
to this, quicker convergence is achieved by the BLXICA.
The performance of similar to that of the BLX-α for the
original Rastrigin function which is a multi-modal but
separable function. It suggests that the effectiveness of
combining the ICA with the BLX-α for non-separable
multi-modal fitness function.

For the Rosenbrock function that has strongly non-
separable, the original BLX-α fails in finding the op-
timum. The UNDX and UNDX-4 achieve successful
search, however, convergence of the UNDX is rather
slower than the UNDX-4. With the BLXICA and BLX-
PCA, optimization performance similar to that of the
UNDX-4 is achieved. It shows that with the transfor-
mation of coordinate system using the PCA or ICA, the
BLX-α can find the optimal solution effectively. The
convergence obtained by the BLXICA fluctuates by runs
more than the BLXPCA. Reasons of this instability have
not been clarified yet.

For the ill-scaled Rosenbrock function, not only the
BLX-α but also the UNDX fails in finding optimum.
Convergence with the UNDX-4 also slows down com-
pared with the case of the Rosenbrock function. Con-
trary to this, with the BLXPCA and BLXICA, similar
performance to the case of the Rosenbrock function is ob-
tained. It shows that the transformation with the PCA
and the ICA absorbs the effect of scale change of the
coordinate systems.

Thus, the BLXICA and the BLXPCA achieves good
search ability for non-separable, and poorly scaled fitness
functions.

5 Conclusions

In this paper, for the real-coded genetic algorithms, a
novel crossover operators that combine transformation
of the coordinate system through the statistical analysis
of the population and the blend crossover in the trans-
formed spaces. While the numerical experiments are pre-
liminary, the results shows that the performance of the
proposed methods is promising. Subjects of future study
are 1) treatment of the degeneration in the PCA/ICA,
2) reduction of computational load in the PCA/ICA, 3)
refinement of selection operation more suitable to the
PCA/ICA, 4) analysis of the transformation obtained
by the PCA/ICA more in detail, and 5) more compre-
hensive numerical experiments to examine the effective-
ness and limitations of the proposed methods. As for
the reduction of computational load, a preliminary study
shows that adopting the ICA for every five generations

reduces computational load remarkably without perfor-
mance degradation.
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Appendix: Population Distribution and
Independent Components

Assume that the fitness function f(x) can be expressed
by an additive form of functions fi(wT

i x) of weighted
sums wT

i x of decision variables x:

f(x) =
∑

i

fi(wT
i x)

As a result of selection by the GA, the population dis-
tributes more densely where the fitness function takes
smaller values (for minimization problems). Assume
that the distribution of the population P (x) follows the
Boltzmann one:

P (x) =
exp(−f(x)/T )

Z
=

1
Z

∏
i

exp
(
−fi(wT

i x)
T

)

where T > 0 is a parameter.
Transforming the coordinate system by the equations

yi = wT
i x, we obtain

P (y) = C
∏

i

exp(−f(yi)/T ) =
∏

i

Pi(yi) (15)

where C is a constant. Equation (15) shows that the dis-
tribution can be expressed by a product of the marginal
probability density function of each component. Hence,
if we can find such a transformation by the ICA of the
population, the BLX-α that blends the solution in a
component-wise manner will work effectively.

jjaeone
649


	-----------------

