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Cryogenic Memory Element Based on an Anomalous Josephson Junction
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We propose a nonvolatile memory element based on a lateral ferromagnetic Josephson junction with
spin-orbit coupling and out-of-plane magnetization. The interplay between the latter and the intrinsic
exchange field of the ferromagnet leads to a magnetoelectric effect that couples the charge current through
the junction and its magnetization, such that by applying a current pulse the direction of the magnetic
moment in F can be switched. The two memory states are encoded in the direction of the out-of-plane
magnetization. With the aim to determine the optimal working temperature for the memory element, we
explore the noise-induced effects on the averaged stationary magnetization by taking into account ther-
mal fluctuations affecting both the Josephson phase and the magnetic moment dynamics. We investigate
the switching process as a function of intrinsic parameters of the ferromagnet, such as the Gilbert damp-
ing and strength of the spin-orbit coupling, and propose a nondestructive readout scheme based on a dc
superconducting quantum interference device. Additionally, we analyze a way to protect the memory state
from external perturbations by voltage gating in systems with a both linear-in-momentum Rashba and
Dresselhaus spin-orbit coupling.
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I. INTRODUCTION

Superconducting electronics is suggested as playing an
important role in the search of ultra-low-power computers
[1–5]. One of the key challenges towards this objective is
the fabrication of a reliable and scalable cryogenic memory
architecture. Superconductor-ferromagnet-superconductor
(S-F-S) junctions are promising structures suggested for
such memories [6–15]. Indeed, the interplay between the
intrinsic exchange field and the induced superconductivity
in the ferromagnet leads to the so-called π junction, i.e.,
a Josephson junction exhibiting an intrinsic π -phase shift
in its ground state. Vertical ferromagnetic multilayer struc-
tures are being used as Josephson magnetic memories. The
two logic states of these memories usually correspond to
states with different relative orientation of magnetic lay-
ers, that in turn determines whether the junction is in the
0 or π state. Readout schemes are commonly based on
distinguishing between resistive and nonresistive states.

Here, we delve into the alternative idea, initially sug-
gested in Ref. [16], of designing a cryogenic memory
element based on a ferromagnetic anomalous Josephson
junction, usually called ϕ0 junction [17]. It consists of a
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S-F-S Josephson junction with a Rashba-like spin-orbit
coupling (SOC). Its ground state corresponds to a finite
phase shift in its current-phase-relation 0 < ϕ0 < π . Such
an anomalous phase has been recently detected experi-
mentally in hybrid Josephson junctions fabricated with the
topological insulator Bi2Se3 [18] and Al/InAs heterostruc-
tures [19] and nanowires [20]. Both materials have strong
spin-orbit coupling and in those experiments, time rever-
sal is broken by an external magnetic field that acts as a
Zeeman field. Here, the memory element is a Josephson
junction with a ferromagnetic link, thus in principle time
reversal is broken intrinsically by the exchange field. As
demonstrated theoretically, in these junctions the magneti-
zation of F can be controlled by passing an electric current
through the device [16,21–26]. We discuss the use of such
a junction as a memory element with the information
encoded in the magnetization direction of the F layer. An
important issue for the memory element is the effects stem-
ming from the unavoidable thermal fluctuations on both
phase and magnetization dynamics. Therefore, we present
an exhaustive analysis of the noisy dynamics of a current-
biased S-F-S Josephson junction, see Fig. 1, considering
the influence of stochastic thermal fluctuations. Notably,
in order to preserve gauge invariance the numerical model
that we use to describe the phase dynamics includes also
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FIG. 1. S-F-S Josephson junction driven by a rectangular bias
current pulses, Ibias, with amplitude Imax. The z component of
the magnetization, Mz , is the observable used to define the logic
memory states 0 and 1.

the time derivative of the anomalous phase, according to
Ref. [27]. We explore the current-induced magnetic bista-
bility, in order to define two well-distinguishable logic
states, and investigate the robustness of such memory
against noise-induced effects. We also suggest a suitable
noninvasive readout scheme based on a current-controlled
superconducting quantum interference device (SQUID),
which does not require an additional magnetic flux to
set the optimal operating point. Moreover, we discuss the
intriguing possibility of effectively shielding the memory
state by voltage gating, in a device formed by a ferro-
magnetic layer with a linear-in-momentum Dresselhaus
spin-orbit coupling term.

The work is organized as follows: in Sec. II, we present
the theoretical model used to describe the time evolution
of both the magnetic moment and the Josephson phase
of a current-driven S-F-S junction. In Sec. III we discuss
the magnetic configuration of the junction after applying
a current pulse. Specifically we determine its stationary
magnetization, as a function of the Gilbert damping param-
eter and the SOC strength. In Sec. IV, we focus on the
effect of stochastic thermal fluctuations on both the phase
and the magnetization dynamics. In Sec. V, we explore
how a generic Rashba-Dresselhaus-type SOC can affect the
stationary magnetization. In Sec. VI, we discuss a feasible
readout scheme based on a dc SQUID magnetometer. In
Sec. VII we present our conclusions.

II. THE MODEL

We consider a similar setup as the one studied in
Ref. [22]. It consists of a S-F-S junction in which the
ferromagnet is a thin film with an out-of-plane magnetic
anisotropy and a Rashba-like SOC, see Fig. 1.

Because of the interplay between the exchange field and
the SOC, the current-phase relation of the S-F-S Josephson
junction reads Iϕ = Ic sin(ϕ − ϕ0), where Ic is the critical

current of the junction, ϕ is the Josephson phase differ-
ence, and ϕ0 is the so-called anomalous phase shift. The
latter depends on several parameters of the system, such as
the Rashba coefficient α [28,29], the transparency of S-F
interfaces, the spin relaxation, and the disorder degree of
the junction. The exact dependence on these parameters is
not as crucial as the geometry of the device. If we consider
a two-dimensional SOC with momenta in the plane of the
F film, and the charge current flows in x direction, then
the phase shift ϕ0 is proportional to the y component of the
magnetic moment according to Refs. [17,22,30,31]

ϕ0 = r
My

M
, (1)

where M =
√

M 2
x + M 2

y + M 2
z is the modulus of the mag-

netization vector, and the parameter r quantifies the SOC
strength and contains the α dependence. The specific
dependence of r on the SOC is discussed in Sec. IV,
when we consider the coexistence of both Rashba and
Dresselhaus SOC contributions and their impact on the
magnetization dynamics.

As discussed in Refs. [16,22,25,32], Eq. (1) establishes
a direct coupling between the magnetic moment and the
supercurrent. The time evolution of the magnetization
can be described in terms of the Landau-Lifshitz-Gilbert
(LLG) equation [33,34]

dM

dτ
= −grM × Heff +

γ

M

(
M ×

dM

dτ

)
, (2)

where gr denotes the gyromagnetic ratio. The first term on
the right-hand side describes the precession motion around
Heff, whereas the second term describes the dissipation,
which is accounted by the phenomenological dimension-
less Gilbert damping parameter γ . The ith component of
the effective field Heff, with i = x, y, z, can be calculated
as [35]

Heff,i = −
1

�

∂F

∂Mi

, (3)

where � is the volume of the F layer, and F is the free
energy of the junction, which can be written as

F = −EJ ϕIbias + Es(ϕ, ϕ0) + EM . (4)

Here, EJ = 	0Ic/(2π) with 	0 being the flux quantum,
Ibias is the external current in units of Ic, Es(ϕ, ϕ0) =
EJ [1 − cos(ϕ − ϕ0)], and EM = −K �/2 (Mz/M )2 is the
magnetic energy depending on the anisotropy constant
K . The ratio between the energy scales of the system is
indicated by the parameter ε = EJ /(K �).
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The effective magnetic field calculated from Eq. (3)
reads

Heff =
K

M

[
εr sin

(
ϕ − rmy

)
ŷ + mz ẑ

]
, (5)

with mx,y,z = Mx,y,z/M .
Since the normalized components of the magnetization

satisfy the condition m2
x + m2

y + m2
z = 1, it is convenient to

write the LLG equations in spherical coordinates [36], so
that the normalized components of the magnetization can
be expressed in terms of the polar and azimuthal angles θ

and φ as

mx(τ ) = sin θ(τ ) cos φ(τ),

my(τ ) = sin θ(τ ) sin φ(τ),

mz(τ ) = cos θ(τ ).

(6)

By normalizing the time to the inverse of the ferromag-
netic resonance frequency ωF = grK /M , that is t = ωFτ ,
the LLG equations in spherical coordinates reduce to the
following two coupled equations [36]

dθ

dt
=

1

1 + γ 2

(
H̃eff,φ + γ H̃eff,θ

)
, (7)

sin θ
dφ

dt
=

1

1 + γ 2

(
γ H̃eff,φ − H̃eff,θ

)
, (8)

where the θ and φ components of the normalized effective
field are defined as

H̃eff,θ = εr sin(ϕ − rmy) cos θ sin φ − mz sin θ , (9)

H̃eff,φ = εr sin(ϕ − rmy) cos φ. (10)

Next, we discuss how the Josephson phase ϕ(t) of a mag-
netic junction responds to a driving bias current. The
dynamics of an overdamped S-F-S Josephson junction
can be described through the modified resistively shunted
junction (RSJ) model [27,37] generalized to include the
anomalous phase shift ϕ0 = rmy . The phase dynamics is
described by the following equation:

dϕ

dt
= ω

[
Ibias(t) − sin

(
ϕ − rmy

)]
+ r

dmy

dt
, (11)

where the time is still normalized to the inverse of the
ferromagnetic resonance frequency and ω = ωJ /ωF , with
ωJ = 2π IcR/	0 being the characteristic frequency of the
junction [37] (R is the normal-state resistance of the
device).

The last term in the right-hand side of Eq. (11) stems
from the time derivative of the anomalous phase, ϕ̇0, cf.
Eq. (1), and was ignored in Refs. [16], [22], and [25], but
has to be included in order to preserve gauge invariance

[27]. The detailed derivation of this term can be found in
the Supplemental Material of Ref. [27].

We assume that the S-F-S junction is driven by a
rectangular current pulse, Ibias, centered at tc:

Ibias(t) =

{
Imax, tc − σ ≤ t ≤ tc + σ

0, elsewhere. (12)

Here, σ is the width and Imax is the intensity, in units of
Ic, of the pulse, so that a value Imax > 1 indicates a bias
current larger than the critical value.

Because of the magnetoelectric effect in a ϕ0 junction,
the charge current induces an in-plane magnetic moment
[30,31,38–41], which in turn acts as a torque on the out-of-
plane magnetization of the F layer and eventually leads to
its switching [16,22].

In the next sections we search for an optimal combi-
nation of system parameters to induce the magnetization
reversal. Specifically, we explore the response of the mag-
netization by varying γ and r in suitable ranges, whereas
the energy and timescales ratios ε and ω, are fixed. The
energy ratio ε ranges from ε ∼ 100 [22] in systems with
weak magnetic anisotropy, to ε ∼ 1 for stronger anisotropy
[42]. In our calculation we choose an intermediate value
ε = 10. The typical ferromagnet resonance frequency is
ωF ≃ 10 GHz, while the characteristic Josephson fre-
quency, usually of the order of gigahertz, may be tuned
experimentally. Therefore, we choose ω = 1. As long as
the injected bias current is below the critical value, the
results discussed in this work are only weakly affected
by the value of ω. In contrast, if Ibias > 1 the magnetic
switching would become more unlikely as ω increases. In
particular, for ω ≫ 1 the torque exerted by the Joseph-
son current oscillates very fast, in comparison with the
timescale of the magnetization [23]. This means that the
magnetization would experience an effective torque aver-
aged over many oscillations, which results in a small
contribution due to a partial cancellation of the net torque.

At t = 0 we assume that the F magnetization points
towards the z direction, that is M = (0, 0, 1). With this ini-
tial values we solve Eqs. (7)–(8) and (11) self-consistently
for different values of the parameters. From the solution
we determine the magnetization direction after the current
pulse.

III. THE DETERMINISTIC ANALYSIS

We first neglect the effect of thermal noise, as in
Refs. [16] and [25], and explore the magnetic switching
of the junction.

The overall behavior of the stationary magnetization mst
z ,

namely, the value of mz at the time t = tmax = 100, as a
function of both the Gilbert damping parameter, γ , and the
SOC strength, r, at different current pulse intensities Imax

and σ = 5, is summarized in Fig. 2.
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(b) (c)

(d) (e) (f)

(a)

FIG. 2. Stationary magnetization, mst
z , as a function of r and γ ,

at different values of the amplitude Imax of the current pulse, in the
absence of noise fluctuations. The other parameters are ε = 10,
ω = 1, σ = 5, and mz(t = 0) = +1.

We note that each contour plot is characterized by a
dark-fringes pattern, namely, we observe regions of the
(γ , r) parametric space in which the magnetization reversal
systematically occurs, i.e., in which mst

z = −1. This means,
for instance, that by increasing r at a fixed γ we observe a
sequence of mst

z = +1 and mst
z = −1 values.

For small enough r values, the magnetization reversal
effect is absent. Interestingly, the pattern of dark fringes
evidently changes for Imax > 1, so that for Imax = 1.6 the
dark fringes merge together in large areas of (γ , r) values
in which magnetization reversal takes place.

With the aim of selecting a driving pulse suitable for
a memory application, we observe that the magnetization
reversal effect should be sufficiently robust against small
changes of both the current pulse intensity and the duration
of the pulse. In Fig. 3 we show the stationary magnetization
as a function of the pulse width σ , by changing the pulse
amplitude Imax. We have chosen the parameters r = 0.1
and γ = 0.25. We observe that for a bias current below
the critical value, the need for an accurate current-width
regulation is significantly relaxed, since the magnetization
reversal definitively occurs for any width above a specific
value. Instead, for current amplitudes higher than the crit-
ical value, the stationary magnetization versus σ is highly
scattered between the two possible values, mst

z = ±1, so
that even a slight change in the pulse width may lead to
a nonswitching situation. To understand this behavior, we
observe that, for a bias current higher than Ic, a pulse
sufficiently long can make the junction to switch to the
resistive state, so that the Josephson phase rapidly evolves
and a voltage drop across the device appears, since V ∝
dϕ/dt [37]. In this case, the steady magnetization strongly
depends on the dynamical state of the system when the

FIG. 3. Stationary magnetization, mst
z , as a function of the

current pulse width, σ , at different values of the amplitude
Imax ∈ [0.8–1.5], in the absence of noise fluctuations. The
other parameters are r = 0.1, γ = 0.25, ε = 10, ω = 1, and
mz(t = 0) = +1.

current pulse is switched off. Moreover, the higher the bias
current is, the faster the Josephson phase evolves, and the
more pronounced the σ dependence of mst

z is. In view of a
memory application, a current pulse smaller than the crit-
ical value is therefore recommended, in order to make the
magnetization reversal unrelated on the pulse width σ . For
these reasons in the subsequent analysis we set Imax = 0.9
and σ = 5 and focus on the thermal effect on the phase and
the magnetization dynamics.

IV. EFFECTS OF NOISE

In this section, we focus on the noisy dynamics of
the junction, specifically on how it affects the magnetiza-
tion reversal. The temperature can significantly influence
the time evolution of the system, eventually inducing
unwanted magnetization flip or preventing a stable magne-
tization reversal. Therefore, we consider stochastic thermal
fluctuations in both the phase and the magnetic moment
dynamics. We start discussing the effect of a thermal noise
source only on the phase within the RSJ model. In the sec-
ond part of this section we include also the thermal noise
on the magnetization dynamics.
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A. Thermal-current effects on the RSJ model

The phase dynamics can be directly perturbed by
thermal fluctuations accounted by adding to the RSJ
model, Eq. (11), a Langevin Gaussianly distributed, delta-
correlated stochastic term, Ith(t). This “thermal current”
has the usual white-noise statistical properties that, in
normalized units, can be expressed as [37,43,44]

〈Ith(t)〉 = 0, (13)
〈
Ith(t)Ith(t

′)
〉
= 2DIδ

(
t − t′

)
. (14)

Here, we introduce the dimensionless amplitude of
thermal-current fluctuations defined as

DI =
kBT

R

ωF

I 2
c

=
1

ω

kBT

EJ

. (15)

For example, if ω = 1 we obtain DI ∼ 0.04(T/Ic)(µA/K),
so that, for instance, a junction with Ic = 1 µA at T =
250 mK is affected by a thermal fluctuation of intensity
DI ∼ 10−2.

By taking into account the noise contribution, Eq. (11)
becomes

dϕ

dt
= ω

[
Ibias(t) − sin

(
ϕ − rmy

)
+ Ith(t)

]
+ r

dmy

dt
. (16)

In Fig. 4 we compare the current-induced magnetization
reversal obtained without and with accounting of the noise
effects, see (a) and (b), respectively. We set the intensity of
the current pulse Imax = 0.9 and its width σ = 5.

In Fig. 4(a) we show the behavior of mst
z as a function

of r and γ in the deterministic case, namely, in the absence
of noise, DI = 0. Here, we observe a contour plot com-
posed by many narrow dark fringes in which mst

z = −1,
see Fig. 4(a).

The situation drastically changes if we include the ther-
mal noise. In this case we focus on the average station-
ary magnetization, mst

z , which is computed by averaging
the stationary magnetization over Nexp = 100 independent
numerical runs. The behavior of mst

z as a function of r and γ

for DI = 0.01 is illustrated in Fig. 4(b). At small values of
r the magnetization reversal is still absent, whereas noise
mostly affects the regions with large r where the averaged
value of the magnetization is mainly distributed around
zero. Nevertheless, one can still identify dark regions in
which magnetization switching takes place. With a red
circle we highlight in Fig. 4(b) the region around the
point (γ , r) = (0.25, 0.1) where the magnetization takes
the largest negative average magnetization mst

z ≃ −1. In
other words, the region with the most robust switching.

By increasing the noise intensity the switching process
is suppressed, as shown in Fig. 4(c), at the optimal values
r = 0.1 and γ = 0.25 in Fig. 4(b). In Fig. 4(c) the value of
mst

z is the average over Nexp = 1000 independent numerical

(a) (b)

(c)

FIG. 4. (a) Stationary magnetization, mst
z , as a function of r and

γ . (b) Average stationary magnetization, mst
z , as a function of r

and γ , at DI = 0.01, calculated by averaging over Nexp = 100
independent numerical repetitions. (c) Average stationary mag-
netization, mst

z , as a function of the thermal-current intensity,
DI , at γ = 0.25 and r = 0.1 [namely, the (γ , r) values high-
lighted with a red circle in (b)], calculated by averaging over
Nexp = 1000 independent numerical repetitions. The inset shows
the normalized temperatures corresponding to the noise intensi-
ties DI . For all panels Imax = 0.9 and σ = 5, whereas the values
of other parameters are the same as those used to obtain Fig. 2.

repetitions. In the inset we show the normalized tempera-
tures corresponding to the noise intensities DI , calculated
by assuming a junction with a temperature-dependent crit-
ical current and Ic = 100 µA at low temperatures [45].
From this figure, one sees that mst

z ≃ −1 only for DI �
0.01, that is for T � 0.75Tc. For higher noise intensities
both the average magnetization and the error bar increase,
approaching a zero magnetization average only for
DI � 0.3.

In Fig. 5 we explore the time evolution of the differ-
ent observables with and without thermal noise. Specifi-
cally, we show the response of the junction with γ = 0.25
and r = 0.1 to a current pulse with amplitude Imax = 0.9
depicted in (a). In the absence of noise, DI = 0, we plot
in Fig. 5(b) the time evolution of the phase and the super-
current, and in Fig. 5(c) the different components of the
magnetic moment. During the current pulse, i.e., the yel-
low shaded region, the phase first increases, and then it
goes to zero when the pulse is turned off, see Fig. 5(b).
To understand the phase behavior, we observe that, in the
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(a)

(b)

(c)

(d)

(e)

FIG. 5. Current pulse (a) and following time evolution of phase
and Josephson current, see (b), and magnetization components,
see (c), in the absence of noise and including a thermal-current
contribution with amplitude DI = 0.05, see (e),(d). The values of
other parameters are Imax = 0.9, σ = 5, r = 0.1, and γ = 0.25.
The legends in (b),(c) refer also to (d),(e), respectively.

washboardlike picture [37], the tilting imposed by the bias
current Imax = 0.9 is not enough for allowing the “parti-
cle” to overcome the nearest potential barrier and switch
the system to the finite voltage “running” state. Instead,
the phase particle remains confined within a potential min-
imum, so that when the current is turned off, the slope of
the washboard potential goes again to zero and the phase
restores its initial position, i.e., ϕ → 0.

We observe that the larger the bias current pulse, the
higher the washboard potential slope, and therefore for
Imax > 1 the greater the speed of the phase particle, so
that it can take a longer time to restore the initial posi-
tion after the current pulse is switched off. Moreover, a
large bias current pulse may also mean longer switch-
ing times. Hence, a current Imax < 1 is, in general, more
advantageous for a memory application.

In Fig. 5(c) we show how all components of the mag-
netization are induced by the current pulse. Whereas mx

FIG. 6. Time evolution of the magnetization mz , in response to
a sequence of three current pulses shown in the top panel, in the
presence of a thermal-current noise with amplitude DI = 0.05.
The values of the other parameters are Imax = 0.9, σ = 5, r =
0.1, and γ = 0.25.

and my are generated during the current pulse, and they
undergo a damped oscillations around zero when the cur-
rent is switched off, the z component, after a transient
regime, flips definitively to the value mz = −1. From this
figure we can also estimate the switching time tsw ≃ 10, as
the time mz roughly takes to approach the value −1 after
switching off the current.

The scenario described so far essentially persists also
in the stochastic case, as shown in Figs. 5(d) and 5(e) for
DI = 0.05. Therefore, at the temperature that we are con-
sidering, the overall behavior is still quite similar to the one
obtained in the absence of noise. In fact, the z component
of the magnetization flips again to the value −1, while the
x and y components tend to oscillate around zero, without,
however, vanishing definitively.

The magnetization switch can be achieved in a short
time scale, by passing through the junction a sequence of
current pulses, as it is shown in Fig. 6.

In the bottom panel we show the time evolution of the
magnetization mz, when the junction is excited by the three
subsequent current pulses presented in the top panel, in the
presence of a thermal-current noise with amplitude DI =
0.05. In response to each current pulse, mz follows first a
transient regime, and then, as the current is switched off, it
approaches the steady value with an opposite sign.

B. Effect of thermal noise on the magnetization

dynamics

Thermal noise also affects directly the magnetization
dynamics [46–51] via a stochastic field Hth, a sort of “ther-
mal field,” which is added to the effective magnetic field
term in Eq. (2), as done in Ref. [52]. Inclusion of the
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thermal noise in Eq. (2) leads to [36]

dM

dτ
= −grM × (Heff + Hth) +

γ

M

(
M ×

dM

dτ

)
. (17)

This stochastic differential equation has to be solved
numerically by a stochastic integration prescription by
keeping the modulus of the magnetic moment constant
during the time evolution (see Ref. [36] and references
therein). For this purpose it is again convenient to write
the equations in spherical coordinates, see Eq. (6), so that
the stochastic LLG equation reads [36,53]

dθ

dt
=

1

1 + γ 2

[
H̃eff,φ + H̃th,φ + γ

(
H̃eff,θ + H̃th,θ

) ]
, (18)

sin θ
dφ

dt
=

1

1 + γ 2

[
γ

(
H̃eff,φ+H̃th,φ

)
−H̃eff,θ −H̃th,θ

]
,

(19)

where

H̃th,θ = H̃th,x cos θ cos φ + H̃th,y cos θ sin φ − H̃th,z sin θ ,
(20)

H̃th,φ = −H̃th,x sin φ + H̃th,y cos φ. (21)

The normalized field, H̃th = (M/K )Hth is assumed to be
a Gaussianly distributed random field with the following
statistical features

〈
H̃th,i(t)

〉
= 0 (22)

〈
H̃th,i(t)H̃th,i(t

′)
〉
= 2DHδ

(
t − t′

)
, (23)

where i = x, y, z and

DH =

(
γ

M

kBT

|gr|�

) (
M

K

)2

ωF = γ
kBT

K �
(24)

is the dimensionless amplitude of thermal-field fluctua-
tions. In all previous equations the time is still normalized
to the inverse of ωF .

Interestingly, by recalling the definition of the parameter
ε = EJ /(K �), from Eqs. (15) and (24) we can eas-
ily obtain the following relation between the normalized
thermal noise intensities

DH = (γ εω)DI . (25)

Thus, by changing the magnetization energy, the Gilbert
damping parameter, or the magnetic resonance frequency
we can effectively modify the relative strength of the two
noise mechanisms. This means that one could optimize the
system parameters in such a way to make, for instance, the

FIG. 7. Average stationary magnetization, mst
z , as a function of

the noise intensity, DI , calculated by taking into account both the
thermal-current and the thermal-field noise contribution, and by
averaging over Nexp = 1000 independent numerical repetitions.
The values of other parameters are Imax = 0.9, σ = 5, r = 0.1,
and γ = 0.25.

impact of the thermal field negligible with respect to the
thermal current. This allows us to study the effects pro-
duced by these noise sources independently. In the follow-
ing, even if we explicitly write only the value of DI , we are
taking into account both thermal-current and thermal-field-
independent noise sources, whose amplitudes are related
by Eq. (25).

The overall effect of both the thermal current and field is
presented in Fig. 7, where we show the behavior of mst

z ,
calculated by averaging over Nexp = 1000 independent
numerical runs, at different values of the noise intensity DI ,
and by setting Imax = 0.9, σ = 5, γ = 0.25, and r = 0.1.
We observe that the average magnetization remains close
to the value mst

z ≃ −1 only for DI � 0.003, that is for
T � 0.58Tc, see the inset of Fig. 4(c). For larger values
of DI , mst

z approaches zero and hence the magnetization
reversal probability is reduced, Fig. 4(c). In view of the
memory application, one should, in principle, carefully
choose the F layer and its characteristics (such as its vol-
ume or the Gilbert damping parameter) in order to make
the thermal-field effect as small as possible. The aim is
to reduce the thermal-field intensity in order to increase
the working temperature suitable for a memory applica-
tion, e.g., through a lower Gilbert damping or a larger F

volume, according to Eq. (25).
The time evolution of ϕ, Iϕ , and mi (with i = x, y, z), as

the junction dynamics if affected by both a thermal current
and a thermal field, for r = 0.1, γ = 0.25, and DI = 0.005,
is shown in Fig. 8.

Here, we consider again the system excited by a cur-
rent pulse with intensity Imax = 0.9, as that one shown in
Fig. 5(a). We observe that all noisy curves still resemble,
in shape, the deterministic evolution presented in Figs. 5(b)
and 5(c). The value tsw ≃ 10 is a quite good estimation for
the switching time of the device also in this noisy case.
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(a)

(b)

FIG. 8. Time evolution of phase and Josephson current (a) and
magnetization components (b) as the system is excited by the
current pulse in Fig. 5. Here we are taking into account both
a thermal-current and a thermal-field contribution, with noise
intensity DI = 0.005. The values of other parameters are Imax =
0.9, σ = 5, r = 0.1, and γ = 0.25.

V. RASHBA-DRESSELHAUS SOC

In all previous analysis it was assumed a pure Rashba
SOC. However, the theory of ϕ0 junctions can be gener-
alized for any linear-in-momentum SOC [30,31], by using
the SU(2)-covariant formulation [31], where the SOC is
described in terms of a SU(2) vector potential A . For a 2D
SOC with both Rashba and Dresselhaus contributions one
obtains Ax = −ασ y + βσ x and Ay = ασ x − βσ y (here, α
and β are the Rashba and Dresselhaus coefficients and σ x

and σ y are the first two Pauli matrices).
The appearance of the anomalous phase is related to the

existence of a finite Liftshitz invariant term in the free
energy [17,54–56], which is proportional to Ti∂iϕ, where
Ti is the ith component of a polar vector, which is odd
under time reversal, ∂i is the ith derivative of the super-
conducting phase, and the sum over repeated indices is
implied here and below. For the particular junction geome-
try sketched in Fig. 1 the supercurrent, and hence the phase
gradient, is finite in x direction. Thus, according to Eq.
(5.17) of Ref. [30], the anomalous phase can be written
in the following compact form [30,31]:

ϕ0 = rβ̃(β̃mx + my). (26)

Here, we define the SOC coefficients’ ratio, β̃ = β/α, and
the parameter rβ̃ = r(1 − β̃2), with r depending this time
on both α and β. In the absence of the Dresselhaus SOC,
that is when β̃ = 0 and rβ̃ → r, we recover Eq. (1). If both
contributions are similar in magnitude, i.e., when β̃ → 1,
since rβ̃ → 0 the phase shift vanishes, i.e., ϕ0 → 0. This is
a very interesting situation that we explore in this section.
In fact, whereas the Dresselhaus contribution is due to the
breaking of crystal inversion symmetries, the Rashba SOC
stems from structural broken symmetry and therefore can

be controlled by a gate voltage [57,58]. In other words, a
voltage gate can control the ratio β̃ between Dresselhaus
and Rashba coefficients, and hence the phase shift and the
supercurrent flow, according to Eq. (26). Specifically, by
tuning α such that β̃ ≃ 1 one can fully decouple the phase
and magnetic moment dynamics. Such a process can be
eventually used to protect the memory state in one of the
storage elements of a distributed architecture.

We provide next a quantitative analysis of this situation,
so that by taking into account the generic ϕ0, Eq. (26), into
the expression for the effective field, Eq. (5) becomes

Heff =
K

M

{
εrβ̃ sin

[
ϕ − rβ̃

(
β̃mx + my

)] (
β̃ x̂ + ŷ

)
+ mz ẑ

}
.

(27)

The θ and φ components of the normalized effective field
to be included in LLG Eqs. (7)–(8), read

H̃eff,θ = εrβ̃ cos θ sin
[
ϕ−rβ̃

(
β̃mx +my

)] (
β̃ cos φ+ sin φ

)

− mz sin θ , (28)

H̃eff,φ = εrβ̃ sin
[
ϕ − rβ̃

(
β̃mx + my

)] (
cos φ − β̃ sin φ

)
,

(29)

whereas the RSJ equation becomes

dϕ

dt
= ω

{
Ibias(t) − sin

[
ϕ − rβ̃

(
β̃mx + my

)]}

+ rβ̃

(
β̃

dmx

dt
+

dmy

dt

)
. (30)

The behavior of the stationary magnetization as a function
of r and γ , at different values of β̃ ∈ [0 − 1] is shown in
Fig. 9. The current pulse intensity and width are chosen
equal to Imax = 0.9 and σ = 5, respectively. As expected
from the discussion above, the region where no magneti-
zation switching occurs, bright color in Fig. 9, increases
by increasing β̃ towards 1. For β̃ = 1, the ϕ0 behavior is
fully suppressed, cf. Eq. (26), and hence no magnetization
switching takes place, despite the current pulse flowing
through the junction. Interestingly, we note that for inter-
mediate values of β̃, the area of the switching fringes, i.e.,
where mst

z = −1, increases considerably.
In summary of this section, by tuning α = β one

can decouple the magnetic behavior from the Josephson
dynamics and freeze the memory state in order to protect it
from external current pulses and other perturbations. The
major challenge in this regard is to find materials with a
sizable magnetic moment and tunable by means of a gate
voltage.
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(a)

(d)

(b) (c)

(e) (f)

FIG. 9. Stationary magnetization, mst
z , as a function of r and

γ , at different values of the relative Dresselhaus coefficient β̃ =
β/α, in the absence of noise fluctuations, by imposing Imax = 0.9
and σ = 5.

VI. THE MEMORY READOUT

As discussed in the previous section, the writing oper-
ation of the proposed memory element can be performed
by exciting the junction with controlled current pulses. We
could envisage an array of ϕ0-junction-based memory ele-
ments, each one eventually having its own current line so
that it can be written by sending individual current inputs.
Alternatively, exploiting the tuning of the SOC discussed
in the previous section, one could control locally, via indi-
vidual gates at each junction, several memory elements
connected in series to a common current line. In this way
one could selectively write via a common current pulse
only a specific set of memory units.

The readout of the memory state can be nondestructively
performed by direct measurement of the magnetization
state through a dc SQUID inductively coupled to the ϕ0

junction. A SQUID is essentially a magnetic flux detector
[59], which can be employed to measure with a very high
sensitivity any physical quantity that can be converted in a
magnetic flux [60].

We suggest a SQUID sensor along the lines of the read-
out scheme implemented in Ref. [13] for a π -junction
memory. Our scheme is based on an asymmetric induc-
tive dc SQUID, which consists of a superconducting ring
with a non-negligible total inductance, L, with two Joseph-
son junctions with different critical currents, i.e., Ic,1 �= Ic,2

(here, we are neglecting for simplicity any asymmetry in
the ring inductance). With such an asymmetric SQUID,
one can avoid the use of an additional magnetic flux to
adjust the working point of the device in a high-sensitivity
position of the I

SQUID
c − 	 characteristics, where I

SQUID
c

is the SQUID critical current and 	 is the magnetic flux
threading the loop. In fact, such an asymmetric dc SQUID

(a) (b)

FIG. 10. SQUID-based memory readout and cartoon showing
the critical current interference pattern of the SQUID, in the cases
of both positive and negative orientation along the z axis of the
magnetic moment, see (a),(b), respectively.

shows non-negligible screening and asymmetry parame-
ters, that is βL = (2π/	0)(L/2)(Ic,1 + Ic,2) �= 0 and αI =
(Ic,1 − Ic,2)/(Ic,1 + Ic,2) �= 0, respectively. In this case, the
I

SQUID
c maximum is not centered in 	 = 0, but shifted from

zero by �	, see Fig. 10, where [59] 2π�	 = 	0βLαI .
Accordingly, our readout SQUID demonstrates a high-
sensitivity point of the I

SQUID
c − 	 characteristics also in

	 = 0, that is in the absence of an external magnetic flux.
We assume that the unbiased critical current, I 0

c =

I
SQUID
c (	 = 0), lies in the positive branch of the crit-

ical current diffraction pattern of the SQUID, that is

dI
SQUID
c /d	

∣∣∣
	=0

> 0, just like in the case shown in

Fig. 10. Thus, the magnetic moment mz = +1 generates
a positive magnetic flux 	 = +	µ through the loop, and
gives a critical current higher than the unbiased value,
i.e., I+

c = I
SQUID
c (+	µ) > I 0

c , see the red dashed line in
Fig. 10(a). Conversely, if mz = −1 the magnetic flux
through the loop is negative, i.e., 	 = −	µ, and the
critical current is lower than the unbiased value, I−

c =

I
SQUID
c (−	µ) < I 0

c , see the blue dashed line in Fig. 10(b).
The SQUID readout loop is then sensed by passing a bit-

read current with intensity Iread = I 0
c through the device,

see the orange dashed line in Fig. 10, that is a current,
which lays in between I−

c and I+
c . In this way, if the mag-

netic moment points in the negative z direction, which
encodes the “1” logic state of the memory, the bit-read
current makes the SQUID switch to the voltage state, since
Iread > I−

c . Consequently, a voltage drop appears across the
readout SQUID in response to the bit-read current. For the
opposite magnetic moment orientation, which encodes the
“0” logic state, the SQUID critical current is larger than
the bit-read current, that is Iread < I+

c , so that the SQUID
remains in the superconducting, zero-voltage state.

To provide an estimate of the dimensions of a SQUID
loop suitable to detect the magnetic moment reversal we
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consider the simple case of a circular readout SQUID
with radius a and a magnetic moment oriented along the
z axis and placed on the symmetry axis of the SQUID
at a height z′ above the x-y plane. In this case, the total
magnetic flux through the loop can be estimated as [60,61]
	µ = (µ0Mz/2)a2

/ (
a2 + z′2

)3/2
. This flux is maximum at

z′ = 0 where it reads 	µ = µ0Mz/d, with d = 2a being
the loop diameter. If we assume a saturation magnetization
[62] M = 8 × 105 A/m and a volume � = (10 × 100 ×
100) nm3 = 10−22 m3, we get a total magnetic moment
Mz = 8 × 10−17 A m2 (that is Mz = 8.6 × 106 µB, with
µB being the Bohr magneton), so that the total magnetic
flux reads 	µ = 32π10−24d−1 Wb m. Thus, for a SQUID
with diameter ≃0.5 µm we obtain a measurable flux 	µ ≃
	0/10, (see vertical dot-dashed lines in Fig. 10).

VII. CONCLUSIONS

In conclusion, we discuss a nonvolatile superconduct-
ing memory based on a bistable magnetic behavior of
a current-biased ϕ0 junction, that is a superconductor-
ferromagnet-superconductor Josephson junction with a
Rashba-like spin-orbit coupling. The memory state is
encoded in the magnetization direction of the ferromag-
netic layer, which can be switched via controlled current
pulses. Following Ref. [27], the numerical approach that
we use to describe the phase dynamics of a current-driven
ferromagnetic Josephson junction is amended to include
the time derivative of the anomalous phase. We explore
the robustness of the current-induced magnetization rever-
sal against thermal fluctuations, in order to find the optimal
working temperature at which the magnetization switching
induced by a current pulse is stable. We also suggest a way
of decoupling the Josephson phase and the magnetization
dynamics, by tuning the Rashba SOC strength via a gate
voltage.

Finally, we discuss a suitable nondestructive readout
scheme based on a dc SQUID inductively coupled to the
ϕ0 junction. The suggested readout scheme is exclusively
controlled by current pulses, and no additional magnetic
flux is needed.
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