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Abstract: Streptococcus thermophilus is considered one of the most important species for the dairy industry.
Due to their diffusion in dairy environments, bacteriophages can represent a threat to this widely
used bacterial species. Despite the presence of a CRISPR-Cas system in the S. thermophilus genome,
some lysogenic strains harbor cryptic prophages that can increase the phage-host resistance defense.
This characteristic was identified in the dairy strain S. thermophilus M17PTZA496, which contains two
integrated prophages 51.8 and 28.3 Kb long, respectively. In the present study, defense mechanisms, such as
a lipoprotein-encoding gene and Siphovirus Gp157, the last associated to the presence of a noncoding
viral DNA element, were identified in the prophage M17PTZA496 genome. The ability to overexpress
genes involved in these defense mechanisms under specific stressful conditions, such as phage attack,
has been demonstrated. Despite the addition of increasing amounts of Mitomycin C, M17PTZA496 was
found to be non-inducible. However, the transcriptional activity of the phage terminase large subunit was
detected in the presence of the antagonist phage vB_SthS-VA460 and of Mitomycin C. The discovery of an
additional immune mechanism, associated with bacteriophage-insensitive strains, is of utmost importance,
for technological applications and industrial processes. To our knowledge, this is the first study reporting
the capability of a prophage integrated into the S. thermophilus genome expressing different phage defense
mechanisms. Bacteriophages are widespread entities that constantly threaten starter cultures in the dairy
industry. In cheese and yogurt manufacturing, the lysis of Streptococcus thermophilus cultures by viral
attacks can lead to huge economic losses. Nowadays S. thermophilus is considered a well-stablished model
organism for the study of natural adaptive immunity (CRISPR-Cas) against phage and plasmids, however,
the identification of novel bacteriophage-resistance mechanisms, in this species, is strongly desirable.
Here, we demonstrated that the presence of a non-inducible prophage confers phage-immunity to an
S. thermophilus strain, by the presence of ltp and a viral noncoding region. S. thermophilus M17PTZA496
arises as an unconventional model to study phage resistance and potentially represents an alternative
starter strain for dairy productions.
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1. Introduction

The thermophilic Lactic Acid Bacterium (LAB) Streptococcus thermophilus is an extremely important
starter culture, in the dairy industry, for production of cheeses and yogurts [1,2]. Its technological use
is mostly linked to its ability to quickly acidify the substrate, a very important feature, since it is known
that a pH decrease leads to modifications in bacterial [3,4] and also yeast [5,6] population composition.
Its use in the dairy industry has an average market value of US$ 40 billion [7]. S. thermophilus starter
cultures in the dairy environment are constantly threatened by bacterial viruses (bacteriophages
or phages), which are the most abundant biological entities in the biosphere [8,9]. The lysis of
starter culture cells leads to relevant economic losses, by lowering the quality of the end product,
or even leading to a total process failure [10,11]. To overcome this problem, the dairy industry
has adopted many different strategies to limit phage attacks against bacterial starter cultures [12].
During the past decades, molecular and genomic approaches have revealed diverse genetically
defined resistance mechanisms directed against Streptococcus phages [13–16]. It was reported that
S. thermophilus strains have natural adaptive immunity against phages, including CRISPR-Cas, Ltp
lipoprotein, and noncoding viral DNA elements [15–18]. The last two mechanisms are part of the
temperate bacteriophage driven immunity that protects the host (as well, as the prophage) from
lysis, by blocking DNA injection and replication, respectively [15,17]. The phage-encoded lipoprotein
Ltp is the prototype of a widely-distributed family of cell-surface-exposed lipoproteins, involved in
superinfection exclusion (sie). The ltp gene belongs to the “moron” class, which is characterized by a
common strategy to confer host benefits through phage-mediated horizontal gene transfer (HGT), by
blocking invader DNA injection [15,19,20]. The ltp gene is usually located within the lysogeny module
and is constitutively transcribed, while the virus is in the prophage state [15]. A different immunity
system, encoded by prophages, is based on a mechanism determined by the increased copy number of
a viral noncoding region, with characteristics of an origin of replication (ori) sequence. This region,
that can block the accumulation of the invading phage DNA, was found for the first time in the DNA
replication module of phage ΦSfi21 [17]. As previously demonstrated by Lamothe et al. (2005) [21],
the transcription of cro-ori regions start 5 min after phage infection.

Due to the presence of these defense mechanisms in S. thermophilus, the identification
of bacteriophage-insensitive starter cultures is extremely relevant and has significant economic
importance. Additionally, the increasing amount of genomic data available on S. thermophilus phages
can facilitate the identification of bacteriophage superinfection exclusion and the development of
new resistance mechanisms. The discovery of new immune mechanisms against viral infection
in S. thermophilus will help in the development of innovative strategies, to protect bacteria from
phage attack. Here, we present the genomic analysis of two cryptic prophages, which naturally
infected S. thermophilus M17PTZA496, a well-characterized strain [22–24] possessing interesting in vitro
probiotic properties, along with anticancer activity and folic acid production [25]. The combined
presence of two prophages features associated with phage immunity, i.e., ltp and a viral noncoding
region in the same prophage, was investigated. Moreover, we evaluated the activity of these two
immune mechanisms under mitomycin C (MmC) stress and phage attack conditions.

2. Materials and Methods

2.1. Strain and Growth Conditions

The bacterial strain S. thermophilus M17PTZA496 was isolated in the Valle d’Aosta Region (Italy)
from Fontina, a protected designation of origin (PDO) cheese. This isolate was stored, as a frozen stock
(−80 ◦C), in sterile reconstituted (10%, w/v) commercial nonfat skim milk, supplemented with 15%
(v/v) glycerol. S. thermophilus M17PTZA496 was routinely grown at 44 ◦C, for 24 h, in modified M17
medium containing lactose 0.5% (w/v) (th-LM17) [26].
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2.2. Bioinformatics Analysis

Following genomic analysis and strain comparison [27,28], a more detailed investigation was
conducted by analyzing the prophages in the S. thermophilus M17PTZA496 chromosome. For this
purpose, PHAge Search Tool Enhanced Release (PHASTER) [29] was used to identify and annotate all
viral sequences. Functional information was obtained using UniProt and Pfam databases [30] and by
manual refinement. Viral genome alignment visualization and manual inspection were performed
using Progressive MAUVE [31]. The CGView Server [32] was used to generate a graphical map of the
TP1-M17PTZA496 genome.

For comparative analysis, eighty-three S. thermophilus bacteriophages and five Lactococcus

lactis phages whole genome sequences, downloaded from the National Center for Biotechnology
Information (NCBI) database (Table S1), were used. A fragmented all-against-all comparison in
the TBLASTX mode was performed with the Gegenees 2.0.0 software [33], setting the parameters
to 50/25 (fragment-size/slide-size), as described by Barylski et al. (2014) [34]. A heat plot was
generated by setting the maximum threshold (40%), in order to obtain the best phylogenomic
overview. Unrooted phylogenetic tree was computed, using the SplitsTree4 following the neighbor
joining method [35]. A whole genome comparison with pac-type phages from the genus Sfi11virus,
TP1-M17PTZA496, and Streptococcus phage 20617, was performed, using the Easyfig comparison
tool [36–38]. Finally, CRISPRdb [39] and HostPhinder [40] tools were used to predict the potential
bacterial hosts of the identified prophages. The nucleotide sequence of S. thermophilus M17PTZA496
was taken from the GenBank database (accession No. NZ_CM002372.1).

2.3. S. thermophilus M17PTZA496 Prophage Induction Assay, DNA Extraction, Semi-Quantitative PCR, and
Transmission Electron Microscopy

The prophage induction assay was conducted at a small scale (96-well microplates), as described
by Oliveira et al. (2017) [41] and Arioli et al. 2018 [36]. Briefly, S. thermophilus M17PTZA496 was grown
at 44 ◦C for 24 h, in th-LM17. The culture was then diluted with sterile th-LM17 medium to reach
an optical density at 600 nm (OD600) of, approximately 0.1. A final volume of 200 µL was inserted
into the wells of a 96-well microplate. In the chemically-treated groups, four phage-inducing agents
(MmC −1, 2, 3, and 4 µg/mL; nalidixic acid –0.1, 0.2, and 0.4 µg/mL; NaCl −100, 200, and 400 mM,
and H2O2 −100, 200, and 400 mM) were added to the early log-phase cultures. To evaluate the
effect of low (0.1, 0.25, and 0.5% w/v) and high concentration (1.0% w/v) of lactose and sucrose on
S. thermophilus M17PTZA496 growth curve and prophage induction, cells were prepared, as described
previously, washed three times with the phosphate buffered saline (PBS: KH2PO4 144 mg/L, NaCl
9 mg/L, Na2HPO4·7H2O 795 mg/L, pH 7.4) and resuspended in the M17 medium, modified with
lactose and fructose, at different concentrations, to reach an OD600 of 0.1. Then aliquots of 200 µL were
transferred into the wells of a 96-well microplate. Measurements were automatically obtained by a
Spark 10M (Tecan Trading AG, Männedorf, Switzerland) every 30 min. The entire assay was carried
out in triplicates.

A semiquantitative PCR test was used to estimate the amount of viral DNA in the bacterial cells
and the integrity of the virus attachment sites. Sampling was performed after 0, 30, 60, and 90 min of
bacterial growth and for each MmC concentration used. Bacterial DNA extraction was performed by
adding 500 µL of bacterial culture to 50 µL of lysis buffer (NaOH 0.05 M; SDS 0.25%) in a 1.5 mL tube,
mixed by vortexing for 2 min and incubated at 94 ◦C, for 15 min to achieve cell lysis. Cell debris was
removed by centrifugation at 4,500× g for 10 min. DNA yield and purity were assessed by NanoDrop
(NanoDrop 2000c, Thermo Scientific, Waltham, MA, USA).

Four primer couples were manually designed inside the coding region of the major capsid
protein, in the attachment sites attL/attR and in a M17PTZA496 internal control region (Table 1), using
the online tool NCBI/Primer-BLAST [42]. Primers were obtained from Invitrogen (Thermo Fisher
Scientific, Rodano, MI, Italy). PCR reactions were performed using PureTaqTM Ready-To-GoTM PCR
Bead kit (GE Healthcare, Munich, Germany), using 50 ng of bacterial DNA as the template.
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Table 1. Primers used for semiquantitative PCR and RT-qPCR assays.

Primer Sequence (5’ → 3’) Reference Genome position (bp)

PhageCntr_FW CCAGCTCGCAAACAACTTGG This study 644,332–645,130PhageCntr_REV CAGCGTTAACTGTGTTGTCAG

attL_FW CACGCTGCTAACTCAATCCT This study 620,880–621,469
attL_REV GCTCTTTGGATATCCACACC

attR_FW CTACGTAGTCAGAGGTCCG This study 664,158–664,626
attR_REV GATTAAAGGCCTATTCTAAGCC

M17ptza496_S71U_FW GCAACCATTACACACATAAGGT This study 297,265–304,822M17ptza496_S71U_REV CACAGCGACATCTATCATTGG

cas7_FW_1 AGGAGCCTACCATACTTGATG This study 697,396–698,448
cas7_REV_1 GTAAGCGTGGGCAAGTGTTC

ltp_FW_4 ACTAGCAAGACGTCAGAGGC This study 697,265–697,399
ltp_REV_4 CTGCTTAGCTTTCTCACCG

NC_FW_5 CAACTTACAGACCAGACAAGG This study 626,422–626,895NC_REV_5 CCTCAATATGCTTACCGGAC

Terminase large
subunit_FW_2 CATGGTGCTAAACGTGCTGG This study 639,113–639,784

Terminase large
subunit_REV_2 GCAGGTACATCGTCAACGTC

gapdh_FW CACCATCTTCCAGGAGCGAG
Conte et al. (2015) [43] (not determined)

gapdh_REV CACCATCTTCCAGGAGCGAG

The presence of complete or defective viral particles in treated and untreated-MmC S. thermophilus

cultures was evaluated by TEM, at different time points, namely 0, 30, 60, and 90 min. Bacterial
cultures (1 mL) were harvested by centrifugation at 5,500× g for 15 min, at 4 ◦C, and the pellet was
resuspended in 100 µL of SM buffer (5.8 g NaCl, 2.0 g MgSO4·7H2O, 50 mL Tris-HCl 1M, 5 mL gelatin
2%, pH 7.5 and H2O to 1 L). Chloroform (10% v/v) and NaCl 1M (final concentration) were added,
in order to provoke cell lysis and release of viral particles. After 2 h of incubation at 4 ◦C, cellular
debris were removed by centrifugation at 14,000× g for 20 min, at 4 ◦C, the supernatant was collected
and transferred to the observation Formvar-coated grids and negatively stained with 2% (w/v) uranyl
acetate. A transmission electron microscope (Tecnai 12, FEI Thermo Fisher Scientific, Eindhoven, The
Netherlands), operating at an acceleration voltage of 80 kV, was used to examine the samples. Images
were acquired at a resolution of 50 nm.

2.4. Phage-Susceptibility Screening, and Phage-Binding Assay

Six bacteriophages, namely, vB_SthS-VA214 [44], vB_SthS-VA353, vB_SthS-VA444,
vB_SthS-VA460 [44], vB_SthS-VA698, and vB_SthS-VA720, were previously characterized, considering
their variable region 2 (VR2) [45], and were selected and tested for their ability to infect S. thermophilus

M17PTZA496. Bacteriophages were kindly provided by the Istituto per la Qualità e le Tecnologie
Agroalimentari, Veneto Agricoltura (Thiene, Italy). Using a multiplicity of infection of 0.1, the six
bacteriophages were independently added to a S. thermophilus M17PTZA496 growing culture (OD600

0.3), in th-LM17, supplemented with 1% CaCl2 1M. After incubation at 44 ◦C for 30 min, MmC
(1 µg/mL) was added and samples were incubated for a further 30 min. Cells were then collected
by centrifugation at 12,000× g for 4 min, at 4 ◦C, and the supernatant used for viral titration. Briefly,
an aliquot of 100 µL was serially diluted (1:10) in SM buffer and each dilution was mixed with
0.2 mL of a host culture, previously grown overnight [46]. To this mix, 35 µL of CaCl2 1 M and
4 mL of molten th-LM17 soft agar (agar 0.75%) were added and poured onto a th-LM17 agar base
plate (agar 1.5%), containing 1% CaCl2 [47]. Plates were incubated at 37 ◦C for 24 h. Viral titer was
expressed in terms of plaques forming units per milliliter (PFU/mL). The percentage of phage particles
bounded to S. thermophilus M17PTZA496 and the rate of attachment were calculated, as previously
reported [48,49].
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2.5. Transcriptional Activity Assay

An S. thermophilus M17PTZA496 overnight culture (OD600 1.4) was adjusted to an OD600 of 0.1 in
300 mL of th-LM17, containing 10 mM CaCl2 and 10 mM glycine, and incubated at 45 ◦C [45]. When
the culture reached an OD600 of 0.3 (that was considered T0), 9 mL were transferred to two separate
15 mL polypropylene tubes, in which 1 mL of PBS (defined as Cntr1) and 1 mL of a vB_SthS-VA460
suspension (~107 PFU/mL) (defined as Pt1) were added, respectively. Tubes were incubated at 45 ◦C
for 30 min. After this period, defined as T1, MmC (1 µg/mL) was added to both tubes (defined Cntr2
and Pt2, respectively) and a final incubation at 45 ◦C for 30 min, identified as T2, was performed.
At each sampling time (T0, T1, and T2), a 100 µL aliquot was collected to determine the number of
viable cells, using the drop plate methodology [50]. Viral titration was performed from Pt1 and Pt2
samples, as described above. All experiments were performed in triplicates. The experimental design
is reported in Figure S1.

Samples obtained at T0, T1, and T2 were centrifuged at 4,500 g for 5 min, at 4 ◦C. The harvested
cells were immediately frozen in liquid nitrogen and stored at −80 ◦C, to preserve RNA integrity.
To perform cell lysis, 100 µL of lysozyme solution (10 mM Tris-HCl, 0.1 mM EDTA, 15 mg/mL
lysozyme, pH 8.0) were added to the cell pellet and resuspended by vortexing. Afterwards, 0.5 µL
of 10% (w/v) SDS were added, vortexed for 2 min and incubated for 5 min, at room temperature.
After this, 350 µL of freshly prepared 1% (v/v) 2-mercaptoethanol lysis buffer and 50 mg of cold glass
beads (diameter 0.6 mm, Sigma, St. Louis, MO, USA) were added and the samples were vortexed for
approximately 2 min. Subsequently, 750 µL of TRIzol (Invitrogen, Rodano, Italy) were added, gently
homogenized and incubated for 5 min, at room temperature. During this step, 1 µg of exogenous total
RNA extracted from the skeletal muscle of Mus musculus was added to the sample, as an external
housekeeping gene source, for real-time data normalization. Afterwards, 160 µL of chloroform were
added, mixed, and incubated for 2 min, at room temperature. Following centrifugation at 12,000× g

for 15 min at 4 ◦C, the colorless upper phase containing the RNA, was transferred to a fresh RNase-free
tube containing 350 µL of isopropanol and incubated at −20 ◦C for 1 h. Tubes were then centrifuged at
12,000× g for 10 min at 4 ◦C, the pellet washed with 1 mL of 75% (v/v) ethanol and tubes centrifuged
at 7,500× g for 5 min, at 4 ◦C, and left to dry at room temperature, for 5 min. After DNase I (Invitrogen,
Rodano, Italy) treatment, the total RNA was purified using RNA Clean & Concentrator ™-5 (Zymo
Research, Irvine, CA, USA), according to the manufacturer instructions.

RNA quality and quantity were verified by NanoDrop (ThermoFisher Scientific, Waltham, MA,
USA), while RNA integrity was evaluated on denaturing formaldehyde agarose gel (0.5% w/v).
The RNA quality obtained was good, according to the standard parameters for real-time expression
analysis (Figure S2).

Primer pairs for the cas7 (csn2), ltp, viral non-coding region, and terminase large subunit (Table 1)
were designed using the on-line tool NCBI/Primer-BLAST [42] and manually checked on the PCR
templates. Primers were obtained from Invitrogen (Thermo Fisher Scientific, Rodano, MI, Italy).
The glyceraldehyde-3-phosphate dehydrogenase (gapdh) gene from Mus musculus was used as reference
control [43].

One µg of RNA was reverse transcribed, using the RevertAid Reverse Transcriptase (Thermo
Scientific) and random hexamer primers, according to the manufacturer recommendations. qRT-PCR
was performed using Power SYBR® Green PCR master mix (Life Technologies).

2.6. Statistical Analysis

Statistical analysis was performed with the GraphPad Instat 3 software (GraphPad, La Jolla, CA,
USA), using the one-way analysis of variance (ANOVA), to evaluate the phage-binding capability
and S. thermophilus M17PTZA496 viable cell counts, under different conditions. Assays were set up in
triplicates and Tukey’s test was used as the post hoc test.

The relative expression level of each gene was normalized, taking into consideration the gene
gapdh of Mus musculus as reference. Transcript levels from the RNA samples were evaluated using three
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technical replicates and the difference in the transcription of each specific gene was calculated with
the 2−∆∆CT method [51]. Paired Student t-test was used to calculate the significance of the difference
between the relative expression of the cas7, ltp, Siphovirus Gp157, and terminase large subunit, under
different conditions. Statistically significant values were defined for p < 0.05.

3. Results

3.1. Genomic Analysis of the S. thermophilus M17PTZA496 Prophages

In the present study, a global genomic investigation was performed to describe the prophages
identified in the S. thermophiles, from a taxonomic and functional perspective. The presence of two
prophages in the S. thermophilus M17PTZA496 chromosome was predicted (Figure S3). According
to their position in the bacterial genome they were named TP1-M17PTZA496 (bacterial genome
position: 617,680–669,542 bp; 51.8 Kb in length) and TP2-M17PTZA496 (bacterial genome position:
890,763–919,156 bp). The estimated length of TP2-M17PTZA496 is 28.3 Kb, with a GC content of 34.74%
and twenty-eight predicted protein-encoding genes. The TP2-M17PTZA496 gene annotation revealed
some features with a relevant technological role, such as a methionyl-tRNA synthetase, a carotenoid
biosynthetic protein, an exopolysaccharide associated protein (Eps4Q), a bacteriocin and a glucose
transporter (Table S2). As described elsewhere, a temperate prophage can be considered non-inducible
when the lysis module is not identified [52,53]. The same applies to TP2-M17PTZA496, even though
it was classified as “intact” by the PHASTER software. For this reason, only TP1-M17PTZA496 was
considered for further analysis.

The genomic region representative of the TP1-M17PTZA496 has an estimated length of 51.8 Kb,
a GC content of 39.13% and a total of sixty-one protein-encoding genes predicted between the attL and
attR attachment sites (Figure 1). Results obtained from the similarity searches were manually curated,
improving the overall annotation quality, and leading to the clarification of the functional role of
integrated genes. Downstream to the left host-phage junction (attL), bacterial genes encoding enolase,
glycogen synthase, and glycerate kinase were found, while upstream to the right junction (attR),
bacterial genes encoding isoleucyl-tRNA synthetase, lipoteichoic acid synthase, methyltransferase,
and 3-dehydroquinate dehydratase were identified. These integration sites have high similarity with
those identified in the temperate bacteriophage Φ20617 [37], as revealed by the nucleotide BLAST
analysis that showed 84% of identity between both viruses and a query cover of 76%. Presence of
the tRNA synthetase genes in the att sites is a common feature, since tRNA coding regions have been
recognized as integration site “hotspots” for viruses [54]. In the present study, isoleucyl-tRNA and
methyonil-tRNA synthetase close to the att sites, showed this “preference rule” in the S. thermophilus.

In TP1-M17PTZA496, fifty-seven ORFs are transcribed from the positive strand. Most of the
genes were assigned to putative functions and only seventeen ORFs remained as sequences coding for
hypothetical proteins (Table S3). Some interesting features related to gene content and phage structure
were identified; for example, ORF 2 (Ltp) and ORF 11, annotated as a gene with high similarity to the
Gp157 of the S. thermophilus bacteriophages members of the genus Sfi11virus, commonly located in a
cro-ori region, was found to be related to phage immunity. Regarding the lysogeny prophage module,
ORF4 was annotated as CI-like repressor, while a cro-like coding sequence was missing.
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Figure 1. Genome map of the TP1-M17PTZA496. The linear genome was circularized to improve its
visualization. CDS, ORF, BLAST against the Streptococcus phage 20617, GC content, GC skew+, and
GC skew−, are reported in circles from the outside inwards. Streptococcus phage 20617 whole genome
sequence was used as a reference for the BLAST analysis. Only the ORFs between the attL and attR are
displayed for the TP1-M17PTZA496.

A phylogenomic tree was constructed, based on a “fragmented all-against-all comparison” with
the aim of determining the taxonomic relationship that exist between prophage TP1-M17PTZA496 and
other phages infecting the S. thermophilus and Lactococcus lactis. The phylogenetic tree evidenced
that these viruses were clustered into five groups (Figure 2). According to this classification,
the TP1-M17PTZA496 was associated with members of the S. thermophilus group 3MSP-pac and
it is closely related to the temperate bacteriophage Φ20617 [14,37,54–58].

According to the TP1-M17PTZA496 phylogenomic tree, the genome homology among the viruses
grouped as 3MSP-pac was investigated, based on their translated nucleotide sequence (Figure 3).
Despite this, the analysis revealed that the virus TP1-M17PTZA496 has a modular organization
related to the virus ϕ20617, major differences were identified on the lysogeny module. The main
changes are related to the absence of the coding sequence for cro and the presence of immA, which
encodes an anti-immunity system involved in triggering, between the lytic and the lysogenic cycle [59].
The modules coding for structural proteins, tail morphogenesis, and host lysis (including holin)
displayed a high similarity with other members of the Sfi11virus genus, mainly with the Streptococcus

phage ALQ13.2.
Phage-host interactions were analyzed, considering the spacer acquisition in the CRISPR arrays.

This finding demonstrated that twenty-seven spacers associated with the TP1-M17PTZA496, were
predicted in three species of the genus Streptococcus, indicating mainly S. thermophilus (24 spacers)
and, to a lesser extent, S. salivarius (2 spacers) and S. macedonicus (1 spacer) as the main potential hosts
(Table S4).
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Figure 2. Phylogenomic tree constructed using the whole genome sequence of the TP1-M17PTZA496,
83 S. thermophilus and 5 L. lactis bacteriophages. GenBank accession numbers are reported in Table S1.
The scale bar represents a 1% difference on the average tBLASTx score.

3.2. Prophage Induction Evaluation

The ability of the S. thermophilus M17PTZA496 to release inducible prophages was evaluated
by treatment with four different phage-inducing agents (MmC, nalidixic acid, H2O2 and NaCl)
added at the beginning of the log-phase (corresponding to OD600 ~ 0.3). It is worth mentioning
that low concentrations of MmC (0.1, 02 and 0.5 µg/mL) were evaluated but no positive results
were obtained [60]. Moreover, we used low (0.1, 0.25, and 0.5%) and high (1.0% w/v) concentrations
of lactose and sucrose, in order to evaluate the effect of energy starvation on the bacteriophage
induction. Comparison between the growth curves (24 h, 44 ◦C) of the treated and the untreated
cultures, revealed that S. thermophilus M17PTZA496 possesses cryptic prophages. The presence of
the prophages was clearly evidenced by the fact that the OD600 value in the treated samples, did not
present significant decreases, which is typically represented by a growth inhibition, phage production,
and host death (Figure 4). Based on these observations, we proceeded with further investigations,
using only Mitomycin C.
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Figure 3. Sequence alignment among the Streptococcus phage 20617, TP1-M17PTZA496, and the
members of the genus Sfi11virus. Gray shading corresponds to the percentage of identity of the
nucleotide sequences.

Additionally, in order to determine the copy number of the viral DNA in the lysogenic
S. thermophilus M17PTZA496, semi-quantitative PCR analyses were performed, using the total genomic
DNA as a template, and two different primer couples. Specific primers targeting the MCP gene were
used to determine the prophage TP1-M17PTZA496 copy number, while primers targeting a genomic
region of the bacterium (Scaffold 71; 297,265–304,822 bp) were used to determine the number of copies
of the bacterial chromosome. Analyses were performed on bacteria cultures grown at different MmC
concentrations and at multiple time points, after treatment (Figure 5A). Results showed that the MCP
copy-number increased after 30 (T1) and 60 min (T2), following the MmC addition (1 µg/mL), as
revealed by the presence of a detectable signal, after twenty amplification cycles. In fact, Arioli et
al. (2018) [37] described the heterogeneity of S. thermophilus DSM20617T determined by the phage
excision events, even in the non-cured cells. On the other hand, when higher amounts of MmC were
used (2, 3 and 4 µg/mL), a reduction in the MCP content was observed and a detectable signal was
identified at the 25th cycle. As described by Oliveira et al. (2017) [41], high concentrations of MmC
might have a toxic effect on the Lactococcus lactis culture harboring prophage and we observed the same
phenomenon in the S. thermophilus M17PTZA496. In all the conditions tested, the complete sequences
of the attL and the attR sites were identified (Figure 5B), confirming that prophage TP1-M17PTZA496
is not able to be completely excised from the host chromosome.
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Figure 4. Phage-induction evaluation performed using four different chemicals: (A) Mitomycin C
(1–4 µg/mL); (B) NaCl (100, 200, and 400 mM); (C) Nalidixic acid (0.1, 0.2, and 0.4 µg/mL); (D) H2O2

(100, 200, and 400 mM); (E) Lactose (0.1, 0.25, 0.5, and 1.0% w/v); (F) Sucrose (0.1, 0.25, 0.5, and
1.0% w/v). The same legend was used for different concentrations of the MmC (2–4 µg/mL) and the
Nalidixic acid (0.1–0.2 µg/mL), since these growth curves overlapped each other.

Finally, TEM analysis of the samples obtained from the treated and the untreated cultures was
performed, considering four time points after exposure to MmC. Results were in agreement with the
semi-quantitative PCR and revealed that no complete or defective phage particles were present in the
lysogenic S. thermophilus M17PTZA496 strain.



Viruses 2019, 11, 7 11 of 19

                     

 

 
      ‐                              

                           
                                       

                             μ  

        ‐    

    ‐                    
          ‐              
                  ‐          

                             
        ‐                          

                           
                        −    

 
                                 
                                         

Figure 5. (A) Semi-quantitative PCR analysis showing the MCP levels at 30, 60, and 90 min, after
addition of different amounts of MmC. M17PTZA496_S71U was used as the bacterial chromosome
control region. (B) attL and attR sites amplification to check the absence of phage excision. T0, T1,
T2, and T3 are the sampling times, namely 0, 30, 60, and 90 min, respectively under diverse MmC
concentrations (1–4 µg/mL).

3.3. S. thermophilus M17PTZA496 Phage-Susceptibility Assay

Six different cos-type bacteriophages, previously characterized in terms of their variable region
(VR2), were used to perform phage-susceptibility screenings. S. thermophilus M17PTZA496 was only
found to be susceptible but not permissive, to phage vB_SthS-VA460 (VA460), thus, suggesting the
presence of bacterial mechanisms blocking it from starting the lytic cycle. After viral titration was
performed on VA460, a 1-log reduction of the viral content was observed (90.4% of phages bound,
Figure 6A). Measurement of the phage VA460 attachment rate was performed using the S. thermophilus

M17PTZA496 cells as target, and it was calculated to be 7.79 × 10−9 mL/min.
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Figure 6. (A) Phage titration of the S. thermophilus cultures. Samples were taken at three different time
points, namely at 0 (T0), 30 (Pt1), and 60 min (Pt2). (A) After addition of the VA460 plus MmC. (B)
S. thermophilus M17PTZA496 viable cell counts, after PBS (Cntr1), VA460 (Pt1), Mitomycin C (Cntr2 and
Pt2), and VA460 plus MmC (Pt2) addition. Asterisks indicate different levels of statistical significance
(*: p ≤ 0.05; ****: p < 0.0001).
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To evaluate the effectiveness of S. thermophilus M17PTZA496 phage defense mechanisms, the
expression level of cas7, ltp, and the ORF11 (Siphovirus Gp157 located in a viral cro-ori region), was
investigated [61–63]. Additionally, to determine the capability of the prophage TP1-M17PTZA496 to
package its genomic DNA, the expression level of the terminase large subunit gene was analyzed.
RT-PCR analysis showed that MmC provided at a concentration of 1 µg/mL, led to a small but
significant reduction in the expression level of both cas7 and terminase large subunits (0.4 and 0.15-fold,
respectively, Table 2). A 0.4-fold reduction was also observed for the ltp, Siphovirus Gp157, and high
subunit expression levels, when only phage VA460 was added. Conversely, when MmC and VA460
were provided together, the ltp expression level increased 2.2-fold. A very similar result was obtained
for the terminase large subunit gene (1.8 fold).

Table 2. Relative expression of the cas7, ltp, Siphovirus Gp157, and terminase large subunit. Only
statistically significant values (p < 0.05) were considered. (Cntr1—PBS; Pt1—VA460; Cntr2—MmC;
Pt2—VA460 plus MmC).

cas7 ltp Siphovirus Gp157 Terminase Large Subunit

Conditions p-value X-fold p-value X-fold p-value X-fold p-value X-fold

Cntr1 vs Pt1 0.093 0.50 0.012 0.40 0.016 0.40 0.012 0.40
Pt2 vs Cntr2 0.154 1.80 0.022 2.20 0.756 1.10 0.026 1.75

Cntr1 vs Cntr2 0.025 0.40 0.320 0.70 0.250 0.80 0.000 0.15

In accordance with the gene expression results, no reduction of the S. thermophilus M17PTZA496
viable cells was observed when the MmC or VA460 were independently added to the bacterial culture.
Instead, a significant 3-log reduction (Figure 6B) was observed when S. thermophilus M17PTZA496 was
exposed to a combination of the VA460 and the MmC.

4. Discussion

According to Hols et al. (2005) [64], HGT among bacteria contributes to the development of
important industrially-relevant phenotypic characteristics. However, phage-mediated HGT is favored
by the virus capability to infect different hosts [65,66], a quite uncommon feature for S. thermophilus

bacteriophages, which are normally characterized by a narrow host spectrum [45,47]. An in silico
host range prediction revealed that prophage TP1-M17PTZA496 has the potential capability to
infect multiple Streptococcus species, including S. thermophilus, S. macedonicus, and S. salivarius. This
interesting characteristic suggests that TP1-M17PTZA496 could have a potential role in the HGT.

Lysogeny is an infrequent process in S. thermophilus [67,68]. In the present study, the analysis of
the prophage TP1-M17PTZA496 lysogeny module identified a putative cI-like repressor, while a gene
coding for a cro-like repressor was absent. This is relevant to increase our knowledge of phage DNA
replication properties and gene expression of the S. thermophilus phages, for which little information
is currently available [21]. Cro and CI proteins mutually repress each other and are involved in the
lytic/lysogenic switch [69,70]. As discussed below, TP1-M17PTZA496 is considered a non-inducible
prophage and this behavior can be associated with the lack of a cro-like repressor [71]. Moreover, the
terminase large subunit was flanked by genes involved in the lysis/morphogenesis and a group I
intron was also identified in the CDS. The homing of group I introns are horizontally transferred, via
mixed infections, as described for pac-type Streptococcus phage 2972, and removed through phage
mRNA splicing [72]. Similar to the TP1-M17PTZA496, the phage 2972 possessed two group I intron
sequences located in the genes coding for the terminase large subunit and for the endolysin. An
alignment performed between the prophage M17PTZA496 and Streptococcus phage 2972 sequences,
revealed that the same intron was present in the terminase large subunit of both viruses. This result
corroborated our hypothesis that the prophage TP1-M17PTZA496 originated via mixed infection
between the cos- and the pac-S. thermophilus phages. Despite the process that led to the classification of
the TP1-M17PTZA496, as a mix between the cos- and the pac- S. thermophilus bacteriophages, phylogeny



Viruses 2019, 11, 7 13 of 19

assigned it to the S. thermophilus group 3MSP-pac. This group includes other pac-type Streptococcus

phages, such as O1205, 858, TP-J34, and Sfi11 [15,73–76].
Bioinformatics analysis revealed that the TP1-M17PTZA496 has interesting features associated

with phage immunity, along with the absence of cro, in its lysogeny module. To verify this finding,
the ability of the prophage to excise was checked, both using four different chemical compounds, and
also by testing lactose- and sucrose-limiting conditions. The growth profiles of the treated cultures
indicated that the TP1-M17PTZA496 can be considered non-inducible. Additional PCR-based and
TEM analyses were in agreement in asserting that the TP1-M17PTZA496 can be considered a cryptic
prophage with a very low excision rate, unable to form the phage particles. This result is consistent
with previous findings indicating that different prophages in the E. coli K-12 can have very low excision
rates, with values that may reach less than 1 prophage per 100,000 cells, or adopt the pseudo-lysogeny
life cycle [37,73,77,78]. To further support results related to the excision ability, gene expression
analyses were used. Since the small and large terminase subunits are components of the packaging
machinery [79], their expression is representative of the tailed phages ability to pack their DNA.
The large terminase relative expression analysis confirmed that TP1-M17PTZA496 has different activity
levels, which slightly decreased after the MmC and VA460 treatments, but markedly increased, after
the combined application of both stimuli. Interestingly, after the combined application, a marked
reduction of the S. thermophilus M17PTZA496 viable cells was observed, although no cellular lysis
was detected. This observation might be due to SOS system response activation and the phage-attack
response, which justifies the absence of viable cells after plating.

Six cos-type S. thermophilus bacteriophages were screened for their capability to infect the
S. thermophilus M17PTZA496. After viral titration, it was demonstrated that VA460 was able to adsorb
S. thermophilus M17PTZA496, without provoking host lysis (rate of attachment 7.79 × 10−9 mL/min).
Our result was in agreement with those of Bull et al. (2014) [80], who reported similar constant
adsorption rate values (from 10−8 to 10−9 mL/min), as a result of the collision between phage and
bacteria that culminated in viral infection, a relevant step to evaluate the bacterium self-defense
mechanisms against phages. For this reason, VA460 was chosen for the phage immunity evaluation of
S. thermophilus M17PTZA496. In particular, sie and host protection were tested by means of the Ltp
type protein and the Siphovirus Gp157 expression.

A significant increase in the ltp expression (2.2 fold) was observed when the S. thermophilus

M17PTZA496 was treated with a combination of VA460 and MmC. However, when only VA460
was added, a 0.4-fold decrease in expression (p < 0.05) was noticed. It was previously reported that
ltp is transcribed only in the prophage state [15]; accordingly, we suggest that TP1-M17PTZA496 is
a non-inducible prophage that actively expresses ltp. However, its low expression level could be
attributed to the prophage transient excision activity level and, consequently, to the ltp expression
reduction. It is worth mentioning that the relative expression level of each gene was normalized, using
the gapdh gene of the Mus musculus as an external reference control. This normalization was needed
considering that the addition of 1 µg/mL of MmC impaired the stable expression of the housekeeping
genes gapdh, recA, and the rpoD of the S. thermophilus M17PTZA496 [60]. As described elsewhere [81,82],
the use of an external reference gene is a valuable solution when the expression levels of the internal
reference genes are not stable under determined conditions.

With regard to the short viral noncoding region, its function has been predicted to be similar to a
302-bp noncoding viral element (system PER—phage-encoded resistance) found in the S. thermophilus

bacteriophage ΦSfi21 genome [83]. This region acts as an independent replication origin activated
by viral infection and its action is copy-number dependent. In the present study, a 0.4-fold reduction
in the number of copies of the Siphovirus Gp157 was observed in the presence of the phage VA460.
This finding can be explained by the activity of this element, which is able to bind to the infected viral
proteins and to decrease their free copy-number. As reported by Foley et al. (1998) [17], this region
protected the S. thermophilus Sf1 from infection by seventeen out of the twenty-five evaluated phages.
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Noncoding oris regions were also previously reported in other bacteriophages, such as lactococcal
phage P335 [84], S. thermophilus bacteriophages DT1, Sfi19, Sfi21, O1205, 7201, and κ3 [21].

Finally, the unexpected presence of two prophages in the S. thermophilus M17PTZA496 genome
was previously hypothesized to be related to the low number of CRISPR-Cas modules found in this
strain [28]. Relative expression of the cas7, a CRISPR protein involved in spacer acquisition [61], was
examined with the aim of evaluating the influence of the bacterial adaptive immune system, under
phage and antibiotic treatments. It was observed that only MmC influenced the cas7 expression leading
to a 0.4-fold reduction. The generally low activity of the CRISPR-Cas defense mechanism highlights
the importance of the previously described mechanism in host superinfection exclusion. Moreover,
using the S. thermophilus and the virulent phage 2972 as models, Vale et al. (2015) [85] suggested that
the maintenance of the CRISPR-Cas defense system requires a great load of energy for the cell, that can
result in decreased bacterial fitness. Since the MmC determines DNA damage and induces the SOS
response, a process that requires a conspicuous amount of energy [86], it could be hypothesized that
the MmC suppresses the bacterial adaptive immune system, in order to save energy.

5. Conclusions

Although the CRISPR-Cas system plays a relevant role in the phage-host defense, the presence
of cryptic prophages can enhance bacterial defenses. Here, we reported the occurrence of Ltp and
a noncoding viral DNA element in the non-inducible prophage TP1-M17PTZA496. Thanks to these
additional immune mechanisms, S. thermophilus M17PTZA496 can be proposed as an alternative model
to study bacterial resistance to phages. In conclusion, considering the enormous importance of this
bacterial species for the industrial production of fermented foods, S. thermophilus M17PTZA496 could
be considered as a promising alternative to the phage-sensitive starter cultures for the manufacturing
of dairy products.
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34. Barylski, J.; Nowicki, G.; Goździcka-Józefiak, A. The discovery of phiAGATE, a novel phage infecting Bacillus

pumilus, leads to new insights into the phylogeny of the subfamily Spounavirinae. PLoS ONE 2014. [CrossRef]
[PubMed]

35. Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006.
[CrossRef] [PubMed]

36. Lefkowitz, E.J.; Dempsey, D.M.; Hendrickson, R.C.; Orton, R.J.; Siddell, S.G.; Smith, D.B. Virus taxonomy:
The database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018.
[CrossRef] [PubMed]

37. Arioli, S.; Eraclio, G.; Della Scala, G.; Neri, E.; Colombo, S.; Scaloni, A.; Fortina, M.G.; Mora, D. Role of
Temperate Bacteriophage φ20617 on Streptococcus thermophilus DSM 20617T Autolysis and Biology. Front.

Microbiol. 2018, 9, 1–13. [CrossRef] [PubMed]
38. Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011.

[CrossRef] [PubMed]
39. Grissa, I.; Vergnaud, G.; Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate

dictionaries of spacers and repeats. BMC Bioinform. 2007, 8, 172. [CrossRef] [PubMed]
40. Villarroel, J.; Kleinheinz, K.A.; Jurtz, V.I.; Zschach, H.; Lund, O.; Nielsen, M.; Larsen, M.V. HostPhinder:

A phage host prediction tool. Viruses 2016, 8, 116. [CrossRef]
41. Oliveira, J.; Mahony, J.; Hanemaaijer, L.; Kouwen, T.R.H.M.; Neve, H.; MacSharry, J.; van Sinderen, D.

Detecting Lactococcus lactis Prophages by Mitomycin C-Mediated Induction Coupled to Flow Cytometry
Analysis. Front. Microbiol. 2017, 8, 1–11. [CrossRef]

42. NCBI/Primer-BLAST. Available online: https://www.ncbi.nlm.nih.gov/tools/primer-blast (accessed on
25 September 2018).

http://dx.doi.org/10.1016/j.idairyj.2018.07.003
http://dx.doi.org/10.1007/s00284-018-1528-7
http://dx.doi.org/10.3389/fmicb.2018.02214
http://dx.doi.org/10.1128/genomeA.00067-14
http://www.ncbi.nlm.nih.gov/pubmed/24526643
http://dx.doi.org/10.1016/j.fm.2016.11.002
http://www.ncbi.nlm.nih.gov/pubmed/28040181
http://dx.doi.org/10.1093/nar/gkw387
http://www.ncbi.nlm.nih.gov/pubmed/27141966
http://dx.doi.org/10.1093/nar/gkw1107
http://www.ncbi.nlm.nih.gov/pubmed/27899635
http://dx.doi.org/10.1101/gr.2289704
http://dx.doi.org/10.1093/nar/gkn179
http://dx.doi.org/10.1371/journal.pone.0039107
http://dx.doi.org/10.1371/journal.pone.0086632
http://www.ncbi.nlm.nih.gov/pubmed/24466180
http://dx.doi.org/10.1093/molbev/msj030
http://www.ncbi.nlm.nih.gov/pubmed/16221896
http://dx.doi.org/10.1093/nar/gkx932
http://www.ncbi.nlm.nih.gov/pubmed/29040670
http://dx.doi.org/10.3389/fmicb.2018.02719
http://www.ncbi.nlm.nih.gov/pubmed/30473689
http://dx.doi.org/10.1093/bioinformatics/btr039
http://www.ncbi.nlm.nih.gov/pubmed/21278367
http://dx.doi.org/10.1186/1471-2105-8-172
http://www.ncbi.nlm.nih.gov/pubmed/17521438
http://dx.doi.org/10.3390/v8050116
http://dx.doi.org/10.3389/fmicb.2017.01343
https://www.ncbi.nlm.nih.gov/tools/primer-blast


Viruses 2019, 11, 7 17 of 19

43. Conte, M.; Vasuri, F.; Bertaggia, E.; Armani, A.; Santoro, A.; Bellavista, E.; Degiovanni, A.;
D’Errico-Grigioni, A.; Trisolino, G.; Capri, M.; et al. Differential expression of perilipin 2 and 5 in
human skeletal muscle during aging and their association with atrophy-related genes. Biogerontology

2015, 16, 329–340. [CrossRef]
44. da Silva Duarte, V.; Giaretta, S.; Treu, L.; Campanaro, S.; Pereira Vidigal, P.M.; Tarrah, A.; Giacomini, A.;

Corich, V. Draft Genome Sequences of Three Virulent Streptococcus thermophilus Bacteriophages Isolated from
the Dairy Environment in the Veneto Region of Italy. Genome Announc. 2018, 6. [CrossRef]

45. Binetti, A.G.; Del Rio, B.; Martin, M.C.; Alvarez, M.A. Detection and Characterization of Streptococcus

thermophilus Bacteriophages by Use of the Antireceptor Gene Sequence. Appl. Environ. Microbiol. 2005,
71, 6096–6103. [CrossRef] [PubMed]

46. Svensson, U.; Christiansson, A. Methods for phage monitoring [easy to use in dairy laboratories]. Bull. Int.

Dairy Fed. 1991, 263, 29–39.
47. Quiberoni, A.; Tremblay, D.; Ackermann, H.-W.; Moineau, S.; Reinheimer, J.A. Diversity of Streptococcus

thermophilus phages in a large-production cheese factory in Argentina. J. Dairy Sci. 2006, 89, 3791–3799.
[CrossRef]

48. Valyasevi, R.; Sandine, W.E.; Geller, B.L. The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris

KH is the rhamnose of the extracellular wall polysaccharide. Appl. Environ. Microbiol. 1990, 56, 1882–1889.
[PubMed]

49. Kropinski, A.M. Measurement of the Rate of Attachment of Bacteriophage to Cells. Methods Mol. Biol. 2009,
501, 151–155. [PubMed]

50. Naghili, H.; Tajik, H.; Mardani, K.; Razavi Rouhani, S.M.; Ehsani, A.; Zare, P. Validation of drop plate
technique for bacterial enumeration by parametric and nonparametric tests. Vet. Res. Forum Int. Q. J. 2013,
4, 179–183.

51. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and
the 2-∆∆CT method. Methods 2001, 25, 402–408. [CrossRef]

52. Chopin, A.; Bolotin, A.; Sorokin, A.; Ehrlich, S.D.; Chopin, M. Analysis of six prophages in Lactococcus lactis

IL1403: Different genetic structure of temperate and virulent phage populations. Nucleic Acids Res. 2001,
29, 644–651. [CrossRef]

53. Catalão, M.J.; Gil, F.; Moniz-Pereira, J.; São-José, C.; Pimentel, M. Diversity in bacterial lysis systems:
Bacteriophages Show the way. FEMS Microbiol. Rev. 2013, 37, 554–571. [CrossRef]

54. Fouts, D.E. Phage_Finder: Automated identification and classification of prophage regions in complete
bacterial genome sequences. Nucleic Acids Res. 2006, 34, 5839–5851. [CrossRef]

55. Brüssow, H.; Probst, A.; Frémont, M.; Sidoti, J. Distinct Streptococcus thermophilus Bacteriophages Share an
Extremely Conserved DNA Fragment. Virology 1994. [CrossRef] [PubMed]

56. Le Marrec, C.; Van Sinderen, D.; Walsh, L.; Stanley, E.; Vlegels, E.; Moineau, S.; Heinze, P.; Fitzgerald, G.;
Fayard, B. Two groups of bacteriophages infecting Streptococcus thermophilus can be distinguished on the
basis of mode of packaging and genetic determinants for major structural proteins. Appl. Environ. Microbiol.

1997. [CrossRef]
57. McDonnell, B.; Mahony, J.; Neve, H.; Hanemaaijer, L.; Noben, J.P.; Kouwen, T.; van Sinderen, D. Identification

and analysis of a novel group of bacteriophages infecting the lactic acid bacterium Streptococcus thermophilus.
Appl. Environ. Microbiol. 2016. [CrossRef] [PubMed]

58. Mahony, J.; Martel, B.; Tremblay, D.M.; Neve, H.; Heller, K.J.; Moineau, S.; Van Sinderen, D.
Identification of a new P335 subgroup through molecular analysis of lactococcal phages Q33 and BM13.
Appl. Environ. Microbiol. 2013. [CrossRef] [PubMed]

59. Ravin, N.V.; Svarchevsky, A.N.; Dehò, G. The anti-immunity system of phage-plasmid N15: Identification of
the antirepressor gene and its control by a small processed RNA. Mol. Microbiol. 1999. [CrossRef]

60. Tarrah, A.; Department of Agronomy Food Natural Resources Animals and Environment, University of
Padova, 35020 Legnaro, Italy. Page induction tests using low concentrations of Mitomycin C. 2018.

61. Sapranauskas, R.; Gasiunas, G.; Fremaux, C.; Barrangou, R.; Horvath, P.; Siksnys, V. The Streptococcus

thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011,
39, 9275–9282. [CrossRef] [PubMed]

62. Seed, K.D. Battling Phages: How Bacteria Defend against Viral Attack. PLoS Pathog. 2015, 11, e1004847.
[CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10522-014-9549-5
http://dx.doi.org/10.1128/genomeA.00045-18
http://dx.doi.org/10.1128/AEM.71.10.6096-6103.2005
http://www.ncbi.nlm.nih.gov/pubmed/16204526
http://dx.doi.org/10.3168/jds.S0022-0302(06)72420-1
http://www.ncbi.nlm.nih.gov/pubmed/2116761
http://www.ncbi.nlm.nih.gov/pubmed/19066819
http://dx.doi.org/10.1006/meth.2001.1262
http://dx.doi.org/10.1093/nar/29.3.644
http://dx.doi.org/10.1111/1574-6976.12006
http://dx.doi.org/10.1093/nar/gkl732
http://dx.doi.org/10.1006/viro.1994.1256
http://www.ncbi.nlm.nih.gov/pubmed/8178472
http://dx.doi.org/10.1128/aem.71.10.6096-6103.2005
http://dx.doi.org/10.1128/AEM.00835-16
http://www.ncbi.nlm.nih.gov/pubmed/27316953
http://dx.doi.org/10.1128/AEM.00832-13
http://www.ncbi.nlm.nih.gov/pubmed/23666331
http://dx.doi.org/10.1046/j.1365-2958.1999.01658.x
http://dx.doi.org/10.1093/nar/gkr606
http://www.ncbi.nlm.nih.gov/pubmed/21813460
http://dx.doi.org/10.1371/journal.ppat.1004847
http://www.ncbi.nlm.nih.gov/pubmed/26066799


Viruses 2019, 11, 7 18 of 19

63. Pare, K.R. Bacterial toxin-antitoxin systems. Mob. Genet. Elements 2011, 1, 283–290. [CrossRef]
64. Hols, P.; Hancy, F.; Fontaine, L.; Grossiord, B.; Prozzi, D.; Leblond-Bourget, N.; Decaris, B.; Bolotin, A.;

Delorme, C.; Dusko Ehrlich, S.; et al. New insights in the molecular biology and physiology of Streptococcus

thermophilus revealed by comparative genomics. FEMS Microbiol. Rev. 2005, 29, 435–463. [CrossRef]
65. Beumer, A.; Robinson, J.B. A Broad-Host-Range, Generalized Transducing Phage (SN-T) Acquires 16S rRNA

Genes from Different Genera of Bacteria. Appl. Environ. Microbiol. 2005, 71, 8301–8304. [CrossRef]
66. Watson, B.N.J.; Staals, R.H.J.; Fineran, P.C. CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal

Gene Transfer by Transduction. mBio 2018, 9, e02406-17. [CrossRef]
67. Brussow, H.; Fremont, M.; Bruttin, A.; Sidoti, J.; Constable, A.; Fryder, V. Detection and classification of

Streptococcus thermophilus bacteriophages isolated from industrial milk fermentation. Appl. Environ. Microbiol.

1994, 60, 4537–4543. [PubMed]
68. Canchaya, C.; Proux, C.; Fournous, G.; Bruttin, A.; Brüssow, H. Prophage genomics. Microbiol. Mol. Biol. Rev.

2003, 67, 238–276. [CrossRef] [PubMed]
69. Achigar, R.; Magadan, A.H.; Tremblay, D.M.; Julia Pianzzola, M.; Moineau, S. Phage-host interactions in

Streptococcus thermophilus: Genome analysis of phages isolated in Uruguay and ectopic spacer acquisition in
CRISPR array. Sci. Rep. 2017, 7, 43438. [CrossRef]

70. Vohradsky, J. Lambda phage genetic switch as a system with critical behaviour. J. Theor. Biol. 2017, 431, 32–38.
[CrossRef] [PubMed]

71. Schubert, R.A.; Dodd, I.B.; Egan, J.B.; Shearwin, K.E. Cro’s role in the CI Cro bistable switch is critical for
{lambda}’s transition from lysogeny to lytic development. Genes Dev. 2007, 21, 2461–2472. [CrossRef]

72. Lévesque, C.; Duplessis, M.; Labonté, J.; Labrie, S.; Fremaux, C.; Tremblay, D.; Moineau, S.
Genomic organization and molecular analysis of virulent bacteriophage 2972 infecting an
exopolysaccharide-producing Streptococcus thermophilus strain. Appl. Environ. Microbiol. 2005,
71, 4057–4068. [CrossRef]

73. Stanley, E.; Fitzgerald, G.F.; Marrec, C.L.; Fayard, B.; van Sinderen, D. Sequence analysis and characterization
of ∅O1205, a temperate bacteriophage infecting Streptococcus thermophilus CNRZ1205. Microbiology 1997.
[CrossRef] [PubMed]

74. Deveau, H.; Barrangou, R.; Garneau, J.E.; Labonte, J.; Fremaux, C.; Boyaval, P.; Romero, D.A.; Horvath, P.;
Moineau, S. Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus. J. Bacteriol. 2008,
190, 1390–1400. [CrossRef] [PubMed]

75. Lucchini, S.; Desiere, F.; Ssow, H.B. Comparative Genomics of Streptococcus thermophilus Phage Species
Supports a Modular Evolution Theory. J. Virol. 1999. [CrossRef]

76. Guglielmotti, D.M.; Deveau, H.; Binetti, A.G.; Reinheimer, J.A.; Moineau, S.; Quiberoni, A. Genome
analysis of two virulent Streptococcus thermophilus phages isolated in Argentina. Int. J. Food Microbiol.

2009, 136, 101–109. [CrossRef] [PubMed]
77. Wang, X.; Kim, Y.; Ma, Q.; Hong, S.H.; Pokusaeva, K.; Sturino, J.M.; Wood, T.K. Cryptic prophages help

bacteria cope with adverse environments. Nat. Commun. 2010, 1, 147–149. [CrossRef] [PubMed]
78. Chou, W.C.; Huang, S.C.; Chiu, C.H.; Chen, Y.Y.M. YMC-2011, a temperate phage of Streptococcus salivarius

57.I. Appl. Environ. Microbiol. 2017. [CrossRef] [PubMed]
79. Sun, S.; Gao, S.; Kondabagil, K.; Xiang, Y.; Rossmann, M.G.; Rao, V.B. Structure and function of the small

terminase component of the DNA packaging machine in T4-like bacteriophages. Proc. Natl. Acad. Sci. USA

2012, 109, 817–822. [CrossRef] [PubMed]
80. Bull, J.J.; Vegge, C.S.; Schmerer, M.; Chaudhry, W.N.; Levin, B.R. Phenotypic resistance and the dynamics of

bacterial escape from phage control. PLoS ONE 2014, 9. [CrossRef]
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