
https://doi.org/10.1007/s00145-021-09384-1

J Cryptol (2021)34:37

A Cryptographic Analysis of the

TLS 1.3 Handshake Protocol

Benjamin Dowling
Department of Computer Science, ETH Zürich, Zurich, Switzerland

Marc Fischlin
TU Darmstadt, Darmstadt, Germany

marc.fischlin@cryptoplexity.de

Felix Günther
Department of Computer Science, ETH Zürich, Zurich, Switzerland

Douglas Stebila
University of Waterloo, Waterloo, Canada

dstebila@uwaterloo.ca

Communicated by Colin Boyd

Received 31 October 2019 / Revised 22 February 2021 / Accepted 22 February 2021

Online publication 30 July 2021

Abstract. We analyze the handshake protocol of the Transport Layer Security (TLS)

protocol, version 1.3. We address both the full TLS 1.3 handshake (the one round-

trip time mode, with signatures for authentication and (elliptic curve) Diffie–Hellman

ephemeral ((EC)DHE) key exchange), and the abbreviated resumption/“PSK” mode

which uses a pre-shared key for authentication (with optional (EC)DHE key exchange

and zero round-trip time key establishment). Our analysis in the reductionist security

framework uses a multi-stage key exchange security model, where each of the many

session keys derived in a single TLS 1.3 handshake is tagged with various properties

(such as unauthenticated versus unilaterally authenticated versus mutually authenti-

cated, whether it is intended to provide forward security, how it is used in the protocol,

and whether the key is protected against replay attacks). We show that these TLS 1.3

handshake protocol modes establish session keys with their desired security properties

under standard cryptographic assumptions.

Keywords. Authenticated key exchange, Transport Layer Security (TLS), Handshake

protocol.

1. Introduction

The Transport Layer Security (TLS) protocol is one of the most widely deployed crypto-

graphic protocols in practice, protecting numerous web and e-mail accesses every day.

The TLS handshake protocol allows a client and a server to authenticate each other

© The Author(s) 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-021-09384-1&domain=pdf

37 Page 2 of 69 B. Dowling et al.

and to establish a key, and the subsequent record layer protocol provides confidentiality

and integrity for communication of application data. Originally developed as the Secure

Sockets Layer (SSL) protocol version 3 in 1996, TLS version 1.0 was standardized by

the Internet Engineering Task Force (IETF) in 1998 [37], with subsequent revisions to

version 1.1 (2006) [48] and version 1.2 (2008) [49]. Despite its large-scale deployment,

or perhaps because of it, we have witnessed frequent successful attacks against TLS.

Starting around 2009, there were many practical attacks on the then-current version 1.2

of TLS that received significant attention, exploiting weaknesses in underlying cryp-

tographic primitives (such as weaknesses in RC4 [4]), errors in the design of the TLS

protocol (e.g., BEAST [51], the Lucky 13 attack [7], the triple handshake attack [13],

the POODLE attack [84], the Logjam attack [2]), or flaws in implementations (e.g., the

Heartbleed attack [35], state machine attacks (SMACK [10])).

1.1. Development and Standardization of TLS 1.3

With concerns rising about the security of TLS version 1.2 due to the many attacks,

but also motivated by desire to deprecate old algorithms, enhance privacy, and reduce

connection establishment latency, in 2014 the IETF’s TLS working group initiated a

multi-year process to develop and standardize a new version of TLS, eventually called

version 1.3. From 2014 through 2018, a total 29 drafts of TLS 1.3 were published, with

active feedback from industry and academia, including extensive security analyses by

various teams from academia (see [89] for a chronicle of the development and analysis

of TLS 1.3). The document standardizing TLS 1.3, RFC 8446 [90], was published in

August 2018 and has already seen widespread adoption.

From a cryptographic perspective, major design changes in TLS 1.3 compared to ver-

sion 1.2 include: (1) encrypting some handshake messages with an intermediate session

key, to provide confidentiality of handshake data such as the client certificate; (2) sign-

ing the entire handshake transcript for authentication; (3) including hashes of handshake

messages in a variety of key calculations; (4) using different keys to encrypt handshake

messages and application data; (5) deprecating a variety of cryptographic algorithms

(including RSA key transport, finite-field Diffie–Hellman key exchange, SHA-1, RC4,

CBC mode, MAC-then-encode-then-encrypt); (6) using modern authenticated encryp-

tion with associated data (AEAD) schemes for protecting application data; and (7) pro-

viding handshakes with fewer message flows to reduce latency.

There are two primary modes of the TLS 1.3 handshake protocol. One is the full,

one round-trip time (1-RTT) handshake, which uses public-key certificates for server

and (optionally) client authentication, and (elliptic curve) Diffie–Hellman ephemeral

((EC)DHE) key exchange, inspired by Krawczyk’s ‘SIGn-and-MAc’ (SIGMA) design

[72]. Several session keys are established for a variety of purposes in this mode: to

encrypt part of the handshake, to enable export of keying material to other applications,

for session resumption, and of course to encrypt application data. This mode gets its

name from the fact that application data can be sent from the client to the server with

the handshake’s completion after a full round trip, meaning there is one round-trip time

(1-RTT) until the first application message can be sent (not counting non-TLS networking

operations such as DNS lookups or the TCP 3-way handshake).

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 3 of 69 37

The other primary mode of the TLS 1.3 handshake protocol is the resumption or pre-

shared key (PSK) mode, in which authentication is based on a symmetric pre-shared

key, with optional (EC)DHE key exchange for forward secrecy; this generalizes the

abbreviated session resumption handshake from earlier versions of TLS. The PSK mode

can optionally be augmented with a zero round-trip time (0-RTT) key establishment,

allowing the client to send—along with its first TLS flow—application data encrypted

under a key derived from the PSK.

1.2. Security Analyses of TLS

TLS 1.2 and Prior Versions A long line of work has analyzed various versions of the

SSL/TLS protocol using both formal methods and reductionist security proofs. In the

reductionist security paradigm, early work [56,63,86] on the handshake protocol dealt

with modified or truncated versions of the protocol, necessary because TLS 1.2 and ear-

lier did not have strict key separation: the session key was also used to encrypt messages

within the handshake protocol, barring security proofs in strong indistinguishability-

based authenticated key exchange models in the Bellare–Rogaway [25] style. There

were also formalizations of the security of the authenticated encryption in the record

layer [71,87]. A major milestone in reductionist analyses of TLS was the development

of the authenticated and confidential channel establishment (ACCE) security model

which allowed for the combined analysis of a full TLS 1.2 handshake and secure chan-

nel in a single model [64], sidestepping the aforementioned key separation issue; this

work was followed by a range of other works analyzing the security of various aspects

of TLS 1.2 [50,58,70,76,81]. Other approaches to proving the security of TLS 1.2

within the reductionist security paradigm include a range of modular and compositional

approaches [21] as well as approaches that combine formal analysis and reductionist

security [18,19].

TLS 1.3 Drafts The handshake protocol in initial drafts of TLS 1.3 was based in part on

the OPTLS protocol [77]. There were a variety of investigations on the security of various

drafts throughout the TLS 1.3 standardization process. Using the reductionist security

paradigm, there have been analyses of the handshake protocol [15,38,39,53,55,69,75,

77,82] and the record layer [24,27,60,80,88]. There has been a range of work involving

formal methods and tools, such as model checkers and symbolic analysis [29,31], and

approaches combining verified implementations with formal analysis and reductionist

security [9,11,20,40].

TLS 1.3 Standard Since TLS 1.3 was published as an RFC in August 2018, some

works have addressed the final TLS 1.3 standard. The Selfie attack [44] led to updated

analyses of PSK handshakes [1,44]. Arfaoui et al. [3] investigated the privacy features

of the TLS 1.3 handshake. Revised computational security proofs of the full 1-RTT

handshake by Diemert and Jager [45] and Davis and Günther [43] translated techniques

of Cohn-Gordon et al. [28] to establish tighter reductions. There have also been academic

proposals for improvements to or modifications of TLS 1.3, considering forward security

for the 0-RTT handshake [6], running TLS 1.3 over a different network protocol [32], or

37 Page 4 of 69 B. Dowling et al.

defining a KEM-based alternative handshake enabling the deployment of post-quantum

schemes [93].

1.3. Our Contributions

We give a reductionist security analysis of three modes of the TLS 1.3 handshake: the

full 1-RTT handshake, the PSK handshake (with optional 0-RTT mode), and the PSK-

(EC)DHE handshake (with optional 0-RTT mode); based on a cryptographic abstraction

of the protocols we provide in Sect. 3. In order to carry out our analysis, we formalize a

multi-stage key exchange security model which can capture a variety of characteristics

associated to each stage key. Our analysis shows that the design of the TLS 1.3 handshake

follows sound cryptographic principles.

Security Model Our security model, given in Sect. 4, follows the Bellare–Rogaway

(BR) model [25] for authenticated key exchange security based on session key indistin-

guishability, as formalized by Brzuska et al. [22,26], and our model builds specifically

on the multi-stage model of Fischlin and Günther [52,61]. The latter deals with key

exchange protocols that derive a series of session keys in the course of multiple protocol

stages. Our extension of their multi-stage key exchange model allows us to capture the

following characteristics associated to the session key established at each stage, which

we call the stage key:

• Authentication: whether a stage key is unauthenticated, unilaterally authenticated,

or mutually authenticated. We further extend the multi-stage model to capture

upgradable authentication: a stage’s key may be considered, say, unauthenticated

at the time it is accepted, but the authentication level of this key may be “raised” to

unilaterally authenticated or, potentially in a second step, mutually authenticated

after some later operations, such as verification of a signature in a later message.

• Forward secrecy: whether a stage key is meant to provide forward secrecy, namely

that it remains secure after compromise of a long-term secret involved in its deriva-

tion.

• Key usage: whether a stage key is meant to be used internally within the protocol

(for example, to encrypt later handshake messages), or externally (for example,

composed with a symmetric encryption scheme to protect application messages or

used in some other external symmetric-key protocol).

• Replayability: whether it is guaranteed that a stage key is not established in result

of a replay attack; early stages of the 0-RTT modes do not have this guarantee.

Our security model comes in two flavors that capture security established through two

types of credentials: public keys or symmetric pre-shared keys. Following the BR model,

our model of compromise includes long-term key compromise (Corrupt) and stage key

compromise (Reveal). While other models [33,79] further capture the compromise of

session state or ephemeral randomness, TLS is not designed to be secure against such

exposure of ephemeral values and we hence do not include these compromise capabilities

in our model.

In addition to capturing indistinguishability of stage keys, the model also ensures

soundness of session identifiers using the Match-security notion of [22,26].

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 5 of 69 37

Protocol Analysis We apply our multi-stage key exchange security model in Sects. 5

and 6 to analyze the three modes of the TLS 1.3 handshake: full 1-RTT, PSK, and

PSK-(EC)DHE, with the latter two having optional 0-RTT keys. There are four main

classes of stage keys covered in the analysis: early data encryption and export keys

(ETS, EEMS, only present in the PSK with 0-RTT modes); handshake traffic secrets

(tkchs, tkshs); application traffic secrets (CATS, SATS); and exported keys (RMS for

session resumption, EMS for other exported keys). This results in six stage keys in the

full 1-RTT mode and eight stage keys in the PSK modes.

As noted above, our security model allows us to precisely capture various character-

istics of different stage keys. For example, consider the client handshake traffic secret

tkchs, used to encrypt handshake messages from the client to the server. In the full 1-RTT

handshake, this key is initially unauthenticated, then unilaterally authenticated through

a server signature after stage 3 is reached, and may ultimately be mutually authenticated

after stage 6 is reached if the client authenticates; it is forward secret; it is intended for

internal use within the protocol; and it is guaranteed to be non-replayed. In contrast,

in the PSK handshake, this key is mutually authenticated as soon as it is established,

but does not have forward secrecy. Finally, in the PSK-EC(DHE) handshake, this key is

unauthenticated initially, then is upgraded to unilateral and eventually mutual authenti-

cation after stages 5 and 8, when MACs within the Finished messages are verified;

and it is forward secret.

The reductions showing the security of the protocol modes in the model follow a

game hopping technique, and mainly rely on standard signature resp. MAC scheme

unforgeability (for authentication in the full 1-RTT resp. PSK handshake), hash func-

tion collision resistance, PRF security (and in some cases dual PRF security), and an

interactive Diffie–Hellman assumption (a variant of the PRF-Oracle-Diffie–Hellman

assumption [17,64] called dual-snPRF-ODH).

Observations on the Design and Security of TLS 1.3 In Sect. 7, we include a discussion

about various characteristics of TLS 1.3 based on results of our security analysis, includ-

ing how a variety of TLS 1.3 design decisions positively impact the security analysis

(key separation and key independence, including the session hash in signatures and key

derivation), some subtleties on the role of handshake encryption and key confirmation

via Finished messages, as well as the susceptibility of 0-RTT keys to replays.

Relation to Our Earlier Work This paper is successor work to [38,39] and [53], as

well as [47,61]. In [38], we first extended the multi-stage key exchange model of [52] as

needed, then applied it to analyze two early drafts of TLS 1.3: draft-05, which has the

same basic signed-Diffie–Hellman structure but a simplified key schedule compared to

the final version, and an alternative proposal called draft-dh incorporating ideas from

the OPTLS design [77], in which servers could have a semi-static DH key share. In [39],

we updated our analysis to draft-10 and added an analysis of the, by then revised, pre-

shared-key handshake mode. In [53], a subset of us analyzed the 0-RTT pre-shared key

and PSK-(EC)DHE mode in draft-14, as well as the later deprecated Diffie–Hellman-

based 0-RTT mode using semi-static DH key shares in draft-12, which introduced

the notion of replayable stages into the multi-stage key exchange security model. In a

PhD thesis [47], one of us updated the work from [39] to address the full, PSK, and PSK-

37 Page 6 of 69 B. Dowling et al.

(EC)DHE handshakes in draft-16; in another PhD thesis [61], another of us unified

the MSKE model and the aforementioned results on the full and PSK handshakes of

draft-10 and the 0-RTT handshakes of draft-12 and draft-14.

This paper updates this prior work to the final version of TLS 1.3 as published in

RFC 8446 [90] (recall that there were 29 drafts leading up to the final standard). It ad-

dresses, in a unified security model, the full, PSK, and PSK-(EC)DHE handshakes, the

latter two with optional 0-RTT keys. The security model in this paper includes enhance-

ments not present in earlier works, particularly for capturing upgradable authentication.

The model and analysis for the PSK mode have been updated to reflect the observa-

tions of Drucker and Gueron’s “Selfie” attack [44] by associating intended roles with a

pre-shared key.

Section 7.1 provides more details on technical differences between this paper and our

earlier work.

Limitations The TLS 1.3 protocol allows users to support and negotiate different cryp-

tographic algorithms including the used signature schemes, Diffie–Hellman groups, and

authenticated encryption schemes. Many implementations will simultaneously support

TLS 1.3, TLS 1.2, and even earlier versions. We do not aim to capture the security of

this negotiation process nor security when a cryptographic key (e.g., a signing key) is

re-used across different algorithm combinations or with earlier versions of TLS [66]. For

the PSK modes of TLS 1.3, we do not treat how parties negotiate which pre-shared key

to use. Our analysis assumes that all parties use only TLS 1.3 with a single combination

of cryptographic algorithms and do not re-use keying material outside of that context

(beyond consuming session keys established by the TLS 1.3 handshake).

In our proofs of key indistinguishability for all three TLS 1.3 handshake modes,

some of our proof steps involve guessing parties and/or sessions, and thus are non-tight,

similar to most proofs of authenticated key exchange protocols. Recently, Diemert and

Jager [45] as well as Davis and Günther [43] have established new security proofs for

the TLS 1.3 full 1-RTT handshake with tight reductions to the strong Diffie–Hellman

assumption, translating techniques of Cohn-Gordon et al. [28].

Our focus is entirely on the TLS 1.3 handshake protocol, and thus does not address

security of the record layer’s authenticated encryption. TLS 1.3 also includes a variety

of additional functionalities outside the core handshake that we treat as out of scope.

Examples include session tickets, post-handshake authentication [75], the alert protocol,

and changes for Datagram TLS (DTLS) 1.3 [92], as well as other extensions to TLS 1.3

currently in the Internet-Draft state.

Security in practice obviously relies on many more factors, such as good implemen-

tations and good operational security, which are important but outside the scope of this

analysis.

2. Preliminaries

We begin with introducing the basic notation we use in this paper and recapping some

core building blocks and cryptographic assumptions employed in our security analysis.

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 7 of 69 37

2.1. Notation

With N we denote the natural numbers. We write a bit as b ∈ {0, 1} and a (bit) string

as s ∈ {0, 1}∗, with |s| indicating its (binary) length; {0, 1}n is the set of bit strings of

length n. We write x ← y for the assignment of value y to the variable x and x ←$ X

for uniformly sampling x from a (finite) set X .

For an algorithm A we write x ← A(y), resp. x ←$ A(y), for the algorithm de-

terministically, resp. probabilistically, outputting x on input y. We indicate by AO an

algorithm A running with oracle access to some other algorithm O.

2.2. Collision-Resistant Hash Functions

As often the case in practice, the cryptographic hash functions used in TLS 1.3 are

unkeyed. When considering a hash function’s collision resistance, we hence demand

that a security reduction provides effective means for constructing a concrete algorithm

generating a collision (cf. Rogaway [91]).

Definition 2.1. (Hash function and collision resistance) A hash function H : {0, 1}∗ →

{0, 1}λ maps arbitrary-length messages m ∈ {0, 1}∗ to a hash value H(m) ∈ {0, 1}λ of

fixed length λ ∈ N.

We can now measure the collision resistance (COLL) with respect to an adversary A

via the advantage

AdvCOLL
H,A := Pr

[
(m, m′) ←$ A : m �= m′ and H(m) = H(m′)

]
.

In the common asymptotic notion, we would demand that one cannot construct an

efficient adversary A where this advantage is non-negligible with respect to the security

parameter λ.

2.3. HMAC and HKDF

TLS 1.3 employs HKDF [68,73] as its key derivation function, with HMAC [12,67] at

its core. We briefly recap their definition and usage.

HMAC [12,67] is based on a cryptographic hash function H : {0, 1}∗ → {0, 1}λ

and keyed with some key K ∈ {0, 1}λ (larger key material is hashed through H to

obtain a λ-bit key). Computing the HMAC value on some message m is then defined as

HMAC(K , m) := H((K ⊕ opad) ‖ H((K ⊕ ipad) ‖ m)), where opad and ipad are two

λ-bit padding values consisting of repeated bytes 0x5c and 0x36, respectively.

HKDF follows the extract-then-expand paradigm for key derivation [68,73], in-

stantiated with HMAC. We adopt the standard notation for the two HKDF functions:

HKDF.Extract(XTS, SKM) on input an (non-secret and potentially fixed) extractor

salt XTS and some (not necessarily uniform) source key material SKM outputs a pseudo-

random key PRK. HKDF.Expand(PRK, CTXinfo, L)on input a pseudorandom key PRK

(from the Extract step) and some (potentially empty) context information CTXinfo out-

puts pseudorandom key material KM of length L bits. (For simplicity, we omit the third

parameter L in Expand when L = λ, which is the case throughout TLS 1.3 except when

37 Page 8 of 69 B. Dowling et al.

deriving traffic keys (cf. Table 2).) Both functions are instantiated with HMAC, where

directly HKDF.Extract(XTS, SKM) := HMAC(XTS, SKM) and HKDF.Expand itera-

tively invokes HMAC to generate pseudorandom output of the required length (see [73]).

2.4. Dual PRF Security and the PRF-ODH Assumption

Most key derivation steps in TLS 1.3 rely on regular pseudorandom function (PRF)

security for the HKDF and HMAC functions. In our analysis of the PSK handshakes, we

also treat HMAC as a collision-resistant unkeyed hash function over the pair of inputs,

as in Definition 2.1. For some of its applications, we, however, need to deploy stronger

assumptions which we recap here.

The first assumption is concerned with the use of HMAC as a dual PRF (cf. [14]).

Definition 2.2. (Dual PRF security) Let f : K×L → O be a pseudorandom function

with key space K and label space L such that K = L. We define the dual PRF security

of f as the PRF security of f swap(k, l) := f (l, k) and the according advantage function

as

Advdual-PRF-sec
f,A := AdvPRF-sec

f swap,A .

The second assumption, the so-called pseudorandom-function oracle-Diffie–Hellman

PRF-ODH assumption, has been introduced by Jager et al. [64] in their analysis of the

TLS 1.2 key exchange. It is a variant of the oracle-Diffie–Hellman assumption introduced

by Abdalla et al. [5] in the context of the DHIES encryption scheme. Basically, the

PRF-ODH assumption states that the value PRF(guv, x⋆) for a Diffie–Hellman-type

key guv is indistinguishable from a random string, even when given gu and gv and

when being able to see related values PRF(Su, x) and/or PRF(T v, x) for chosen values

S, T , and x . The PRF-ODH assumption comes in various variants, which have been

generalized and studied by Brendel et al. [17].

For our analysis of TLS 1.3, we will deploy only the snPRF-ODH assumption pro-

viding limited oracle access to only a single related value PRF(Su, x), as well as its dual

variant, dual-snPRF-ODH. Both have been established by Brendel et al. [17] to hold

for HMAC in the random oracle model under the strong Diffie–Hellman assumption.

Definition 2.3. (snPRF-ODH anddual-snPRF-ODH assumptions) Let λ ∈ N, G be

a cyclic group of prime order q with generator g and PRF : G × {0, 1}∗ → {0, 1}λ be a

pseudorandom function.

We define the snPRF-ODH security game as follows.

1. The challenger samples b ←$ {0, 1}, u, v ←$ Zq , and provides G, g, gu , and gv

to A, who responds with a challenge label x⋆.

2. The challenger computes y⋆
0 = PRF(guv, x⋆) and samples y⋆

1 ←$ {0, 1}λ uni-

formly at random, providing y⋆
b to A.

3. A may query a pair (S, x), on which the challenger first ensures that S /∈ G or

(S, x) = (gv, x⋆) and, if so, returns y ← PRF(Su, x).

4. Eventually, A stops and outputs a guess b′ ∈ {0, 1}.

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 9 of 69 37

We define the snPRF-ODH advantage function as

AdvsnPRF-ODH
PRF,G,A := 2 · Pr[b′ = b] − 1.

We define the dual variant of the assumption, dual-snPRF-ODH, as the

snPRF-ODH assumption for a function PRF : {0, 1}∗ × G → {0, 1}λ with swapped

inputs, keyed with a group element in the second input and taking the label as first input.

3. The TLS 1.3 Handshake Protocol

In this section we describe the TLS 1.3 handshake protocol modes, specifically the full

one round-trip time (1-RTT) handshake, depicted on the left-hand side of Fig. 1, and

the combined zero round-trip time (0-RTT) and pre-shared key handshake, depicted

on the right-hand side of in Fig. 1. Our focus in Fig. 1 and throughout the paper is

on the cryptographic aspects of the TLS 1.3 handshake. As such, we omit many other

components of the protocol, including most hello extensions, aspects of version and

algorithm negotiation, post-handshake messages, the record layer protocol, and the alert

protocol.

In TLS 1.3, the 1-RTT and PSK handshakes are divided into two distinct phases:

a key exchange phase, where the client and the server exchange Hello messages to

indicate support for different cryptographic options and use the selected parameters

to generate key exchange material; and an authentication phase, where the client and

the server exchangeCertificateVerify and Finishedmessages, authenticating

each other using long-term asymmetric (or symmetric) values. Figure 2 illustrates the key

schedule of TLS 1.3, Table 1 lists abbreviations for messages and keys used throughout

the paper, and Table 2 details some of the computations and inputs.

3.1. Key-Exchange Phase

The key exchange phase consists of the exchange of ClientHello (CH) and

ServerHello (SH) messages, during which parameters are negotiated and the core

key exchange is performed, using either Diffie–Hellman key exchange or based on a

pre-shared symmetric key.

ClientHello. The client begins by sending the ClientHello message, which

contains rc (a randomly-sampled 256-bit nonce value), as well as version and algorithm

negotiation information.

Attached to the ClientHello is the KeyShare (CKS) extension which contains

public key shares for the key exchange. Other extensions are present for further algorithm

and parameter negotiation. (Note that our analysis in Sects. 5 and 6 does not consider

the negotiation of cryptographic values (such as pre-shared keys or (EC)DHE groups)

or handshake modes, but instead our analysis considers each handshake mode and ci-

phersuite combination in isolation. This can be seen in Fig. 1, e.g., the CKS message

contains only a single (EC)DHE key share.)

If a pre-shared secret has been established between the client and the server (either

in a previous handshake or via some out-of-band mechanism) the client may include

37 Page 10 of 69 B. Dowling et al.

Fig. 1. The TLS 1.3 full 1-RTT handshake protocol (left) and the PSK/PSK-(EC)DHE handshake protocol

with optional 0-RTT (right). Shorthands are explained in Table 1; the values of context and label inputs (H∗,

resp. Label∗) and details on the calculation of traffic keys (tk∗) can be found in Table 2.

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 11 of 69 37

the PreSharedKey (CPSK) extension, which indicates handshake modes (such as

PSK or PSK-(EC)DHE) that the client supports, and a list of pre-shared symmetric

identities that map to these PSKs. (As for the KeyShare extension, we do not consider

negotiation here and only capture the single PSK entry that client and server agree upon.)

If CPSK is included, the client computes a binder key value BK for each pre-shared key

PSK in the list, from that a key fkB , and a value binder ← HMAC(fkB, H(CH†)) that

binds the current CHmessage (truncated to exclude the binder value itself) to each PSK,

also included in the CPSK message and checked by the server. This is captured on the

right-hand side of Fig. 1.

Finally, if the client wishes to use the pre-shared secret to send zero-round-trip time

(0-RTT) data, the client can indicate this by sending a EarlyDataIndication

extension. This will indicate to the server that the client will use the first pre-shared secret

indicated in theCPSK list to derive an early traffic secret (ETS), and early exporter master

secret (EEMS), and begin sending encrypted data to the server without first requiring

the client to receive ServerHello response.

ServerHello. The next message in the key-exchange phase is the ServerHello

(SH) message. As in CH, the server will randomly sample a 256-bit nonce value rs .

The server picks among the various algorithms and parameters offered by the client and

responds with its selections. If CPSK was sent, the server decides whether to accept a

PSK-based handshake. If so, then the pre-shared key identifier pskid associated with

the selected PSK is sent in the PreSharedKey (SPSK) extension. If the server has

chosen PSK-(EC)DHE mode (or has rejected the use of PSKs), the server will generate

its own (EC)DHE key share Y ← gy , sending Y in the KeyShare (SKS) extension

attached to SH.

At this point, the server has enough information to compute the client handshake

traffic secret (CHTS) and server handshake traffic secret (SHTS) values, and uses these

to derive client and server handshake traffic keys (tkchs and tkshs, respectively). The first

part of Fig. 2 shows the key schedule for deriving these keys. Note that we consider tkchs

and tkshs being derived at the same point in time (namely when the handshake secret HS

becomes available), although tkchs is in principle only needed a bit later.

The server now begins to encrypt all handshake messages under tkshs, and any ex-

tensions that are not required to establish the server handshake traffic key are sent (and

encrypted) in the EncryptedExtensions (EE) messages.

3.2. Authentication Phase

The authentication phase now begins. All handshake messages in this phase are en-

crypted under tkshs or tkchs. In the full 1-RTT handshake, authentication is based on

public key certificates; see the left-hand side of Fig. 1. In pre-shared key handshakes

(both PSK and PSK-(EC)DHE), the server and client will authenticate each other by

relying on a message authentication code applied to the transcript; see the right-hand

side of Fig. 1.

Authentication in Full 1-RTT Handshake The server can request public-key-based

client authentication by sending a CertificateRequest (CR) message. The server

will authenticate to the client by using the server’s long-term public keys. Here, the server

37 Page 12 of 69 B. Dowling et al.

F
ig

.
2

.
T

h
e

T
L

S
1

.3
k
ey

sc
h

ed
u

le
.

T
h

e
v
al

u
es

o
f

co
n

te
x

t
an

d
la

b
el

in
p

u
ts

(H
∗

,
re

sp
.
L
a
b
e
l

∗
)

an
d

d
et

ai
ls

o
n

th
e

ca
lc

u
la

ti
o
n

o
f

tr
af

fi
c

k
ey

s
(E

x
p
∗

)
ca

n
b

e
fo

u
n

d
in

T
ab

le
2

.

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 13 of 69 37

begins by sending its certificate (carrying its public key) in the ServerCertificate

(SCRT) message. The server then computes ServerCertificateVerify authen-

tication value by signing the session hash (which is a continuously updating hash

of all messages up to this point in the protocol), then sends it to the client as the

ServerCertificateVerify message.

Server Key Confirmation and Key Derivation In all handshake modes, the final message

that the server sends to the client is the ServerFinished (SF) message. The server

first derives a server finished key fkS from SHTS and then computes a MAC tag SF over

the session hash. This value is also encrypted under tkshs, sending the output ciphertext to

the client. At this point, the server is able to compute the client application traffic secret

(CATS), the server application traffic secret (SATS), and the exporter master secret

(EMS). Figure 2 shows the key schedule for deriving these keys and all other keys in

the authentication phase. Now that the server has computed the server application traffic

key tksapp, it can begin sending encrypted application data to the client without waiting

for the final flight of messages from the client, thus achieving a 0.5-RTT handshake.

Client Verification, Authentication, Key Confirmation, and Key Derivation The client,

upon receiving these messages, checks that the signature SCV (if in full 1-RTT mode)

and the MAC SF verify correctly. If the server has requested client authentication,

the client will begin by sending its digital certificate (carrying its public-key) in the

ClientCertificate (CCRT) message, after which the client will compute its own

certificate verify value CCV by signing the session hash, then send it to the server as the

CCVmessage. The client finally derives the client finished key fkC from CHTS and uses

fkC to compute a MAC tag CF over the session hash.

Server Verification The server will verify the final MAC (SF) and optional signature

(SCV) messages of the client.

Handshake Completion At this point both parties can compute the resumption master

secret (RMS) value that can be used as a pre-shared key for session resumption in the

future. Both parties can now derive the client application traffic key (tkcapp) and use the

record layer for encrypted communication of application data with the resulting keys.

3.3. NewSessionTicket

The NewSessionTicket message is a post-handshake message in TLS 1.3 which

refers to values from the handshake protocol. The NewSessionTicket message can

be sent by a server to the client (encrypted under a server application traffic key tksapp)

to allow the client to compute values associated with resumption handshakes, including

the PSK used in resumption as well as an identifier to indicate to the server which pre-

shared key is being used. The NewSessionTicket message contains two fields that

are interesting for this purpose:

37 Page 14 of 69 B. Dowling et al.

Table 1. Shorthands for TLS 1.3 messages (in protocol order) and derived keys/values (alphabetical).

Message Derived key or value

CH ClientHello BK Binder Key

CKS ClientKeyShare CHTS/SHTS Client/Server Handshake Traffic Secret

CPSK ClientPreSharedKey CATS/SATS Client/Server Application Traffic Secret

SH ServerHello dES/dHS Derived Early/Handshake Secret

SKS ServerKeyShare ES/HS/MS Early/Handshake/Master Secret

SPSK ServerPreSharedKey ETS Early Traffic Secret

EE EncryptedExtensions EEMS/EMS (Early) Exporter Master Secret

CR CertificateRequest fkB /fkC /fkS Binder/Client/Server Finished Key

SCRT ServerCertificate RMS Resumption Master Secret

SCV ServerCertificateVerify tkeapp Early Application Traffic Key

SF ServerFinished tkchs/tkshs Client/Server Handshake Traffic Key

CCRT ClientCertificate tkcapp/tksapp Client/Server Application Traffic Key

CCV ClientCertificateVerify

CF ClientFinished

• ticket_nonce, which is used by the client as the salt value to derive the pre-

shared key to be used in future handshake for resumption: PSK ← HKDF.

Expand(RMS, “resumption”, ticket_nonce).

• ticket, which is an opaque label used to publicly refer to the associated pre-

shared key in future PreSharedKey messages. In our notation used in Fig. 1, the

pre-shared key identifier pskid = ticket.

In our analysis, we do not capture this NewSessionTicket message, nor the

derivation of PSK from RMS, and instead assume that the mapping between PSK and

pskid is established in some out-of-band way. In particular, we do not capture trans-

mission of NewSessionTicket under a server application traffic key tksapp, as it

would impact how we consider the usage of SATS. In our analysis, we currently con-

sider SATS an “external key“, used in an arbitrary symmetric-key protocol. To

capture the transmission of NewSessionTicket, we would need to capture the use

of SATS in deriving tksapp and then establishing PSK. We choose to simplify the analysis

by omitting this mechanism and leave this as future work.

4. Multi-Stage Key Exchange Security Model

In order to capture the security of all variants of the TLS 1.3 handshake within a single

comprehensive security model, we adopt the multi-stage key exchange model in the ver-

sion by Günther [61] which combines the original model by Fischlin and Günther [52]

with follow-up extensions [38,39,53]. We refer to Günther [61] for an extensive discus-

sion of the model, but recap its core concepts and definitions as well as adaptations for

our analysis in the following.

The model follows the classical paradigm for key exchange models of Bellare and

Rogaway [25] in the formalism of Brzuska et al. [22,26]. This paradigm captures a

strong adversary that controls the network and is able to both passively eavesdrop and

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 15 of 69 37

Table 2. Secret, context, and label inputs to the HKDF.Expand resp. authentication functions as well as

traffic key calculation in the TLS 1.3 handshake (Fig. 1) and key schedule (Fig. 2).

Secret Context input Label input

BK H0 = H(“”) Label0 =“ext binder” / “res

binder”

fkB Hε = “” Label6 = “finished”

ETS H1 = H(ClientHello) Label1 = “c e traffic”

EEMS H1 = H(ClientHello) Label2 = “e exp master”

dES H0 = H(“”) Label3 = “derived”

CHTS H2 = H(ClientHello‖ServerHello) Label4 = “c hs traffic”

SHTS H2 = H(ClientHello‖ServerHello) Label5 = “s hs traffic”

fkS Hε = “” Label6 = “finished”

dHS H0 = H(“”) Label3 = “derived”

CATS H3 = H(ClientHello‖ . . . ‖ServerFinished) Label7 = “c ap traffic”

SATS H3 = H(ClientHello‖ . . . ‖ServerFinished) Label8 = “s ap traffic”

EMS H3 = H(ClientHello‖ . . . ‖ServerFinished) Label9 = “exp master”

fkC Hε = “” Label6 = “finished”

RMS H4 = H(ClientHello‖ . . . ‖ClientFinished) Label10 = “res master”

Auth. value Context input Context string (for signatures only)

binder H5 = H(ClientHello†)

SCV H6 = H(ClientHello‖ . . . ‖ServerCert) Label11 = “TLS 1.3, server

CertificateVerify”

SF H7 = H(ClientHello‖ . . . ‖ServerCertVfy)

CCV H8 = H(ClientHello‖ . . . ‖ClientCert) Label12 = “TLS 1.3, client

CertificateVerify”

CF H9 = H(ClientHello‖ . . . ‖ClientCertVfy∗)

Traffic key calculation

tkeapp/tkchs/tkshs/tkcapp/tksapp = (key, iv) =

DeriveTK(ETS/CHTS/SHTS/CATS/SATS) where DeriveTK(Secret) =

(HKDF.Expand(Secret,“key”, H(“”), Lk), HKDF.Expand(Secret,“iv”, H(“”), L iv))

with Lk /L iv indicating the key/iv length of the negotiated AEAD scheme

The actual label input to HKDF.Expand is the concatenation of the hash length (in bytes), the string

“tls13 ”, Label, and the given context value. HKDF.Expand is then called on the corresponding secret,

this augmented label, and the desired output length. ClientCertVfy∗ is only included in case of client

authentication. ClientHello† indicates a truncated version of ClientHello which excludes the binder

value itself. Signatures in SCV and CCV are computed over the concatenation of a constant (0x20 repeated

64 times), the label as context information, a separating 0 byte, and the context value

to actively modify the communication across multiple sessions of the key exchange

protocol (spawning them via a NewSession oracle and directing communication via

a Send oracle). The adversary is further allowed to expose the long-term secrets of

interacting honest parties (via a Corrupt oracle) as well as the session keys in some

protocol runs (through a Reveal oracle). Basic security then demands that such adversary

cannot distinguish the real established session key in some uncompromised (“fresh”)

session from a random one (through a Test oracle).

The multi-stage key exchange model now extends the basic key exchange setting by

capturing protocols that derive a series of session keys in multiple stages. Each stage is

37 Page 16 of 69 B. Dowling et al.

associated with particular security properties, steering admissibility of certain adversarial

actions for that stage and under which conditions the key of this stage is considered fresh.

These security properties model the following aspects:

Authentication. Our model distinguishes between unauthenticated stages, unilaterally

authenticated stages where only the responder (the server in TLS 1.3) authenticates, and

mutually authenticated stages where both peers authenticate. We treat the authentication

of each stage individually and consider concurrent executions of different authentication

modes of the same protocol. The identities of communication partners may be learned

only during the execution of the protocol (e.g., through exchanged certificates), which

we implement through post-specified peers following Canetti and Krawczyk [34]. Our

model demands a strong notion of security for sessions with unauthenticated peers,

namely that such sessions achieve key secrecy when receiving their messages from

an honest session (identified via a contributive identifier), independent of whether that

honest peer session later becomes partnered. Moreover, the authentication level of some

stage may be raised with acceptance of a later stage, e.g., from unauthenticated to unilat-

erally or even mutually authenticated. This may happen for instance if a party later signs

previously transmitted data, as in case of TLS 1.3. We capture this by allowing a protocol

to specify the authentication level for each acceptance stage, as well as at which later

stage(s) that level increases. Note that we capture authentication implicitly through key

secrecy (i.e., keys are only known to the intended peer session) but do not prove explicit

authentication (i.e., the existence of a partnered session). The SIGMA design [72], on

which the main TLS 1.3 handshake is based, ensures explicit authentication. de Saint

Guilhem et al. [42] give a generic argument that explicit authentication follows from

implicit key secrecy (which is shown for TLS 1.3 in this article) and key confirmation

[55].

Forward secrecy.We capture the usual notion of forward secrecy, which ensures that

accepted session keys remain secure after a long-term secret compromise. In a multi-

stage key exchange protocol, forward secrecy may however be reached only from a

certain stage on (e.g., due to mixing-in forward-secret key material). The model hence

treats stage- j forward secrecy, indicating that keys from stage j on are forward secret.

Key usage.Some stage keys might be used internally in the key exchange protocol, e.g.,

in the case of TLS 1.3 the handshake key is used to encrypt part of the key exchange

communication. We distinguish the usage of keys as internal when used within the

key exchange, and external when exclusively used outside of the key exchange (e.g.,

to encrypt application data). In the former case, our model ensures that tested real-

or-random keys are accordingly used in subsequent key exchange steps, and pauses

the protocol execution to enable testing of those keys. We note that the declaration of

whether a key is internal or external is a parameter to the model, and becomes a part of

the protocol description and its security guarantees.

Public or pre-shared keys. Our multi-stage model comes in two flavors that capture

both the regular, public-key case (abbreviated as pMSKE) of long-term keys being

public/secret key pairs (as in the TLS 1.3 full handshake) as well as the pre-shared–

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 17 of 69 37

secret case (abbreviated sMSKE) case where pre-shared symmetric keys act as long-term

secrets (as in the TLS 1.3 resumption handshake).

Replayability. For 0-RTT key establishment, key exchange protocols (including TLS 1.3)

regularly give up strong replay protection guarantees, in the sense that client (initiator)

messages can be replayed to several server (responder) sessions. We capture this in

our model by distinguishing between replayable (0-RTT) and regular non-replayable

stages, taking potential replays into account for the former while still requiring key se-

crecy. Determining the replay type of a stage is again a parameter to the model and must

be specified as part of the protocol description resp. the security claim.

We note that former variants of multi-stage key exchange models including [61] further

differentiated whether the compromise of some stage’s key affects the security of other

stages’ keys under the notion of key (in)dependence. Here, we always demand such

compromise never affects other stages’ keys as the desirable goal, i.e., we postulate key

independence and reduce the model’s complexity by incorporating this property straight

into the model. As we will see, TLS 1.3 always achieves this property due to clean key

separation in the key scheduling and already did so in earlier draft versions [38,39,53].

Secret Compromise Paradigm We follow the paradigm of the Bellare–Rogaway model

[25], focusing on the leakage of long-term secret inputs and session key outputs of the

key exchange, but not on internal values within the execution of a session. This contrasts

to some extent with the model by Canetti and Krawczyk [33] resp. LaMacchia et al. [79]

which include a “session state reveal” resp. “ephemeral secret reveal” query that allows

accessing internal variables of the session execution.

In the context of TLS 1.3, this means we consider the leakage of:

• Long-term keys (such as the signing keys of the server or client, but also their pre-

shared keys), since long-term values have the potential to be compromised, and this

is necessary to model forward secrecy; it is captured in our model by the Corrupt

query.

• Session keys (such as the various traffic encryption keys or the derived resumption

or exporter secrets), since these are outputs of the key exchange and are used beyond

this protocol for encryption, later resumption, or exporting of keying material; this

is modeled by the Reveal query.

We do not permit the leakage of:

• Ephemeral secrets / randomness (such as the randomness in a signature algorithm

or ephemeral Diffie–Hellman exponents); this is disallowed since TLS 1.3 is not

designed to be secure if these values are compromised.

• Internal values / session state (e.g., internally computed master secrets or MAC

keys); this is disallowed since TLS 1.3 is not designed to be secure if these values

are compromised.

Comparison with Previous Multi-stage Key Exchange Models Compared to the original

MSKE model of Fischlin and Günther [52], the most notable changes in our model are

37 Page 18 of 69 B. Dowling et al.

the addition which models upgradeable authentication and accommodating both public

and pre-shared symmetric keys for authentication. We also do not track whether keys are

independent or not, as all keys established in TLS 1.3 satisfy key independence (unlike

in the analysis of QUIC in [52]). Key usage (internal versus external) and replayability

were introduced to MSKE by [53].

4.1. Syntax

In our model, we explicitly separate some protocol-specific properties (as, e.g., various

authentication flavors) from session-specific properties (as, e.g., the state of a running

session). We represent protocol-specific properties as a vector (M, AUTH, FS, USE,

REPLAY) that captures the following:

• M ∈ N: the number of stages (i.e., the number of keys derived). (We fix a maximum

stage M only for ease of notation. Note that M can be arbitrarily large in order to

cover protocols where the number of stages is not bounded a-priori. Also note that

stages and session key derivations may be “back to back,” without further protocol

interactions between parties.)

• AUTH ⊆ {((u1, m1), . . . , (uM, mM)) | u j , m j ∈ {1, . . . , M,∞}}: a set of vectors

of pairs, each vector encoding a supported scheme for authentication and authen-

tication upgrades, for each stage. For example, the i-th entry (ui , mi) in a vector

says that the session key in stage i initially has the default unauthenticated level,

i.e., provides no authentication for either communication partner, then at stage

ui becomes unilaterally authenticated and thus authenticates only the responder

(server), and becomes mutually authenticated to authenticate both communication

partners at stage m j . Note that we allow for example ui = i (or even ui = mi = i)

such that the session key is immediately unilaterally (resp. mutually) authenticated

when derived. Entries in each pair must be non-decreasing, and ui = ∞ or mi = ∞

denotes that unilateral, resp. mutual, authentication is never reached for stage i .

• FS ∈ {1, . . . , M,∞}: the stage j = FS from which on keys are forward secret (or

∞ in case of no forward secrecy). (A more general multi-stage key exchange model

could have a vector tracking specifically which subset of stage keys have forward

secrecy. We do not need such generality since forward secrecy is monotonic in TLS

1.3.)

• USE ∈ {internal, external}M: the usage indicator for each stage, where USEi

indicates the usage of the stage-i key. Here, an internal key is used within the key

exchange protocol (but possibly also externally), whereas an external key must not

be used within the protocol, making the latter potentially amenable to generic com-

position (cf. Sect. 7.3). As shorthand notation, we, e.g., write USE = (internal :

{1, 4}, external : {2, 3, 5}) to indicate that usage of keys in stage 1 and 4 is internal,

and external for the other stages.

• REPLAY ∈ {replayable, nonreplayable}M: the replayability indicator for each

stage, where REPLAYi indicates whether the i-th stage is replayable in the sense

that an adversary can easily force identical communication and thus identical session

identifiers and keys in this stage (e.g., by re-sending the same data in 0-RTT stages).

Note that the adversary, however, should still not be able to distinguish such a

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 19 of 69 37

replayed key from a random one. We remark that, from a security viewpoint, the

usage of replayable stages should ideally be limited, although such stages usually

come with an efficiency benefit. We use the same shorthand notation as for USE;

e.g., REPLAY = (nonreplayable : {1, 2, 3}) indicates that all three stages are

non-replayable.

We denote by U the set of identities (or users) used to model the participants in the

system, each identified by some U ∈ U . Sessions of a protocol are uniquely identified

(on the administrative level of the model) using a label label ∈ LABELS = U ×U ×N,

where label = (U, V, n) indicates the n-th local session of identity U (the session

owner) with V as the intended communication partner.

In the public-key variant of the model (pMSKE), each identity U is associated with

a certified long-term public key pkU and secret key skU . In the pre-shared secret set-

ting (sMSKE), a session instead holds an identifier pssid ∈ {0, 1}∗ for the pre-shared

secret pss ∈ P (from some pre-shared secret space P) used. The challenger maintains

maps pssU,V : {0, 1}∗ → P mapping an identifier to the corresponding secret shared by

parties U and V , where U uses that secret (only) in the initiator role and V (only) in the

responder role, and for any user U , a pre-shared secret identifier pssid uniquely identi-

fies the peer identity V it is shared with. (Requiring a fixed role in which a pre-shared

key can be used by either peer avoids the Selfie attack [1,44].)

For each session, a tuple with the following information is maintained as an entry

in the session list ListS, where values in square brackets [] indicate the default initial

value. Some variables have values for each stage i ∈ {1, . . . , M}.

• label ∈ LABELS: the unique (administrative) session label

• id ∈ U : the identity of the session owner

• pid ∈ U∪{∗}: the identity of the intended communication partner, where the distinct

wildcard symbol ‘∗’ stands for “currently unknown identity” but can be later set to

a specific identity in U once by the protocol

• role ∈ {initiator, responder}: the session owner’s role in this session

• auth ∈ AUTH: the intended authentication type vector from the set of supported

authentication properties AUTH, where authi indicates the authentication level pair

for stage i , and authi, j its j-th entry

• pssid ∈ {0, 1}∗ ∪ {⊥}: In the pre-shared secret (sMSKE) variant the identifier for

the pre-shared secret (i.e., pssid,pid if role = initiator, else psspid,id) to be used in

the session; can be initialized with ⊥ if pid = ∗ is unknown and then must be set

(once) when pid is set

• stexec ∈ (RUNNING ∪ ACCEPTED ∪ REJECTED): the state of execution

[running0], where RUNNING = {runningi | i ∈ N ∪ {0}}, ACCEPTED =

{acceptedi | i ∈ N}, REJECTED = {rejectedi | i ∈ N}; set to acceptedi in

the moment a session accepts the i-th key, to rejectedi when the session rejects

that key (a session may continue after rejecting in a stage (this models, e.g., servers

rejecting 0-RTT data from a client, but continuing with the remaining handshake)),

and to runningi when a session continues after accepting the i-th key

• stage ∈ {0, . . . , M}: the current stage [0], where stage is incremented to i when

stexec reaches acceptedi resp. rejectedi

37 Page 20 of 69 B. Dowling et al.

• sid ∈ ({0, 1}∗ ∪ {⊥})M: sidi [⊥] indicates the session identifier in stage i , set once

(and only) upon acceptance in that stage

• cid ∈ ({0, 1}∗ ∪{⊥})M: cidi [⊥] indicates the contributive identifier in stage i , may

be set several times until acceptance in that stage

• key ∈ ({0, 1}∗ ∪ {⊥})M: keyi [⊥] indicates the established session key in stage i ,

set once upon acceptance in that stage

• stkey ∈ {fresh, revealed}M: stkey,i [fresh] indicates the state of the session key in

stage i

• tested ∈ {true, false}M: test indicator testedi [false], where true means that keyi

has been tested

• corrupted ∈ {0, . . . , M,∞}: corruption indicator [∞] holding the stage the session

was in when a Corrupt was issued to its owner or intended partner, including the

value 0 if the corruption had taken place before the session started, and ∞ if none

of the parties is corrupted

By convention, adding a not fully specified tuple (label, id, pid, role, auth) resp. (label,

id, pid, role, auth, pssid) to ListS sets all other entries to their default value. As short-

hands, for some tuple with (unique) label label in ListS we furthermore write label.X

for that tuple’s element X and label.(X, Y, Z) for the vector (X, Y, Z) of that tuple’s

elements X , Y , and Z .

We define two distinct sessions label and label′ to be partnered in stage i if both

sessions hold the same session identifier in that stage, i.e., label.sidi = label′.sidi �= ⊥,

and require for correctness that two sessions having a non-tampered joint execution are

partnered in all stages upon acceptance.

Our security model treats corruption of long-term secrets (secret keys for pMSKE,

pre-shared secrets for sMSKE). While the effects of such compromises on sessions may

differ in each setting, we broadly consider the derived keys of some session to be revealed

if, in the public-key setting (pMSKE), the owner or peer secret key is compromised, or

in the pre-shared secret setting (sMSKE), if the pre-shared secret used for that session is

compromised. Forward secrecy comes into play when determining if keys derived prior

to the long-term secret corruption are affected, too. In more precise notation, we say a

session label is corrupted if

• for pMSKE, the session’s owner label.id or intended communication partner

label.pid is corrupted (i.e., {label.id, label.pid} ∩ corrupted �= ∅), resp.

• for sMSKE, the used pre-shared secret is corrupted (i.e., (label.id, label.pid, label.

pssid) ∈ corrupted, the set of corrupted users) if label.role = initiator, resp.

(label.pid, label.id, label.pssid) ∈ corrupted if label.role = responder.

Upgradable Authentication We capture that the authentication level of some stage may

increase, possibly twice, with acceptance of a later stage through a per-stage vector in

the authentication level matrix. When capturing security, our model however needs to

carefully consider the interaction of authentication and corruptions (somewhat similar

to what one might be used to for forward secrecy). More precisely, the authentication

guarantee of some stage i after its acceptance can only step up (in some later stage j > i)

if the involved parties are not corrupted by the time stage j accepts. Otherwise, the

adversary may have impersonated the party up to the unauthenticated stage i and now

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 21 of 69 37

post-authenticates as the party after corruption in stage j . This would effectively mean

that the adversary has been in full control of the session and may thus know the session

key of stage i .

We capture the upgrade by defining the rectified authentication level rect_authi of

some stage i in a session with intended authentication vector auth, consisting of pairs

(authi,1, authi,2) describing the stage in which the i-th session key gets unilaterally and

mutually authenticated, with corruption indicator corrupted, and with current execution

stage stage as follows:

rect_authi :=

⎧
⎪⎨
⎪⎩

mutual if stage ≥ authi,2 and corrupted ≥ authi,2

unilateral if stage ≥ authi,1 and corrupted ≥ authi,1

unauth otherwise

This encodes that authentication level of stage i is upgraded (to unilateral or mutual)

when reaching stage authi,1, resp. authi,2, only if no corruption affected this session

prior to these stages (authi,1, resp. authi,2).

4.2. Adversary Model

We consider a probabilistic polynomial-time (PPT) adversary A which controls the com-

munication between all parties, enabling interception, injection, and dropping of mes-

sages. Our adversary model further reflects the advanced security aspects in multi-stage

key exchange as outlined above. We conveniently capture admissibility of adversarial

interactions and conditions where the adversary trivially loses (such as both revealing

and testing the session key in partnered sessions) via a flag lost (initialized to false).

The adversary interacts with the protocol via the following queries.

• NewSecret(U, V, pssid): This query is only available in the pre-shared secret

(sMSKE) variant. Generates a fresh secret with identifier pssid shared between

parties U and V , to be used by U in the initiator role and by V in the responder

role. If pssU,V (pssid) is already set, return ⊥ to ensure uniqueness of pssid

identifiers between two parties in these roles. Otherwise, sample pss ←$ P

uniformly at random from the protocol’s pre-shared secret space P and define

pssU,V (pssid) := pss.

• NewSession(U, V, role, auth[, pssid]): Creates a new session with a (unique)

new label label for owner identity id = U with role role, having pid = V as

intended partner (potentially unspecified, indicated by V = ∗) and aiming at

authentication type auth.

In the pre-shared secret (sMSKE) variant, the additional parameter pssid identi-

fies the pre-shared secret to be used, namely pssU,V (pssid) if role = initiator,

resp. pssV,U (pssid) if role = responder. The identifier might be unspecified

at this point (indicated by pssid = ⊥) and may then be set later by the protocol

once.

37 Page 22 of 69 B. Dowling et al.

Add (label, U, V, role, auth), resp. (label, U, V, role, auth, pssid), to ListS.

If label is corrupted, set label.corrupted ← 0. This encodes the information

that the session is corrupt right from the beginning. Return label.

• Send(label, m): Sends a message m to the session with label label.

If there is no tuple with label label in ListS, return ⊥. Otherwise, run the protocol

on behalf of U on message m and return the response and the updated state of

execution label.stexec. As a special case, if label.role = initiator and m = init,

the protocol is initiated (without any input message).

If, during the protocol execution, the state of execution changes to acceptedi ,

the protocol execution is immediately suspended and acceptedi is returned

as result to the adversary. The adversary can later trigger the resumption of

the protocol execution by issuing a special Send(label, continue) query. For

such a query, the protocol continues as specified, with the party creating the next

protocol message and handing it over to the adversary together with the resulting

state of execution stexec. We note that this is necessary to allow the adversary to

test an internal key, before it may be used immediately in the response and thus

cannot be tested anymore to prevent trivial distinguishing attacks. It furthermore

allows the adversary to corrupt long-term keys in a fine-grained manner after

any acceptance of a key.

If the state of execution changes to label.stexec = acceptedi for some i

and there is a partnered session label′ �= label in ListS (i.e., label.sidi =

label′.sidi) with label′.testedi = true, then set label.testedi ← true and

(only if USEi = internal) label.keyi ← label′.keyi . This ensures that, if the

partnered session has been tested before, subsequent Test queries for the ses-

sion are answered accordingly and, in case it is used internally, this session’s key

keyi is set consistently. (Note that for internal keys this implicitly assumes the

following property of the later-defined Match security: whenever two partnered

sessions both accept a key in some stage, these keys will be equal.)

If the state of execution changes to label.stexec = acceptedi for some i and

the session label is corrupted, then set label.stkey,i ← revealed.

• Reveal(label, i): Reveals the session key label.keyi of stage i in the session

with label label.

If there is no session with label label in ListS or label.stage < i , then re-

turn ⊥. Otherwise, set label.stkey,i to revealed and provide the adversary with

label.keyi .

• Corrupt(U) or Corrupt(U, V, pssid): The first query is only used in the public-

key (pMSKE) variant, the second query only in the pre-shared secret (sMSKE)

variant. Provide the adversary with the corresponding long-term secret, i.e.,

skU (pMSKE), resp. pssU,V (pssid) (sMSKE). Add to the set of corrupted

entities corrupted the user U (for pMSKE), resp. (for sMSKE) the global pre-

shared secret identifier (U, V, pssid).

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 23 of 69 37

Record the time of corruption in each session label with label.id = U or

label.pid = U (pMSKE), resp. with label.(role, id, pid, pssid) ∈ {(initiator, U,

V, pssid), (responder, V, U, pssid)} (sMSKE), by setting label.corrupted ←

label.stage (unless label.corrupted �= ∞ already, in which case corruption

had taken place earlier such that we leave the value unchanged).

In the non-forward-secret case, for each such session label and for all i ∈

{1, . . . , M}, set label.stkey,i to revealed. I.e., all (previous and future) session

keys are considered to be disclosed.

In the case of stage- j forward secrecy, stkey,i of each such session label is

instead set to revealed only if i < j or if i > stage. This means that session

keys before the j-th stage (where forward secrecy kicks in) as well as keys that

have not yet been established are potentially disclosed.

• Test(label, i): Tests the session key of stage i in the session with label label. In

the security game this oracle is given a uniformly random test bit btest as state

which is fixed throughout the game.

If there is no session with label label in ListS or if label.stexec �= acceptedi

or label.testedi = true, return ⊥. If stage i is internal (i.e., USEi = internal)

and there is a partnered session label′ in ListS (i.e., label.sidi = label′.sidi)

with label′.stexec �= acceptedi , set the ‘lost’ flag to lost ← true. This ensures

that keys can only be tested once and, in case of internal keys, if they have just

been accepted but not used yet, ensuring also that any partnered session that may

have already established this key has not used it. If label.rect_authi = unauth,

or if label.rect_authi = unilateral and label.role = responder, but there is

no session label′ (for label �= label′) in ListS with label.cidi = label′.cidi ,

then set lost ← true. This ensures that having an honest contributive partner is

a prerequisite for testing unauthenticated stages, resp. the responder sessions in

a unilaterally authenticated stage. (Note that ListS entries are only created for

honest sessions, i.e., sessions generated by NewSession queries.) The check

is based on the uncorrupted authentication level rect_authi in order to take

corruptions between authentication upgrades into account.

Otherwise, set label.testedi to true. If the test bit btest is 0, sample a key

K ←$ D at random from the session key distribution D. If btest = 1, let K ←

label.keyi be the real session key. If USEi = internal (i.e., the tested i-th

key is indicated as being used internally), set label.keyi ← K ; in other words,

when btest = 0, we replace an internally used session key by the random and

independent test key K which is also used for consistent future usage within the

key exchange protocol. In contrast, externally used session keys are not replaced

by random ones, the adversary only receives the real (in case btest = 1) or

random (in case btest = 0) key. This distinction between internal and external

keys for Test queries emphasizes that external keys are not supposed to be used

within the key exchange (and hence there is no need to register the tested random

key in the protocol’s session key field), while internal keys will be used (and

hence the tested random key must be deployed in the remaining protocol steps

for consistency).

37 Page 24 of 69 B. Dowling et al.

Moreover, if there exists a partnered session label′ which has also just accepted

the i-th key (i.e., label.sidi = label′.sidi and label.stexec = label′.stexec =

acceptedi), then also set label′.testedi ← true and (only if USEi = internal)

label′.keyi ← label.keyi to ensure consistency (of later tests and (internal) key

usage) in the special case that both label and label′ are in state acceptedi and,

hence, either of them can be tested first.

Return K .

4.3. Security of Multi-Stage Key Exchange Protocols

As in the formalization of the Bellare–Rogaway key exchange model by Brzuska et

al. [22,26], we model security according to two games, one for key indistinguishability,

and one for session matching. The former is the classical notion of random-looking keys,

refined under the term Multi-Stage security according to the advanced security aspects

for multi-stage key exchange: (stage- j) forward secrecy, different authentication modes,

and replayability. The Match property complements this notion by guaranteeing that the

specified session identifiers sid effectively match the partnered sessions, and is likewise

adapted to the multi-stage setting.

4.3.1. Match Security

The notion of Match security ensures soundness of the session identifiers sid, i.e., that

they properly identify partnered sessions in the sense that

1. sessions with the same session identifier for some stage hold the same key at that

stage,

2. sessions with the same session identifier for some stage have opposite roles, except

for potential multiple responders in replayable stages,

3. sessions with the same session identifier for some stage agree on that stage’s

authentication level,

4. sessions with the same session identifier for some stage share the same contributive

identifier at that stage,

5. sessions are partnered with the intended (authenticated) participant and, for mutual

authentication based on pre-shared secrets, share the same key identifier,

6. session identifiers do not match across different stages, and

7. at most two sessions have the same session identifier at any non-replayable stage.

The Match security game GMatch
KE,A

thus is defined as follows.

Definition 4.1. (Match security) Let KE be a multi-stage key exchange protocol with

properties (M, AUTH, FS, USE, REPLAY) and A be a PPT adversary interacting with

KE via the queries defined in Sect. 4.2 in the following game GMatch
KE,A

:

Setup. In the public-key variant (pMSKE), the challenger generates long-term public/

private-key pairs for each participant U ∈ U .

Query. The adversary A receives the generated public keys (pMSKE) and has access

to the queries NewSecret, NewSession, Send, Reveal, Corrupt, and Test.

Stop. At some point, the adversary stops with no output.

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 25 of 69 37

We say that A wins the game, denoted by GMatch
KE,A

= 1, if at least one of the following

conditions holds:

1. There exist two distinct labels label, label′ such that label.sidi = label′.sidi �= ⊥

for some stage i ∈ {1, . . . , M}, but label.keyi �= label′.keyi . (Different session

keys in some stage of partnered sessions.)

2. There exist two distinct labels label, label′ such that label.sidi = label′.sidi �= ⊥

for some stage i ∈ {1, . . . , M}, but label.role = label′.role and REPLAYi =

nonreplayable, or label.role = label′.role = initiator and REPLAYi =

replayable. (Non-opposite roles of partnered sessions in non-replayable stage.)

3. There exist two distinct labels label, label′ such that label.sidi = label′.sidi �= ⊥

for some stage i ∈ {1, . . . , M}, but label.authi �= label′.authi . (Different authen-

tication types in some stage of partnered sessions.) (Observe that Match security

ensures agreement on the intended authentication levels (including potential up-

grades); the rectified authentication level in contrast is a technical element of the

security model capturing the actual level achieved in light of early corruptions

when evaluating Test queries.)

4. There exist two distinct labels label, label′ such that label.sidi = label′.sidi �= ⊥

for some stage i ∈ {1, . . . , M}, but label.cidi �= label′.cidi or label.cidi =

label′.cidi = ⊥. (Different or unset contributive identifiers in some stage of part-

nered sessions.)

5. There exist two distinct labels label, label′ such that label.sidi = label′.sidi �= ⊥

and label.sid j = label′.sid j �= ⊥ for stages i, j ∈ {1, . . . , M} where j ≤ i , with

label.role = initiator and label′.role = responder such that

• label.auth j,1 ≤ i (unilateral authentication), but label.pid �= label′.id, or

• label.auth j,2 ≤ i (mutual authentication), but label.id �= label′.pid or (only

for sMSKE) label.pssid �= label′.pssid.

(Different intended authenticated partner or (only sMSKE) different key iden-

tifiers in mutual authentication.)

6. There exist two (not necessarily distinct) labels label, label′ such that label.sidi =

label′.sid j �= ⊥ for some stages i, j ∈ {1, . . . , M} with i �= j . (Different stages

share the same session identifier.)

7. There exist three pairwise distinct labels label, label′, label′′ such that label.sidi =

label′.sidi = label′′.sidi �= ⊥ for some stage i ∈ {1, . . . , M} with REPLAYi =

nonreplayable. (More than two sessions share the same session identifier in a

non-replayable stage.)

We say KE is Match-secure if for all PPT adversaries A the following advantage

function is negligible in the security parameter:

AdvMatch
KE,A := Pr

[
GMatch

KE,A = 1
]
.

4.3.2. Multi-Stage Security

The second and core notion, Multi-Stage security, captures Bellare–Rogaway-like key

secrecy in the multi-stage setting as follows.

37 Page 26 of 69 B. Dowling et al.

Definition 4.2. (Multi-Stage security) Let KE be a multi-stage key exchange protocol

with properties (M, AUTH, FS, USE, REPLAY) and key distribution D, and A a PPT

adversary interacting with KE via the queries defined in Sect. 4.2 in the following game

G
Multi-Stage,D

KE,A
:

Setup. The challenger chooses the test bit btest ←$ {0, 1} at random and sets lost ←

false. In the public-key variant (pMSKE), it furthermore generates long-term

public/private-key pairs for each participant U ∈ U .

Query. The adversary A receives the generated public keys (pMSKE) and has access

to the queries NewSecret, NewSession, Send, Reveal, Corrupt, and Test.

Recall that such queries may set lost to true.

Guess. At some point, A stops and outputs a guess b.

Finalize. The challenger sets the ‘lost’ flag to lost ← true if there exist two (not nec-

essarily distinct) labels label, label′ and some stage i ∈ {1, . . . , M} such that

label.sidi = label′.sidi , label.stkey,i = revealed, and label′.testedi = true.

(Adversary has tested and revealed the key of some stage in a single session or

in two partnered sessions.)

We say that A wins the game, denoted by G
Multi-Stage,D

KE,A
= 1, if b = btest and

lost = false. Note that the winning condition is independent of forward secrecy and

authentication properties of KE, as those are directly integrated in the affected (Reveal

and Corrupt) queries and the finalization step of the game; for example, Corrupt is

defined differently for non-forward-secrecy versus stage- j forward secrecy.

We say KE is Multi-Stage-secure with properties (M, AUTH, FS, USE, REPLAY)

if KE is Match-secure and for all PPT adversaries A the following advantage function

is negligible in the security parameter:

Adv
Multi-Stage,D

KE,A
:= Pr

[
G

Multi-Stage,D

KE,A
= 1

]
−

1

2
.

5. Security Analysis of the TLS 1.3 Full 1-RTT Handshake

We now come to analyzing the TLS 1.3 full 1-RTT handshake in the public-key multi-

stage key exchange (pMSKE) model.

Protocol Properties The full handshake targets the following protocol-specific prop-

erties (M, AUTH, FS, USE, REPLAY):

• M = 6: The full 1-RTT handshake consists of six stages deriving, in order: the client

and server handshake traffic keys tkchs and tkshs, the client and server application

traffic secrets CATS and SATS, the exporter master secret EMS, and the resumption

master secret RMS. As shown in Fig. 1, we consider all stages’ keys being derived

on either side as soon as the relevant main secret (ES, HS, MS) becomes available,

despite client/server keys derived in parallel might become active with some delay

based on the flow direction.

• AUTH =
{
((3, m), (3, m), (3, m), (4, m), (5, m), (6, m)) | m ∈ {6,∞}

}
: The

handshake traffic keys tkchs/tkshs are initially unauthenticated and all keys are uni-

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 27 of 69 37

laterally authenticated after stage 3 is reached. With (optional) client authentication,

all keys furthermore become mutually authenticated with stage m = 6; otherwise

they never reach this level, m = ∞.

• FS = 1: The full 1-RTT handshake ensures forward secrecy for all keys derived.

• USE = (internal : {1, 2}, external : {3, 4, 5, 6}): The handshake traffic keys

are used internally to encrypt the second part of the handshake; all other keys are

external.

• REPLAY = (nonreplayable : {1, 2, 3, 4, 5, 6}): The keys of all stages are non-

replayable in the full 1-RTT handshake.

Session and Contributive Identifiers As part of the analysis in the pMSKE model, we

need to define how session and contributive identifiers are set for each stage during

execution of the TLS 1.3 full 1-RTT handshake.

Session identifiers are set upon acceptance of each stage and include a label and all

handshake messages up to this point (entering the key derivation):

sid1 = (“CHTS”, CH,CKS,SH,SKS),

sid2 = (“SHTS”, CH,CKS,SH,SKS),

sid3 = (“CATS”, CH,CKS,SH,SKS,EE,CR∗,SCRT,SCV,SF),

sid4 = (“SATS”, CH,CKS,SH,SKS,EE,CR∗,SCRT,SCV,SF),

sid5 = (“EMS”, CH,CKS,SH,SKS,EE,CR∗,SCRT,SCV,SF),

sid6 = (“RMS”, CH,CKS,SH,SKS,EE,CR∗,SCRT,SCV,SF,CCRT∗,CCV∗,CF).

Here, starred (∗) components are present only in mutual authentication mode. Note that

we define session identifiers over the unencrypted handshake messages.

For the contributive identifiers in stages 1 and 2, client (resp. server) upon sending

(resp. receiving) the ClientHello and ClientKeyShare messages set cid1 =

(“CHTS”,CH,CKS), cid2 = (“SHTS”,CH,CKS) and later, upon receiving (resp. send-

ing) the ServerHello and ServerKeyShare messages, extend it to cid1 =

(“CHTS”,CH,CKS,SH,SKS), cid2 = (“SHTS”,CH,CKS,SH,SKS). All other con-

tributive identifiers are set to cidi = sidi (for stages i ∈ {3, 4, 5, 6}) when the respective

session identifier is set.

5.1. Match Security

We are now ready to give our formal security results for the TLS 1.3 full 1-RTT hand-

shake, beginning with Match security.

Theorem 5.1. (Match security of TLS1.3 -full- 1RTT). The TLS 1.3 full 1-RTT

handshake is Match-secure with properties (M, AUTH, FS, USE, REPLAY)given above.

For any efficient adversary A, we have

AdvMatch
TLS1.3-full-1RTT,A ≤ n2

s ·
1

q
· 2−|nonce|,

37 Page 28 of 69 B. Dowling et al.

where ns is the maximum number of sessions, q is the group order, and |nonce| = 256

is the bit length of the nonces.

Recall that Match security is a soundness property of the session identifiers. From

our definition of session identifiers above, it follows immediately that partnered sessions

agree on the derived key, opposite roles, authentication properties, contributive identi-

fiers, and the respective stages. As in the proof of Match security forTLS1.3-full-1RTT,

The security bound arises as the birthday bound for two honest sessions choosing the

same nonce and group element; this not happening ensures at most two partners share

the same session identifier.

We need to show the seven properties of Match security (cf. Definition 4.1).

1. Sessions with the same session identifier for some stage hold the same key at

that stage.

The session identifiers in each stage include the Diffie–Hellman shares gx and gy

(through the CKS and SKS messages, fixing the only key input DHE = gxy to all

derived stage keys (recall that PSK = 0 in the TLS 1.3 full 1-RTT handshake).

Furthermore, for each stage, the session identifier includes all handshake messages

that enter the key derivation: for stages 1 and 2 messages up to SKS, for stages 3–5

messages up to SF, and for stage 6 all messages (up to CF). In each stage, the

session identifier hence determines all inputs to the key derivation, and agreement

on it thus ensures agreement on the stage key.

2. Sessions with the same session identifier for some stage have opposite roles,

except for potential multiple responders in replayable stages.

Assuming at most two sessions share the same session identifier (which we show

below), two initiator (client) or responder (server) sessions never hold the same

session identifier as they never accept wrong-role incoming messages, and the

initial Hello messages are typed with the sender’s role. There are no replayable

stages in the TLS 1.3 full 1-RTT handshake.

3. Sessions with the same session identifier for some stage agree on that stage’s

authentication level.

By definition, the authentication for stages 1–2 and 3–5 are fixed to unauth and

unilateral (from stage 3 on), respectively, hence agreed upon by all sessions. For the

last stage, the presence of CR, CCRT, and CCV in sid6 unambiguously determines

if, from stage 6 on, keys are mutually authenticated (and unilaterally otherwise).

4. Sessions with the same session identifier for some stage share the same con-

tributive identifier.

This holds due to, for each stage i , the contributive identifier cidi being final and

equal to sidi once the session identifier is set.

5. Sessions are partnered with the intended (authenticated) participant.

This case only applies to unilaterally or mutually authenticated stages, which is

achieved, possibly retroactively, when reaching stages 3, resp. stage 6 (only if

the client authenticates). In the TLS 1.3 full 1-RTT handshake, peer identities are

learned through the Certificate messages. As we are only concerned with

honest client and server sessions for Match security, which will only send cer-

tificates attesting their own identity, agreement on SCRT ensures agreeing on the

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 29 of 69 37

server (responder) identity, and vice versa for CCRT and the client (initiator) iden-

tity. Such agreement is ensured through including SCRT in the session identifier

for stage 3 for unilateral authentication, and SCRT and CCRT for mutual authenti-

cation in sid6: once two sessions reach these stages and agree on sid3, resp. sid6,

they (retroactively) also agree on the intended (responder, resp. initiator) peer.

6. Session identifiers are distinct for different stages.

This holds trivially as each stage’s session identifier has a unique label.

7. At most two sessions have the same session identifier at any non-replayable

stage.

Recall that all session identifiers held by some session include that session’s random

nonce and Diffie–Hellman share. Therefore, for a threefold collision among session

identifiers of honest parties, some session would need to pick the same group

element and nonce as one other session (which then may be partnered through a

regular protocol run to some third session). The probability for such collision to

happen can be bounded from above by the birthday bound n2
s ·1/q ·2−|nonce|, where

ns is the maximum number of sessions, q is the group order, and |nonce| = 256

the nonces’ bit length. �

5.2. Multi-Stage Security

We now come to the core multi-stage security result for the TLS 1.3 full 1-RTT hand-

shake.

Theorem 5.2. (Multi-Stage security of TLS1.3-full-1RTT). The TLS 1.3 full 1-RTT

handshake is Multi-Stage-secure with properties (M, AUTH, FS, USE, REPLAY)given

above. Formally, for any efficient adversary A against the Multi-Stage security there

exist efficient algorithms B1, …, B7 such that

Adv
Multi-Stage,D

TLS1.3-full-1RTT,A

≤ 6ns

⎛
⎜⎜⎜⎝

AdvCOLL
H,B1

+ nu · AdvEUF-CMA
SIG,B2

+ ns

⎛
⎜⎝

Advdual-snPRF-ODH
HKDF.Extract,G,B3

+ AdvPRF-sec
HKDF.Expand,B4

+ 2 · AdvPRF-sec
HKDF.Expand,B5

+ AdvPRF-sec
HKDF.Extract,B6

+ AdvPRF-sec
HKDF.Expand,B7

⎞
⎟⎠

⎞
⎟⎟⎟⎠

where ns is the maximum number of sessions and nu is the maximum number of users.

For the TLS 1.3 full 1-RTT handshake, Multi-Stage security essentially follows from

two lines of reasoning. First, the (unforgeable) signatures covering (a collision-resistant

hash of) the full Hello messages ensure that session stages with an authenticated

peer share exchanged Diffie–Hellman values originating from an honest partner session.

Then, all keys are derived in a way ensuring that (a) from a Diffie–Hellman secret

unknown to the adversary sessions derive keys indistinguishable from random (under

PRF-ODH and PRF assumptions on the HKDF.Extract and HKDF.Expand steps)

which (b) are independent, allowing revealing and testing of session keys across different

stages.

37 Page 30 of 69 B. Dowling et al.

Proof. In the following, we proceed via a sequence of games. Starting from the

Multi-Stage game, we bound the advantage difference of adversary A between any

two games by complexity-theoretic assumptions until we reach a game where the ad-

versary A cannot win, i.e., its advantage is at most 0.

Game 0. This is the original Multi-Stage game, i.e.,

Adv
Multi-Stage,D

TLS1.3-full-1RTT,A
= Adv

G0

TLS1.3-full-1RTT,A
.

Game 1. In a first step, we restrict the adversary A in the Multi-Stage game to make only

a single Test query. That is we can formally turn any multi-query adversary A into an

adversary A1 which makes only a single Test query. This reduces its advantage, based

on a careful hybrid argument, by a factor at most 1/6ns for the six stages in each of the

ns sessions. Note that in the hybrid argument A1 randomly guesses one of the sessions in

advance and only performs the single Test query for this session. The other Test queries

of a multi-query attacker are gradually substituted by carefully crafted Reveal queries,

where the single-query attacker A1 needs to know the correct partnering of sessions via

session identifiers sid for a correct simulation, e.g., to avoid losses due to bad Reveal-

Test combinations on session partners due to the new Reveal queries. The session

identifiers sid1 and sid2 only contain public information such that partnering is easy to

check for them. But then handshake encryption is turned on such that sid3, . . . , sid6 are

based on encrypted data. Fortunately, if the single Test query concerns a (client or server)

handshake traffic secret then partnering is easy to decide based on sid1 resp. sid2. If the

Test query refers to a later key we can reveal the handshake traffic keys of earlier stages,

use them to decrypt the subsequent communication, and hence determine sid3, . . . , sid6

as well. We provide the full details of this hybrid argument in Appendix A.

Incorporating the transformation of A into A1 into the game, i.e., by having the

challenger guess the right session and making the adaptations, we get

Adv
G0

TLS1.3-full-1RTT,A
≤ 6ns · Adv

G1

TLS1.3-full-1RTT,A
.

From now on, we can refer to the session label tested at stage i , and we can assume that

we know this session number (according to the order of initiated sessions) at the outset

of the experiment.

Game 2. In this game, the challenger aborts if any two honest sessions compute the

same hash value for different inputs in any evaluation of the hash function H. We can

break the collision resistance of H in case of this event by letting a reduction B1 output

the two distinct input values to H. Thus:

Adv
G1

TLS1.3-full-1RTT,A
≤ Adv

G2

TLS1.3-full-1RTT,A
+ AdvCOLL

H,B1
.

From here on, our security analysis separately considers the two (disjoint) cases that

A. the tested session label has no honest contributive partner in the first stage (i.e.,

there exists no label′ �= label with label.cid1 = label′.cid1), and

B. the tested session label has an honest contributive partner in the first stage (i.e.,

there exists label′ with label.cid1 = label′.cid1).

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 31 of 69 37

This allows us to consider the adversary’s advantage separately for these two cases A

(denoted “test w/o partner”) and B (“test w/ partner”):

Adv
G2

TLS1.3-full-1RTT,A
≤ Adv

G2, test w/o partner
TLS1.3-full-1RTT,A

+ Adv
G2, test w/ partner
TLS1.3-full-1RTT,A

.

Case A. Test without Partner

We first consider the case that the tested session label has no stage-1 contributive

partner, which implies it does not have a contributive partner in any stage. By definition,

an adversary cannot win if the Test query issued to such session is in a stage that, at

the time of the test query, has an unauthenticated peer. Here, authentication refers to the

rectified level, because the Test oracle checks against this refined property. Hence, for

a tested client session, Test (for any stage) cannot be issued before stage 3 is reached

and later only if corruption of the client or the partnered server has not taken place

before stage 3. Else the adversary loses the game. For a server session, Test can only

be issued when stage 6 is reached and client authentication is performed. Here, again,

the client cannot be corrupted earlier, else the rectified authentication level would be

unauthenticated.

Game A.0. Equals G2 with adversary restricted to test a session without honest con-

tributive partner in the first stage.

Adv
G2, test w/o partner
TLS1.3-full-1RTT,A

= Adv
G A.0

TLS1.3-full-1RTT,A
.

Game A.1. In this game, we let the challenger guess the peer identity U ∈ U of the

tested session label (observe that one must be set in order for Test to be admissible, as

discussed above), and abort if that guess was incorrect (i.e., label.pid �= U). This can

reduce A’s advantage by a factor at most the number of users nu :

Adv
G A.0

TLS1.3-full-1RTT,A
≤ nu · Adv

G A.1

TLS1.3-full-1RTT,A
.

Game A.2. We now let the challenger abort the game if the tested session label re-

ceives, within the CertificateVerify message from its peer label.pid = U ,

a valid signature on some (hash value of a) message that has not been computed

by any honest session of user U . Note that this message must include the transcript

data ClientHello‖ . . . ‖ClientCert resp. ClientHello‖ . . . ‖ServerCert

(cf. Table 2). Observe that, as discussed above, when the Test query is issued to label,

such a message must have been received, in the case of a client, prior to accepting stage 3

and with no previous corruption of the server; or, in the case of a server, prior to stage 6

when the server is talking to an authenticating client which is not corrupted yet.

We can bound the probability of Game G A.2 aborting for this reason by the advantage

of an adversary B2 against the EUF-CMA security of the signature scheme SIG. In the

reduction B2 receives a public key pkU of a signature scheme, computes the long-term

keys of all parties U ′ ∈ U \ {U } except U and simulates G A.1 for A1. Whenever in that

simulation B2 has to compute a signature under skU , it does so via its signing oracle.

When label receives a valid signature σ on the (hash value of the) message m, adversary

B2 outputs (H(m), σ) as its forgery. Note that at this point the partnered session cannot

37 Page 32 of 69 B. Dowling et al.

be corrupted such that the signature forger does not need to reveal the secret signing key

before outputting the forgery.

It remains to argue that the pair (H(m), σ) constitutes a successful forgery. To see

this note that the tested session label computes the hash value H(m) of the message m

to verify correctness, but such that no other honest session has computed a signature for

this message. According to Game G2, this also means that no other honest session has

derived the same hash value H(m′) = H(m) for some other message m′. We conclude

that the hash value H(m) has not been signed by user U before.

Adv
G A.1

TLS1.3-full-1RTT,A
≤ Adv

G A.1

TLS1.3-full-1RTT,A
+ AdvEUF-CMA

SIG,B2

It follows for Case A that the adversary cannot make a legitimate Test query at all,

unless it forges signatures. Either the sessions do not have a contributive partner, or

the sessions in later stages have rejected because of invalid signatures. If the adversary

cannot test any session without a contributive partner, it clearly has no advantage in

predicting the secret challenge bit b:

Adv
G A.2

TLS1.3-full-1RTT,A
= 0.

Case B. Test with Partner

Game B.0. This is G2 where the adversary is restricted to issuing a Test query to a

session with an honest contributive partner in the first stage.

Adv
G2, test w/ partner
TLS1.3-full-1RTT,A

= Adv
G B.0

TLS1.3-full-1RTT,A
.

Game B.1. In this game, we guess a session label′ �= label (from at most ns sessions

in the game) and abort the game if label.cid1 �= label′.cid1, i.e., that label′ is not the

honest contributive partner in stage 1 of the tested session. (Recall that we assume such

partner exists in this proof case.) This reduces the adversary’s advantage by a factor of

at most 1/ns .

Adv
G B.0

TLS1.3-full-1RTT,A
≤ ns · Adv

G B.1

TLS1.3-full-1RTT,A
.

Game B.2. In this game, we replace the handshake secret HS derived in the tested

session and its contributive partner session with a uniformly random and indepen-

dent string H̃S ←$ {0, 1}λ. We employ the dual-snPRF-ODH assumption (Defini-

tion 2.3) in order to be able to simulate the computation of HS in a partnered client

session for a modified ServerKeyShare message. More precisely, we can turn

any adversary capable of distinguishing this change into an adversary B3 against the

dual-snPRF-ODH security of the HKDF.Extract function (taking dES as first and DHE

as second input). For this B3 asks for a PRF challenge on dES computed in the test ses-

sion and its honest contributive partner. It uses the obtained Diffie–Hellman shares gx ,

gy within ClientKeyShare and ServerKeyShare of the tested and contributive

sessions, and the PRF challenge value as HS in the tested session. If necessary, B3 uses

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 33 of 69 37

its PRF-ODH queries to derive HS in the partnered session on differing gy′
�= gy . Pro-

viding a sound simulation of either G B.1 (if the bit sampled by the dual-snPRF-ODH

challenger was 0 and thus H̃S = HKDF.Extract(dES, gxy)), or G B.2 (if the bit sampled

by the dual-snPRF-ODH challenger was 1 and thus H̃S ←$ {0, 1}λ), this bounds the

advantage difference of A as:

Adv
G B.1

TLS1.3-full-1RTT,A
≤ Adv

G B.2

TLS1.3-full-1RTT,A
+ Advdual-snPRF-ODH

HKDF.Extract,G,B3
.

Game B.3. In this game, we replace the pseudorandom function HKDF.Expand in all

evaluations using the value H̃S replaced in G B.2. This affects the derivation of the client

handshake traffic secret CHTS, the server handshake traffic secret SHTS and the derived

handshake secret dHS in the target session and its matching partner, and the derived hand-

shake secret dHS in all sessions using the same handshake secret H̃S. Note that for CHTS

and SHTS, these values are distinct from any other session using the same handshake

secret value H̃S, as the evaluation also takes as input the hash value H2 = H(CH‖SH),

(where CH and SH contain the client and server random values rc, rs respectively) and

by Game G2 we exclude hash collisions. We replace the derivation of CHTS, SHTS

and dHS in such sessions with random values C̃HTS, S̃HTS, d̃HS ←$ {0, 1}λ. To ensure

consistency, we replace derivations of dHS with the replaced d̃HS sampled by the first

session to evaluate HKDF.Expand using H̃S. We can bound the difference that this

step introduces in the advantage of A by the security of the pseudorandom function

HKDF.Expand. Note that by the previous game, H̃S is a uniformly random value, and

the replacement is sound. Thus:

Adv
G B.2

TLS1.3-full-1RTT,A
≤ Adv

G B.3

TLS1.3-full-1RTT,A
+ AdvPRF-sec

HKDF.Expand,B4
.

At this point, C̃HTS and S̃HTS are independent of any values computed in any session

non-partnered (in stage 1 or 2) with the tested session: distinct session identifiers and

no hash collisions (as of Game G2) ensure that the PRF label inputs for deriving C̃HTS

and S̃HTS are unique.

Game B.4. In this game, we replace the pseudorandom function HKDF.Expand in all

evaluations using the values C̃HTS, S̃HTS replaced in G B.3. This affects the derivation

of the client handshake traffic key tkchs, and the server handshake traffic key tkshs in the

target session and its contributive partner. We replace the derivation of tkchs and tkshs

with random values t̃kchs ←$ {0, 1}L and t̃kshs ←$ {0, 1}L , where L indicates the sum of

key length and iv length for the negotiated AEAD scheme. We can bound the difference

that this step introduces in the advantage of A by the security of two evaluations of the

pseudorandom functions HKDF.Expand. Note that by the previous game C̃HTS and

S̃HTS are uniformly random values, and these replacements are sound. Thus:

Adv
G B.3

TLS1.3-full-1RTT,A
≤ Adv

G B.4

TLS1.3-full-1RTT,A
+ 2 · AdvPRF-sec

HKDF.Expand,B5
.

Game B.5. In this game, we replace the pseudorandom function HKDF.Extract in all

evaluations of the value d̃HS replaced in G B.3. This affects the derivation of the master

37 Page 34 of 69 B. Dowling et al.

secret MS in any session using the same derived handshake secret d̃HS. We replace

the derivation of MS in such sessions with the random value M̃S ←$ {0, 1}λ. We can

bound the difference that this step introduces in the advantage of A by the security of the

pseudorandom function HKDF.Extract. Note that by G B.3, d̃HS is a uniformly random

value and this replacement is sound. Thus:

Adv
G B.4

TLS1.3-full-1RTT,A
≤ Adv

G B.5

TLS1.3-full-1RTT,A
+ AdvPRF-sec

HKDF.Extract,B6
.

Game B.6. In this game, we replace the pseudorandom function HKDF.Expand in all

evaluations of the value M̃S replaced in G B.5 in the targeted session and its matching

session. This affects the derivation of the client application traffic secret CATS, the server

application traffic secret SATS, the exporter master secret EMS, and the resumption

master secret RMS. For CATS, SATS, and EMS, these evaluations are distinct from any

session non-partnered with the tested session, as the evaluation of HKDF.Expand also

takes as input H4 = H(CH‖ . . . ‖SF) (where CH and SH contain the client and server

random values rc and rs respectively), and by Game G2 we exclude hash collisions.

For RMS, this evaluation is distinct from any session non-partnered with the tested

session, as the evaluation of HKDF.Expand also takes as input H5 = H(CH‖ . . . ‖CF).

We replace the derivation of CATS, SATS, EMS, and RMS with random values C̃ATS,

S̃ATS, ẼMS, R̃MS ←$ {0, 1}λ. We can bound the difference that this step introduces in

the advantage of A by the secret of the pseudorandom function HKDF.Expand. Note

that by the previous game M̃S is a uniformly random and independent value, and these

replacements are sound. Thus:

Adv
G B.5

TLS1.3-full-1RTT,A
≤ Adv

G B.6

TLS1.3-full-1RTT,A
+ AdvPRF-sec

HKDF.Expand,B7
.

We note that in this game we have now replaced all stages’ keys in the tested session

with uniformly random values which, in the protocol execution, are independent of

values in any non-partnered session to the tested session. Thus:

Adv
G B.6

TLS1.3-full-1RTT,A
= 0.

Combining the given single bounds yields the security statement below:

Adv
G2, test w/ partner
TLS1.3-full-1RTT,A

≤ ns

(
Advdual-snPRF-ODH

HKDF.Extract,G,B3
+ AdvPRF-sec

HKDF.Expand,B4
+ 2 · AdvPRF-sec

HKDF.Expand,B5

+ AdvPRF-sec
HKDF.Extract,B6

+ AdvPRF-sec
HKDF.Expand,B7

)

�

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 35 of 69 37

6. Security Analysis of the TLS 1.3 PSK/PSK-(EC)DHE (with Optional 0-RTT)

Handshakes

We now turn to analyzing the TLS 1.3 pre-shared key handshakes, with and without

Diffie–Hellman key exchange (PSK-(EC)DHE, resp. PSK) and with optional 0-RTT

keys, in the pre-shared–secret multi-stage key exchange (sMSKE) model.

Protocol Properties The PSK/PSK-(EC)DHE (0-RTT) handshakes targets the follow-

ing protocol-specific properties (M, AUTH, FS, USE, REPLAY):

• M = 8: The PSK handshakes with optional 0-RTT consist of eight stages deriving,

in order: the early traffic secret ETS and early exporter master secret EEMS (both

only in 0-RTT mode), the client and server handshake traffic keys tkchs and tkshs,

the client and server application traffic secrets CATS and SATS, the exporter master

secret EMS, and the resumption master secret RMS.

• The authentication properties AUTH differ between the PSK(-only) and the PSK-

(EC)DHE (0-RTT) handshakes:

– for PSK (0-RTT), AUTH =
{
((1, 1), (2, 2), . . . , (8, 8))

}
: All keys are imme-

diately mutually authenticated (from the pre-shared key).

– for PSK-(EC)DHE (0-RTT), AUTH =
{
((1, 1), (2, 2), (5, 8), (5, 8), (5, 8),

(6, 8), (7, 8), (8, 8))
}
: The 0-RTT keys ETS/EEMS are always mutually au-

thenticated, the handshake traffic keys tkchs/tkshs are initially unauthenticated,

all non-0-RTT keys reach unilateral authentication with stage 5 and mutual

authentication with stage 8. (It is not straightforward to see why some PSK-

(EC)DHE keys are not considered to be immediately mutually authenticated, in

contrast to keys from the PSK-only handshake. Consider the handshake traffic

keys in the PSK-(EC)DHE handshake: in the model, the adversary A could

send its own gx share to a server session; the server will derive the handshake

traffic keys from PSK and DHE. Those keys should now be considered forward

secret (due to the ephemeral DH shares); however, when A corrupts PSK, it

can compute the handshake traffic keys. Hence, these keys cannot be treated as

forward secret and mutually authenticated at the same time.

• Forward secrecy of the PSK handshake depends on whether an ephemeral Diffie–

Hellman key exchange is performed:

– for PSK-only, FS = ∞: The PSK-only handshake does not provide any

forward secrecy.

– for PSK-(EC)DHE, FS = 3: The PSK-(EC)DHE handshake provides forward

secrecy for all non–0-RTT keys.

• USE = (internal : {3, 4}, external : {1, 2, 5, 6, 7, 8}): The handshake traffic keys

are used internally to encrypt the second part of the handshake; all other keys are

external.

• REPLAY = (replayable : {1, 2}, nonreplayable : {3, 4, 5, 6, 7, 8}): The 0-RTT

keys ETS and EEMS are replayable, all other stages’ keys are not.

37 Page 36 of 69 B. Dowling et al.

Session and Contributive Identifiers As for the full 1-RTT handshake (cf. Sect. 5), we

define the session identifiers over the unencrypted handshake messages; each stage’s

identifier includes a label and all handshake messages up to when that stage accepts:

sid1 = (“ETS”, CH,CKS†,CPSK),

sid2 = (“EEMS”, CH,CKS†,CPSK),

sid3 = (“CHTS”, CH,CKS†,CPSK,SH,SKS†,SPSK),

sid4 = (“SHTS”, CH,CKS†,CPSK,SH,SKS†,SPSK),

sid5 = (“CATS”, CH,CKS†,CPSK,SH,SKS†,SPSK,EE,SF),

sid6 = (“SATS”, CH,CKS†,CPSK,SH,SKS†,SPSK,EE,SF),

sid7 = (“EMS”, CH,CKS†,CPSK,SH,SKS†,SPSK,EE,SF),

sid8 = (“RMS”, CH,CKS†,CPSK,SH,SKS†,SPSK,EE,SF,CF).

Components indicated with † are present only in the PSK-(EC)DHE variant.

For the contributive identifiers in stages 3 and 4, as for the full handshake we want to

ensure server sessions with honest client contribution can be tested, even if the server’s re-

sponse never reaches the client. Therefore, we let client (resp. server) upon sending (resp.

receiving) the ClientHello, ClientKeyShare† and ClientPreSharedKey

messages set cid3 = (“CHTS”,CH,CKS†,CPSK), cid4 = (“SHTS”,CH,CKS†,CPSK)

and later, upon receiving (resp. sending) the ServerHello, ServerKeyShare†

and ServerPreSharedKey messages, extend it to cid3 = (“CHTS”,CH,CKS†,

CPSK,SH,SKS†,SPSK), cid4 = (“SHTS”,CH,CKS†,CPSK,SH,SKS†,SPSK). All

other contributive identifiers are set to cidi = sidi (for stages i ∈ {1, 2, 5, 6, 7, 8}) when

the respective session identifier is set.

6.1. TLS 1.3 PSK-only (0-RTT optional)

We can begin to give our security results for the TLS 1.3 PSK-only 0-RTT handshake.

We start with Match security.

6.1.1. Match Security

Theorem 6.1. (Match security of TLS1.3-PSK-0RTT). The TLS 1.3 PSK-only 0-RTT

handshake is Match-secure with properties (M, AUTH, FS, USE, REPLAY) given

above. For any efficient adversary A, there exists an efficient algorithm B such that

AdvMatch
TLS1.3-PSK-0RTT,A ≤ AdvCOLL

HMAC,B +
n2

p

|P|
+ n2

s · 2−|nonce|,

where ns is the maximum number of sessions, n p is the maximum number of pre-shared

secrets, |P| is the size of the pre-shared secret space, and |nonce| = 256 is the bit length

of the nonces.

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 37 of 69 37

Recall that Match security is a soundness property of the session identifiers. From

our definition of session identifiers above, it follows immediately that partnered sessions

agree on the derived key, opposite roles, authentication properties, contributive identi-

fiers, and the respective stages. As in the proof of Match security for

TLS1.3-full-1RTT, the security bound arises as the birthday bound for two hon-

est sessions choosing the same nonce; this not happening ensures at most two partners

share the same session identifier.

Proof. We need to show the seven properties of Match security (cf. Definition 4.1).

1. Sessions with the same session identifier for some stage hold the same key at

that stage.

The session identifiers in each stage include the pre-shared identifier pssid =

pskid (through the CPSK and SPSK messages, fixing the only key input PSK (as

both parties agree upon a mapping pssU,V (pssid) = pss = PSK to all derived

stage keys (recall that DHE = 0 in the TLS 1.3 PSK-only 0-RTT handshake).

Furthermore, for each stage, the session identifier includes all handshake messages

that enter the key derivation: for stages 1 and 2 messages up to CPSK for stages 3

and 4 messages up to SPSK, for stages 5, 6, 7 messages up to SF, and for stage 8

all messages (up to CF). In each stage, the session identifier hence determines all

inputs to the key derivation, and agreement on it thus ensures agreement on the

stage key.

2. Sessions with the same session identifier for some stage have opposite roles,

except for potential multiple responders in replayable stages.

Assuming at most two sessions share the same session identifier (which we show

below), two initiator (client) or responder (server) sessions never hold the same

session identifier as they never accept wrong-role incoming messages, and the

initial Hellomessages are typed with the sender’s role. This is excluding stages 1

and 2, which are replayable stages in the TLS 1.3 PSK-only 0-RTT handshake.

3. Sessions with the same session identifier for some stage agree on that stage’s

authentication level.

All stages in the TLS 1.3 PSK-only 0-RTT handshake are mutually authenticated,

so this is trivially true.

4. Sessions with the same session identifier for some stage share the same con-

tributive identifier.

This holds due to, for each stage i , the contributive identifier cidi being final and

equal to sidi once the session identifier is set.

5. Sessions are partnered with the intended (authenticated) participant and share

the same key identifier.

All session identifiers include the pssid and binder values sent as part of the

ClientHello. The pssid thus is trivially agreed upon. The binder value is

derived from that PSK through a sequence of HKDF/HMAC computations. If we

treat HMAC as an unkeyed collision-resistant hash function over both inputs, the

key and the message space, agreement on binder implies agreement on PSK. This

step is necessary, as A can set multiple PSK values to share the same pssid,

and thus a pssid does not necessarily uniquely determine a pre-shared secret

37 Page 38 of 69 B. Dowling et al.

PSK from each peer’s perspective. Instead, we use binder to uniquely determine

agreement upon PSK between peers. As all PSK values are chosen uniformly at

random within the NewSecret query, they collide only with negligible probability,

bounded by the birthday bound n2
p/|P|, where P is the pre-shared secret space and

n p the maximum number of pre-shared secrets. Therefore, agreement on binder

and PSK finally implies that pssid, as interpreted by the partnered client and server

session, originates from the same NewSecret call. This, from the perspective of

both client and server, uniquely identifies the respective peer’s identity and hence

ensures agreement on the intended peers.

6. Session identifiers are distinct for different stages.

This holds trivially as each stage’s session identifier has a unique label.

7. At most two sessions have the same session identifier at any non-replayable

stage.

Recall that stages 1 and 2 are replayable, so we only need to consider stages

i ∈ {3, 4, 5, 6, 7, 8}. Observe that all session identifiers from these stages in-

clude a client and server random nonce (rc and rs respectively), through the

ClientHello and ServerHello messages. Therefore, for a threefold col-

lision among session identifiers of honest parties, some session would need to

pick the same nonce as one other session (which then may be partnered through a

regular protocol run to some third session). The probability for such collision to

happen can be bounded from above by the birthday bound n2
s · 2−|nonce|, where ns

is the maximum number of sessions, and |nonce| = 256 the nonces’ bit length. �

6.1.2. Multi-Stage Security

Theorem 6.2. (Multi-Stage security of TLS1.3-PSK-0RTT). The TLS 1.3 PSK 0-RTT

handshake is Multi-Stage-secure with properties (M, AUTH, FS, USE, REPLAY)given

above. Formally, for any efficient adversary A against the Multi-Stage security there

exist efficient algorithms B1, …, B8 such that

Adv
Multi-Stage,D

TLS1.3-PSK-0RTT,A

≤ 8ns

⎛
⎜⎜⎜⎝AdvCOLL

H,B1
+ n p

⎛
⎜⎜⎜⎝

Advdual-PRF-sec
HKDF.Extract,B2

+ AdvPRF-sec
HKDF.Expand,B3

+ AdvPRF-sec
HKDF.Extract,B4

+ AdvPRF-sec
HKDF.Expand,B5

+ 2 · AdvPRF-sec
HKDF.Expand,B6

+ AdvPRF-sec
HKDF.Extract,B7

+ AdvPRF-sec
HKDF.Expand,B8

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

where ns is the maximum number of sessions, nu is the maximum number of users, and

n p is the maximum number of pre-shared secrets.

For the TLS 1.3 PSK 0-RTT handshake, Multi-Stage security follows from the secu-

rity of the pre-shared key: all keys are derived from a pre-shared secret PSK unknown to

the adversary (since the PSK mode is not forward secret, PSK may not be corrupted in

the tested session) As such, derived keys are indistinguishable from random (under PRF

assumptions on the HKDF.Extract and HKDF.Expand steps) which are independent,

allowing revealing and testing of session keys across different stages.

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 39 of 69 37

Proof. As before, we proceed via a sequence of games, bounding the differences be-

tween games via a series of assumptions until we demonstrate that A’s advantage in

winning the final game is 0.

Game 0. This is the original Multi-Stage game, i.e.,

Adv
Multi-Stage,D

TLS1.3-PSK-0RTT,A
= Adv

G0

TLS1.3-PSK-0RTT,A
.

Game 1. We restrict A to a single Test query, reducing its advantage by a factor of at

most 1/8ns . Formally, we construct an adversary from A making only a single Test

query via a hybrid argument, analogously to the proof of Theorem 5.2 on page 27,

detailed in Appendix A.

Adv
G0

TLS1.3-PSK-0RTT,A
≤ 8ns · Adv

G1

TLS1.3-PSK-0RTT,A
.

From now on, we can refer to the session label tested at stage i , and assume that we

know this session in advance.

Game 2. In this game, the challenger aborts if any two honest sessions compute the same

hash value for different inputs in any evaluation of the hash function H. If this event

occurs, this can be used to break the collision resistance of H by letting a reduction B1

(with approximately the same running time as A) output the two distinct input values to

H. Thus:

Adv
G1

TLS1.3-PSK-0RTT,A
≤ Adv

G2

TLS1.3-PSK-0RTT,A
+ AdvCOLL

H,B1
.

Game 3. In this game, the challenger guesses the pre-shared secret PSK used in the tested

session, and aborts the game if that guess was incorrect. This reduces A’s advantage by

a factor of at most 1/n p for n p being the maximum number of registered pre-shared

secrets, thus:

Adv
G2

TLS1.3-PSK-0RTT,A
≤ n p · Adv

G3

TLS1.3-PSK-0RTT,A
.

Game 4. In this game, we replace the outputs of the pseudorandom function HKDF.

Extract in all evaluations using the tested session’s guessed pre-shared secret PSK as a

key by random values. This affects the derivation of the early secret ES in any session

using the same shared PSK. We replace the derivation of ES in such sessions with a

random value ẼS ←$ {0, 1}λ. We can bound the difference this step introduces in the

advantage of A by the dual PRF security of HKDF.Extract. Note that any successful

adversary cannot issue a Corrupt query to reveal the PSK used in the tested session, and

thus the pre-shared secret is an unknown and uniformly random value, and the simulation

is sound. Thus:

Adv
G3

TLS1.3-PSK-0RTT,A
≤ Adv

G4

TLS1.3-PSK-0RTT,A
+ Advdual-PRF-sec

HKDF.Extract,B2
.

Game 5. In this game, we replace the pseudorandom function HKDF.Expand in all

evaluations using the value ẼS replaced in G4. This affects the derivation of the derived

early secret dES, the binder key BK, the early traffic secret ETS, and the early exporter

37 Page 40 of 69 B. Dowling et al.

master secret EEMS in any session using the same early secret value ẼS due to the stage

being replayable. We replace the derivation of dES, BK, ETS and EEMS in such sessions

with random values d̃ES, B̃K, ẼTS, ẼEMS ←$ {0, 1}λ. We can bound the difference that

this step introduces in the advantage of A by the security of the pseudorandom function

HKDF.Expand. Note that by Game G4, ẼS is an unknown and uniformly random value,

and this replacement is sound. Thus:

Adv
G4

TLS1.3-PSK-0RTT,A
≤ Adv

G5

TLS1.3-PSK-0RTT,A
+ AdvPRF-sec

HKDF.Expand,B3
.

At this point, we have replaced the stage 1 and stage 2 keys (̃ETS and ẼEMS, respec-

tively). We note that if A issues a Reveal(label, i) query to a session label′ such that the

tested session label.sidi = label′.sidi , then A would lose the game. Since these stages

are replayable, there may be multiple such sessions such that label.sidi = label′.sidi ,

however if any of these stages is revealed, A loses the game.

Game 6. In this game, we replace the pseudorandom function HKDF.Extract in all

evaluations using the value d̃ES replaced in G5. This affects the derivation of the hand-

shake secret HS in any session using the same derived early secret value d̃ES, as the

derivation of HS includes no additional entropy. We replace the derivation of HS in

such sessions with a random value H̃S ←$ {0, 1}λ. We can bound the difference that

this step introduces in the advantage of A by the security of the pseudorandom function

HKDF.Extract. Note that by the previous game, d̃ES is a uniformly random value, and

the simulation is sound. Thus:

Adv
G5

TLS1.3-PSK-0RTT,A
≤ Adv

G6

TLS1.3-PSK-0RTT,A
+ AdvPRF-sec

HKDF.Extract,B4
.

Game 7. In this game, we replace the pseudorandom function HKDF.Expand in all

evaluations using the value H̃S replaced in G6. This affects the derivation of the client

handshake traffic secret CHTS, the server handshake traffic secret SHTS in the target

session and (if it exists) its matching partner, and the derived handshake secret dHS in all

sessions using the same handshake secret H̃S. Note that for CHTS and SHTS, these values

are distinct from any other session using the same handshake secret value H̃S, as the

evaluation also takes as input the hash value H2 = H(CH‖CPSK‖SH‖SPSK), where CH

and SH contain the client and server random values rc, rs respectively, and by Game G2

we exclude hash collisions. However, dHS may be derived in multiple sessions, as it

includes no additional entropy in its computation. We replace the derivation of CHTS,

SHTS and dHS in such sessions with random values C̃HTS, S̃HTS, d̃HS ←$ {0, 1}λ. To

ensure consistency, we replace derivations of dHS with the replaced d̃HS sampled by

the first session to evaluate HKDF.Expand using H̃S. We can bound the difference that

this step introduces in the advantage of A by the security of the pseudorandom function

HKDF.Expand. Note that by the previous game, H̃S is a uniformly random value, and

the replacement is sound. Thus:

Adv
G6

TLS1.3-PSK-0RTT,A
≤ Adv

G7

TLS1.3-PSK-0RTT,A
+ AdvPRF-sec

HKDF.Expand,B5
.

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 41 of 69 37

Game 8. In this game, we replace the pseudorandom function HKDF.Expand in all

evaluations using the values C̃HTS, S̃HTS replaced in G7. This affects the derivation

of the client handshake traffic key tkchs, and the server handshake traffic key tkshs in

the target session and its matching partner. We replace the derivation of tkchs and tkshs

with random values t̃kchs ←$ {0, 1}L and t̃kshs ←$ {0, 1}L , where L indicates the sum of

key length and iv length for the negotiated AEAD scheme. We can bound the difference

that this step introduces in the advantage of A by the security of two evaluations of the

pseudorandom functions HKDF.Expand. Note that by the previous game C̃HTS and

S̃HTS are uniformly random values, and these replacements are sound. Thus:

Adv
G7

TLS1.3-PSK-0RTT,A
≤ Adv

G8

TLS1.3-PSK-0RTT,A
+ 2 · AdvPRF-sec

HKDF.Expand,B6
.

Game 9. In this game, we replace the pseudorandom function HKDF.Extract in all

evaluations of the value d̃HS replaced in G8. This affects the derivation of the master

secret MS in any session using the same derived handshake secret dHS. We replace the

derivation of MS in such sessions with the random value M̃S ←$ {0, 1}λ. MS may be

derived in multiple sessions, as it includes no additional entropy in its computation. We

can bound the difference that this step introduces in the advantage of A by the security of

the pseudorandom function HKDF.Extract. Note that by Game G7, dHS is a uniformly

random value and this replacement is sound. Thus:

Adv
G8

TLS1.3-PSK-0RTT,A
≤ Adv

G9

TLS1.3-PSK-0RTT,A
+ AdvPRF-sec

HKDF.Extract,B7
.

Game 10. In this game, we replace the pseudorandom function HKDF.Expand in all

evaluations of the value M̃S replaced in G9 in the targeted session and its match-

ing session. This affects the derivation of the client application traffic secret CATS,

the server application traffic secret SATS the exporter master secret EMS and the re-

sumption master secret RMS. For CATS, SATS and EMS, these evaluations are dis-

tinct from any other session, as the evaluation of HKDF.Expand also takes as input

H4 = H(CH‖CPSK‖SH‖SPSK‖SF), where CH and SH contain the client and server ran-

dom values rc and rs respectively, and by Game G2 we exclude hash collisions. For RMS,

this evaluation is distinct from any other session, as the evaluation of HKDF.Expand

also takes as input H5 = H(CH‖CPSK‖SH‖SPSK‖SF‖CF). We replace the derivation of

CATS, SATS, EMS and RMS with random values C̃ATS, S̃ATS, ẼMS, R̃MS ←$ {0, 1}λ.

We can bound the difference that this step introduces in the advantage of A by the secret

of the pseudorandom function HKDF.Expand. Note that by the previous game M̃S is a

uniformly random and independent value, and these replacements are sound. Thus:

Adv
G9

TLS1.3-PSK-0RTT,A
≤ Adv

G10

TLS1.3-PSK-0RTT,A
+ AdvPRF-sec

HKDF.Expand,B8
.

In Game G10 we have now replaced all stages’ keys in the tested session with uniformly

random values independent from the protocol execution, and thus:

Adv
G10

TLS1.3-PSK-0RTT,A
= 0.

37 Page 42 of 69 B. Dowling et al.

Combining the given single bounds yields the overall security statement. �

6.2. TLS 1.3 PSK-(EC)DHE (0-RTT optional)

We can now turn to the security results for the TLS 1.3 PSK-(EC)DHE 0-RTT handshake,

starting again with Match security.

6.2.1. Match Security

Theorem 6.3. (Match security of TLS1.3-PSK-(EC)DHE-0RTT). The TLS 1.3 PSK-

(EC)DHE 0-RTT handshake is Match-secure with properties (M, AUTH, FS, USE,

REPLAY) given above. For any efficient adversary A, there exists an efficient algo-

rithm B such that

AdvMatch
TLS1.3-PSK-(EC)DHE-0RTT,A ≤ AdvCOLL

HMAC,B +
n2

p

|P|
+ n2

s ·
1

q
· 2−|nonce|,

where ns is the maximum number of sessions, q is the group order, n p is the maximum

number of pre-shared secrets, |P| is the size of the pre-shared secret space, and |nonce| =

256 is the bit length of the nonces.

As before, the soundness properties of Match security follow immediately from our

definition of session identifiers, with the security bound arising as the birthday bound

for two honest sessions choosing the same nonce and group element. The proof hence

closely follows the one for Theorem 6.1.

Proof. We need to show the seven properties of Match security (cf. Definition 4.1).

1. Sessions with the same session identifier for some stage hold the same key at

that stage.

The session identifiers in each stage include both the pre-shared identifier pskid

and the Diffie–Hellman shares gx and gy (through theCPSK andSPSK, andCKS,

SKS messages respectively), fixing both the pre-shared key input PSK and the

Diffie–Hellman key input DHE = gxy for all derived stage keys. Furthermore,

for each stage, the session identifier includes all handshake messages that enter

the key derivation: for stages 1 and 2 messages up to CPSK, for stages 3 and 4

messages up to SPSK, for stages 5, 6, 7 messages up to SF, and for stage 8 all

messages (up to CF). In each stage, the session identifier hence determines all

inputs to the key derivation, and agreement on it thus ensures agreement on the

stage key.

2. Sessions with the same session identifier for some stage have opposite roles,

except for potential multiple responders in replayable stages.

Assuming at most two sessions share the same session identifier (which we

show below), two initiator (client) or responder (server) sessions never hold the

same session identifier as they never accept wrong-role incoming messages, and

the initial Hello messages are typed with the sender’s role. This is excluding

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 43 of 69 37

stages 1 and 2, which are replayable stages in the TLS 1.3 PSK-(EC)DHE 0-RTT

handshake.

3. Sessions with the same session identifier for some stage agree on that stage’s

authentication level.

By definition, the vector determining (upgradable) authentication is fixed to ((1, 1),

(2, 2), (5, 8), (5, 8), (5, 8), (6, 8), (7, 8), (8, 8)), to which hence trivially all ses-

sions agree.

4. Sessions with the same session identifier for some stage share the same con-

tributive identifier.

This holds due to, for each stage i , the contributive identifier cidi being final

and equal to sidi once the session identifier is set.

5. Sessions are partnered with the intended (authenticated) participant and share

the same key identifier.

All session identifiers include the pssid and binder values sent as part of the

ClientHello. The pssid thus is trivially agreed upon and uniquely deter-

mining a pre-shared secret PSK from each peer’s perspective. The binder value

is derived from that PSK through a sequence of HKDF/HMAC computations. If

we treat HMAC as an unkeyed collision-resistant hash function over both inputs,

the key and the message space, agreement on binder implies agreement on PSK.

This step is necessary, as A can set multiple PSK values to share the same pssid,

and thus a pssid does not necessarily uniquely determine a pre-shared secret

PSK from each peer’s perspective. Instead, we use binder to uniquely determine

agreement upon PSK between peers. As all PSK values are chosen uniformly at

random within the NewSecret query, they collide only with negligible proba-

bility, bounded by the birthday bound n2
p/|P|, where P is the pre-shared secret

space and n p the maximum number of pre-shared secrets. Therefore, agreement

on binder and PSK finally implies that pssid, as interpreted by the partnered

client and server session, originates from the same NewSecret call. This, from

the perspective of both client and server, uniquely identifies the respective peer’s

identity and hence ensures agreement on the intended peers.

6. Session identifiers are distinct for different stages.

This holds trivially as each stage’s session identifier has a unique label.

7. At most two sessions have the same session identifier at any non-replayable

stage.

Recall that stages 1 and 2 are replayable, so we consider only stages i ∈

{3, 4, 5, 6, 7, 8}. Recall that all session identifiers from these stages held by some

session include a client and server random nonce and Diffie–Hellman share, as

all session identifiers contain both the ClientHello and ServerHello

messages. Therefore, for a threefold collision among session identifiers of hon-

est parties, some session would need to pick the same nonce and group element

as one other session (which then may be partnered through a regular protocol

run to some third session). The probability for such collision to happen can be

bounded from above by the birthday bound n2
s · 1/q · 2−|nonce|, where ns is the

maximum number of sessions, q is the group order, and |nonce| = 256 the

nonces’ bit length. �

37 Page 44 of 69 B. Dowling et al.

6.2.2. Multi-Stage Security

Theorem 6.4. (Multi-Stage security of TLS1.3-PSK-(EC)DHE-0RTT). The

TLS 1.3 PSK-(EC)DHE 0-RTT handshake is Multi-Stage-secure with properties (M,

AUTH, FS, USE, REPLAY)given above. Formally, for any efficient adversaryAagainst

the Multi-Stage security there exist efficient algorithms B1, …, B16 such that

Adv
Multi-Stage,D

TLS1.3-PSK-(EC)DHE-0RTT,A

≤ 8ns

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

AdvCOLL
H,B1

+ n pns

⎛
⎜⎜⎜⎜⎜⎜⎝

Advdual-PRF-sec
HKDF.Extract,B2

+ AdvPRF-sec
HKDF.Expand,B3

+ AdvPRF-sec
HKDF.Extract,B4

+ AdvPRF-sec
HKDF.Expand,B5

+ AdvPRF-sec
HKDF.Expand,B6

+ AdvEUF-CMA
HMAC,B7

+ AdvPRF-sec
HKDF.Expand,B8

+ AdvEUF-CMA
HMAC,B9

+ Advdual-PRF-sec
HKDF.Extract,B10

+ AdvPRF-sec
HKDF.Expand,B11

⎞
⎟⎟⎟⎟⎟⎟⎠

+ns

⎛
⎜⎝

Advdual-snPRF-ODH
HKDF.Extract,G,B12

+ AdvPRF-sec
HKDF.Expand,B13

+ 2 · AdvPRF-sec
HKDF.Expand,B14

+ AdvPRF-sec
HKDF.Extract,B15

+ AdvPRF-sec
HKDF.Expand,B16

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where ns is the maximum number of sessions, n p the maximum number of pre-shared

secrets established between any two parties, and nu is the maximum number of users.

For the TLS 1.3 PSK-(EC)DHE 0-RTT handshake, Multi-Stage security essentially

follows from two lines of reasoning. First, the (unforgeable) MAC tags covering (a

collision-resistant hash of) the full Hello messages ensure that session stages with

an authenticated peer share hold exchanged Diffie–Hellman shares originating from an

honest partner session. Then, all keys are derived in a way ensuring that (a) for forward-

secret stages, the keys are derived from a Diffie–Hellman secret unknown to the adversary

are indistinguishable from random (under PRF-ODH and dual-PRF-sec/PRF-sec

assumptions on the HKDF.Extract and HKDF.Expand steps), and for non-forward-

secret stages the keys are derived from a pre-shared secret unknown to the adversary, and

are also indistinguishable from random (under PRF assumptions on the HKDF.Expand

and HKDF.Extract steps) which (b) are independent, allowing revealing and testing of

session keys across different stages.

Proof. Again, we proceed via a sequence of games starting from the Multi-Stage game

and bounding the advantage (differences) of adversary A.

Game 0. This is the original Multi-Stage game, i.e.,

Adv
Multi-Stage,D

TLS1.3-PSK-(EC)DHE-0RTT,A
= Adv

G0

TLS1.3-PSK-(EC)DHE-0RTT,A
.

Game 1. We again restrict A to a single Test query, reducing its advantage by a factor

of at most 1/8ns via a hybrid argument analogous to the one in the proof of Theorem 5.2

on page 27, detailed in Appendix A.

Adv
G0

TLS1.3-PSK-(EC)DHE-0RTT,A
≤ 8ns · Adv

G1

TLS1.3-PSK-(EC)DHE-0RTT,A
.

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 45 of 69 37

From now on, we can refer to the session label tested at stage i , and assume to know

the session in advance.

Game 2. In this game, the challenger aborts if any two honest sessions compute the

same hash value for different inputs in any evaluation of the hash function H. We can

break the collision resistance of H in case of this event by letting a reduction B1 output

the two distinct input values to H. Thus:

Adv
G1

TLS1.3-PSK-(EC)DHE-0RTT,A
≤ Adv

G2

TLS1.3-PSK-(EC)DHE-0RTT,A
+ AdvCOLL

H,B1
.

From this point, our analysis separately considers the following three (disjoint) cases:

A. that the tested session label has no honest contributive partner in the third stage

(i.e., there exists no label′ �= label with label.cid3 = label′.cid3), and,

B. the tested session label has an honest contributive partner in the third stage (i.e.,

there exists label′ with label.cid3 = label′.cid3) and A issues a Test query to the

non-forward-secret stages (i.e., A issues Test(label, i) where i ∈ {1, 2}.

C. the tested session label has an honest contributive partner in the third stage (i.e.,

there exists label′ with label.cid3 = label′.cid3) and A issues a Test query to the

forward-secret stages (i.e., A issues Test(label, i) where i ∈ {3, . . . , 8}.

This allows us to consider the adversary’s advantage separately for cases A (denoted

“test w/o partner”), B (denoted “NFS test w/ partner”) and C (“FS test w/ partner”):

Adv
G2

TLS1.3-PSK-(EC)DHE-0RTT,A

≤ Adv
G2, test w/o partner
TLS1.3-PSK-(EC)DHE-0RTT,A

+ Adv
G2, NFS test w/ partner
TLS1.3-PSK-(EC)DHE-0RTT,A

+Adv
G2, FS test w/ partner
TLS1.3-PSK-(EC)DHE-0RTT,A

.

Case A. Test without Partner

As before, we first consider the case that the tested session label has no stage 3 contribu-

tive partner. For tested initiator sessions, this means that there exists no honest session

that has output the received SH, SKS, and SPSKmessages. For tested responder session,

this means that there exists no honest initiator session that has output the received CH,

CKS, or CPSK messages. Since these messages are included in all subsequent stage

session identifiers, this implies the tested session does not have a contributive partner

in any stage. By definition, an adversary cannot win if the Test query issued to such a

session is in a stage that, at the time of the test query, has an unauthenticated peer (where

authentication refers to the rectified notion). For a tested responder session without an

honest contributive partner in stage 3, a Test query can only be issued to the session

when it reaches stage 8. For a tested initiator session without an honest contributive

partner in stage 3, a Test query can only be issued to the session when it reaches

stage 5.

Game A.0. This is identical to Game G2 with adversary restricted to testing a session

without an honest contributive partner in the third stage.

Adv
G2, test w/o partner
TLS1.3-PSK-(EC)DHE-0RTT,A

= Adv
G A.0

TLS1.3-PSK-(EC)DHE-0RTT,A
.

37 Page 46 of 69 B. Dowling et al.

Game A.1. In this game, the challenger guesses the pre-shared secret PSK used in

the tested session, and aborts the game if that guess was incorrect. This reduces A’s

advantage by a factor of at most 1/n p (for n p the maximum number of pre-shared

secrets), thus:

Adv
G A.0

TLS1.3-PSK-(EC)DHE-0RTT,A
≤ n p · Adv

G A.1

TLS1.3-PSK-(EC)DHE-0RTT,A
.

Game A.2. In this game, the challenger aborts immediately if the initiator (resp. respon-

der) session with label label accepts in the fifth (resp. eighth) stage without an honest

contributive partner in stage 3. Let abortG A.2,A
acc denote the event this occurs in G A.2.

Thus:

∣∣∣Adv
G A.1

TLS1.3-PSK-(EC)DHE-0RTT,A
− Adv

G A.2

TLS1.3-PSK-(EC)DHE-0RTT,A

∣∣∣ ≤ Pr[abort
G A.2,A
acc]

Note that Case A restricts A to issuing a Test query to a session without an honest con-

tributive partner in stage 3. Because of the authentication type of

TLS1.3-PSK-(EC)DHE-0RTT, this Test query can only be issued to the initiator (resp.

responder) session after it reaches stage 5 (resp. 8). Since G A.2 is aborted when the

session reaches those stages, a successful adversary cannot issue such a query, and thus:

Adv
G A.2

TLS1.3-PSK-(EC)DHE-0RTT,A
= 0.

We now turn to bounding the probability that abortG A.2,A
acc occurs.

Game A.3. In this game, the challenger guesses a session (from at most ns sessions in

the game) and aborts if the guessed session is not the first initiator (resp. responder)

session which accepts in the fifth (resp. eighth) stage without an honest contributive

partner in stage 3. If the challenger guesses correctly (which happens with probability

at least 1/ns), then this game aborts at exactly the same time as the previous game, and

thus:

Pr[abortG A.2,A
acc] ≤ ns · Pr[abortG A.3,A

acc].

We restrict A from making a Corrupt(U, V, k) query such that label.id = U ,

label.pid = V , label.pssid = k, and show that this does not impact A’s advantage

in winning this case. By the definition of the case, there does not exist a session label′

such that label′.cid3 = label.cid3 where A’s Test query is issued to label. Since PSK-

(EC)DHE mode is unilaterally authenticated in stage 5 and mutually authenticated in

stage 8, if the adversary issues a Corrupt(U, V, k) query before the tested session label

(without an honest contributive partner in stage 3) reaches accept in its partner’s au-

thenticating stage, when A issues a Test(label, i) query (where i ∈ {1, . . . , 8}) the lost

flag is set and A will lose the game. By the previous games, we abort when the initiator

session label (resp. responder session) reaches stage 5 (resp. stage 8) without an honest

contributive partner, and thus A will never issue a Corrupt(U, V, k) query. In the fol-

lowing games, this will allow us to replace the pre-shared secret pss in the tested session

(and all sessions with the same pss value) without being inconsistent or detectable with

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 47 of 69 37

regard to the Corrupt query. In what follows, let pssU,V,k be the guessed pre-shared

secret.

Game A.4. In this game, we replace the outputs of the pseudorandom function

HKDF.Extract in all evaluations using the tested session’s guessed pre-shared secret

pssU,V,k as a key by random values. This affects the derivation of the early secret ES in

any session using the same shared PSK. We replace the derivation of ES in such sessions

with a random value ẼS ←$ {0, 1}λ. We can bound the difference this step introduces in

the advantage of A by the (dual) security of the pseudorandom function HKDF.Extract.

Note that any successful adversary cannot issue a Corrupt query to reveal pssU,V,k

used in the tested session, and thus the pre-shared secret is an unknown and uniformly

random value, and the simulation is sound. Thus:

Pr[abortG A.3,A
acc] ≤ Pr[abortG A.4,A

acc] + Advdual-PRF-sec
HKDF.Extract,B2

.

Game A.5. In this game, we replace the pseudorandom function HKDF.Expand in all

evaluations using the value ẼS replaced in G A.4. This affects the derivation of the derived

early secret dES, the binder key BK, the early traffic secret ETS, and the early exporter

master secret EEMS in any session using the same early secret value ẼS due to the stage

being replayable. We replace the derivation of dES, BK, ETS and EEMS in such sessions

with random values d̃ES, B̃K, ẼTS, ẼEMS ←$ {0, 1}λ. We can bound the difference that

this step introduces in the advantage of A by the security of the pseudorandom function

HKDF.Expand. Note that by Game G A.4, ẼS is an unknown and uniformly random

value, and this replacement is sound. Thus:

Pr[abortG A.4,A
acc] ≤ Pr[abortG A.5,A

acc] + AdvPRF-sec
HKDF.Expand,B3

.

Game A.6. In this game, we replace the pseudorandom function HKDF.Extract in all

evaluations using the value d̃ES replaced in G A.5. This affects the derivation of the

handshake secret HS in any session using the same derived early secret value d̃ES, due

to the stage being replayable. We replace the derivation of HS in such sessions with a

random value H̃S ←$ {0, 1}λ. We can bound the difference that this step introduces in

the advantage of A by the security of the pseudorandom function HKDF.Extract. Note

that by the previous game, d̃ES is a uniformly random value, and the simulation is sound.

Thus:

Pr[abortG A.5,A
acc] ≤ Pr[abortG A.6,A

acc] + AdvPRF-sec
HKDF.Extract,B4

.

Game A.7. In this game, we replace the pseudorandom function HKDF.Expand in

all evaluations using the value H̃S replaced in G A.6. This affects the derivation of the

client handshake traffic secret CHTS, the server handshake traffic secret SHTS in the

target session and its matching partner, and the derived handshake secret dHS in all

sessions using the same handshake secret H̃S. Note that for CHTS and SHTS, these

values are distinct from any other session using the same handshake secret value H̃S,

as the evaluation also takes as input the hash value H2 = H(CH‖SH), (where CH and

SH contain the client and server random values rc, rs respectively) and by Game G2

37 Page 48 of 69 B. Dowling et al.

we exclude hash collisions. We replace the derivation of CHTS, SHTS and dHS in such

sessions with random values C̃HTS, S̃HTS, d̃HS ←$ {0, 1}λ. To ensure consistency, we

replace derivations of dHS with the replaced d̃HS sampled by the first session to evaluate

HKDF.Expand using H̃S. We can bound the difference that this step introduces in the

advantage of A by the security of the pseudorandom function HKDF.Expand. Note that

by the previous game, H̃S is a uniformly random value, and the replacement is sound.

Thus:

Pr[abortG A.6,A
acc] ≤ Pr[abortG A.7,A

acc] + AdvPRF-sec
HKDF.Expand,B5

.

Game A.8. In this game, we replace the pseudorandom function HKDF.Expand in all

evaluations using the client handshake traffic secret C̃HTS replaced in G A.7. This affects

the derivation of the client handshake traffic key tkchs, and the client finished key fkC

in the target session. We replace the derivation of tkchs and fkC with random values

t̃kchs ←$ {0, 1}L , f̃kC ←$ {0, 1}λ, where L indicates the sum of key length and iv length

for the negotiated AEAD scheme. We can bound the difference that this step introduces in

the advantage of A by the security of the pseudorandom function HKDF.Expand. Note

that by the previous game C̃HTS is a uniformly random value, and these replacements

are sound. Thus:

Pr[abortG A.7,A
acc] ≤ Pr[abortG A.8,A

acc] + AdvPRF-sec
HKDF.Expand,B6

.

Game A.9. In this game, we show how any adversary that manages to trigger abortG A.9,A
acc

(where the tested session has a responder role) can be used to build an adversary B7 that

breaks the existential unforgeability of the HMAC scheme. We let B7 simulate G A.8 for

A as specified, but when the guessed session requires a MAC computation using f̃kC , B7

instead invokes a MAC oracle to generate that value. Since f̃kC is a uniformly random and

independent value, this simulation is sound. When A triggers abortG A.9,A
acc (for responder

test sessions), the accepting session must have received a ClientFinished message

that is a valid MAC tag over the hash value H4 = H(CH‖ . . . ‖SF). Since all other

sessions hold different session identifiers (as there exists no honest contributive partner

in the third stage of the accepting session), no honest party will have requested a MAC

tag over that session hash. In addition, by Game G2 there exist no hash collisions, so the

MAC input is distinct to all other MAC inputs for any honest party. Thus, this message

was never queried to the MAC oracle and is a forgery. This allows us to bound the

probability of A triggering abortG A.9,A
acc due to a stage-8 accepting responder session

without a stage-3 contributive partner by:

Pr[abortG A.8,A
acc] ≤ Pr[abortG A.9,A

acc] + AdvEUF-CMA
HMAC,B7

Note that for the rest of this case, we bound the probability of an adversary triggering

abortG A.9,A
acc when the tested session has an initiator role.

Game A.10. In this game, we replace the pseudorandom function HKDF.Expand in

all evaluations using the server handshake traffic secret S̃HTS replaced in G A.9. This

affects the derivation of the server handshake traffic key tkshs, and the server finished

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 49 of 69 37

key fkS in the target session. We replace the derivation of tkshs and fkS with random

values t̃kshs, f̃kS ←$ {0, 1}λ. We can bound the difference that this step introduces in

the advantage of A by the security of the pseudorandom function HKDF.Expand. Note

that by a previous game S̃HTS is a uniformly random value, and these replacements are

sound. Thus:

Pr[abortG A.9,A
acc] ≤ Pr[abortG A.10,A

acc] + AdvPRF-sec
HKDF.Expand,B8

.

Game A.11. In this game, we show how any adversary that manages to trigger

abortG A.11,A
acc (where the test session is an initiator session) can be used to build an

adversary B9 that breaks the existential unforgeability of the HMAC scheme. We let B9

simulate G A.10 for A as specified, but when the guessed session or its partner session

requires a MAC computation using f̃kS , B9 instead invokes a MAC oracle to generate

that value. Since f̃kS is a uniformly random and independent value, this simulation is

sound. When A triggers abortG A.11,A
acc (for initiator test sessions), the accepting session

must have received aServerFinishedmessage that is a valid MAC tag over the hash

value H7 = H(CH‖ . . . ‖SPSK). Since all other sessions hold different session identifiers

(as there exists no honest contributive partner in the third stage of the accepting session),

no honest party will have requested a MAC tag over that session hash. In addition, by

Game G2 there exist no hash collisions, so the MAC input is distinct to all other MAC

inputs for any honest party. Thus, this message was never queried to the MAC oracle

and is a forgery. This allows us to bound the probability of A triggering abortG A.11,A
acc

due to a stage-5 accepting initiator session without a stage-3 contributive identifier by:

Pr[abortG A.11,A
acc] ≤ AdvEUF-CMA

HMAC,B9

Combining the given single bounds yield the security statement below:

Adv
G2, test. w/o partner
TLS1.3-PSK-(EC)DHE-0RTT,A

≤ n pns

⎛
⎜⎝

Advdual-PRF-sec
HKDF.Extract,B2

+ AdvPRF-sec
HKDF.Expand,B3

+ AdvPRF-sec
HKDF.Extract,B4

+ AdvPRF-sec
HKDF.Expand,B5

+ AdvPRF-sec
HKDF.Expand,B6

+ AdvEUF-CMA
HMAC,B7

+ AdvPRF-sec
HKDF.Expand,B8

+ AdvEUF-CMA
HMAC,B9

⎞
⎟⎠

Case B. NFS Test with Partner

We now turn to the case where the tested session has an honest contributive partner in

the third stage, and A issues a Test(label, i) query such that i ∈ {1, 2}.

Game B.0. This is identical to Game G2 with the adversary testing a session with an

honest contributive partner in the third stage.

Adv
G2,NFS test with partner
TLS1.3-PSK-(EC)DHE-0RTT,A

= Adv
G B.0

TLS1.3-PSK-(EC)DHE-0RTT,A
.

Game B.1. In this game, we guess the pre-shared secret PSK used in the tested session

and abort on a wrong guess. This reduces A’s advantage by a factor of at most 1/n p,

37 Page 50 of 69 B. Dowling et al.

thus:

Adv
G B.0

TLS1.3-PSK-(EC)DHE-0RTT,A
≤ n p · Adv

G B.1

TLS1.3-PSK-(EC)DHE-0RTT,A
.

Game B.2. In this game, we let the challenger guess a session (from at most ns in the

game) and abort if the session guessed is not the honest contributive partner in stage 3

of the tested session. This reduces A’s advantage by a factor of at most 1/ns , and thus:

Adv
G B.1

TLS1.3-PSK-(EC)DHE-0RTT,A
≤ ns · Adv

G B.2

TLS1.3-PSK-(EC)DHE-0RTT,A
.

Game B.3. In this game, we replace the outputs of the pseudorandom function

HKDF.Extract in all evaluations using the tested session’s guessed pre-shared secret

pssU,V,k as a key by random values. This affects the derivation of the early secret ES in

any session using the same shared PSK. We replace the derivation of ES in such sessions

with a random value ẼS ←$ {0, 1}λ. We can bound the difference this step introduces in

the advantage of A by the security of the pseudorandom function HKDF.Extract. Note

that any successful adversary cannot issue a Corrupt query to reveal pssU,V,k used in

the tested session (as A will issue a query Test(label, i) such that i ∈ {1, 2} by the

definition of this case, and A will cause the lost flag to be set if Corrupt(U, V, k) is

issued), and thus the pre-shared secret is an unknown and uniformly random value, and

the simulation is sound. Thus:

Adv
G B.2

TLS1.3-PSK-(EC)DHE-0RTT,A
≤ Adv

G B.3

TLS1.3-PSK-(EC)DHE-0RTT,A

+Advdual-PRF-sec
HKDF.Extract,B10

.

Game B.4. In this game, we replace the pseudorandom function HKDF.Expand in all

evaluations using the value ẼS replaced in G B.3. This affects the derivation of the derived

early secret dES, the binder key BK, the early traffic secret ETS, and the early exporter

master secret EEMS in any session using the same early secret value ẼS due to the stage

being replayable. We replace the derivation of dES, BK, ETS and EEMS in such sessions

with random values d̃ES, B̃K, ẼTS, ẼEMS ←$ {0, 1}λ. We can bound the difference that

this step introduces in the advantage of A by the security of the pseudorandom function

HKDF.Expand. Note that by Game G B.3, ẼS is an unknown and uniformly random

value, and this replacement is sound. Thus:

Adv
G B.3

TLS1.3-PSK-(EC)DHE-0RTT,A
≤ Adv

G B.4

TLS1.3-PSK-(EC)DHE-0RTT,A

+AdvPRF-sec
HKDF.Expand,B11

.

We note that at this point, we have replaced the stage 1 and stage 2 keys (̃ETS and

ẼEMS, respectively). We note that if A issues a Reveal(label, i) query to a session

label′ such that the tested session label.sidi = label′.sidi , then A would lose the

game. Since these stages are replayable, then there may be multiple such sessions such

that label.sidi = label′.sidi . Since ẼTS and ẼEMS are now uniformly random values

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 51 of 69 37

independent of the protocol execution, we have:

Adv
G B.4

TLS1.3-PSK-(EC)DHE-0RT,A
= 0.

Combining the given single bounds yields the security statement below:

Adv
G2,NFS test with partner
TLS1.3-PSK-(EC)DHE-0RT,A

≤ nsn p

(
Advdual-PRF-sec

HKDF.Extract,B10
+ AdvPRF-sec

HKDF.Expand,B11

)

Case C. FS Test with Partner

We now turn to the third case, “FS Test with Partner”, where the tested session has an

honest contributive partner in the third stage, and A issues a Test(label, i) query such

that i ∈ {3, . . . , 8}.

Game C.0. This is identical to Game G2 with the adversary testing a session with an

honest contributive partner in the third stage.

Adv
G2,FS test with partner
TLS1.3-PSK-(EC)DHE-0RT,A

= Adv
GC.0

TLS1.3-PSK-(EC)DHE-0RT,A
.

Game C.1. In this game, we let the challenger guess a session (from at most ns in the

game) and abort if the session guessed is not the honest contributive partner in stage 3

of the tested session. This reduces A’s advantage by a factor of at most 1/ns and thus:

Adv
GC.0

TLS1.3-PSK-(EC)DHE-0RT,A
≤ ns · Adv

GC.1

TLS1.3-PSK-(EC)DHE-0RT,A
.

Game C.2. In this game, we replace the handshake secret HS derived in the tested

session and its contributive partner session with a uniformly random and independent

string H̃S ←$ {0, 1}λ. We employ the dual-snPRF-ODH assumption in order to be

able to simulate the computation of HS in a partnered client session for a modified

ServerKeyShare message. More precisely, we can turn any adversary capable of

distinguishing this change into an adversary B12 against the dual-snPRF-ODH security

of the HKDF.Extract function (taking dES as first and DHE as second input). For this,

B12 asks for a PRF challenge on dES. It uses the obtained Diffie-Hellman shares gx ,

gy within ClientKeyShare and ServerKeyShare of the tested session and its

contributive partner session, and the PRF challenge value as HS in the test session. If

necessary, B12 uses its PRF-ODH queries to derive HS in the partnered session on

differing gy′
�= gy . Providing a sound simulation of either GC.1 (if the bit sampled by

the dual-snPRF-ODH challenger was 0 and thus H̃S = PRF(dES, gxy)) or GC.2 (if

the bit sampled by the dual-snPRF-ODH challenger was 1 and thus H̃S ←$ {0, 1}λ),

this bounds the advantage difference of A as:

Adv
GC.1

TLS1.3-PSK-(EC)DHE-0RT,A
≤ Adv

GC.2

TLS1.3-PSK-(EC)DHE-0RT,A

+Advdual-snPRF-ODH
HKDF.Extract,G,B12

.

Game C.3. In this game, we replace the pseudorandom function HKDF.Expand in

all evaluations using the value H̃S replaced in GC.2. This affects the derivation of the

client handshake traffic secret CHTS, the server handshake traffic secret SHTS in the

target session and its matching partner, and the derived handshake secret dHS in all

37 Page 52 of 69 B. Dowling et al.

sessions using the same handshake secret H̃S. Note that for CHTS and SHTS, these

values are distinct from any other session using the same handshake secret value H̃S,

as the evaluation also takes as input the hash value H2 = H(CH‖SH), (where CH and

SH contain the client and server random values rc, rs respectively) and by Game G2

we exclude hash collisions. We replace the derivation of CHTS, SHTS and dHS in such

sessions with random values C̃HTS, S̃HTS, d̃HS ←$ {0, 1}λ. To ensure consistency, we

replace derivations of dHS with the replaced d̃HS sampled by the first session to evaluate

HKDF.Expand using H̃S. We can bound the difference that this step introduces in the

advantage of A by the security of the pseudorandom function HKDF.Expand. Note that

by the previous game, H̃S is a uniformly random value, and the replacement is sound.

Thus:

Adv
GC.2

TLS1.3-PSK-(EC)DHE-0RT,A
≤ Adv

GC.3

TLS1.3-PSK-(EC)DHE-0RT,A

+AdvPRF-sec
HKDF.Expand,B13

.

At this point, C̃HTS and S̃HTS are independent of any values computed in any session

non-partnered (in stage 1 or 2) with the tested session: distinct session identifiers and

no hash collisions (as of Game G2) ensure that the PRF label inputs for deriving C̃HTS

and S̃HTS are unique.

Game C.4. In this game, we replace the pseudorandom function HKDF.Expand in all

evaluations using the values C̃HTS, S̃HTS replaced in GC.3. This affects the derivation

of the client handshake traffic key tkchs, and the server handshake traffic key tkshs in

the target session and its matching partner. In the derivation, we replace tkchs and tkshs

with random values t̃kchs ←$ {0, 1}L and t̃kshs ←$ {0, 1}L , where L indicates the sum of

key length and iv length for the negotiated AEAD scheme. We can bound the difference

that this step introduces in the advantage of A by the security of two evaluations of the

pseudorandom functions HKDF.Expand. Note that by the previous game C̃HTS and

S̃HTS are uniformly random values, and these replacements are sound. Thus:

Adv
GC.3

TLS1.3-PSK-(EC)DHE-0RTT,A
≤ Adv

GC.4

TLS1.3-PSK-(EC)DHE-0RTT,A

+2 · AdvPRF-sec
HKDF.Expand,B14

.

Game C.5. In this game, we replace the pseudorandom function HKDF.Extract in all

evaluations of the value d̃HS replaced in Game GC.4. This affects the derivation of the

master secret MS in any session using the same derived handshake secret dHS. We

replace the derivation of MS in such sessions with the random value M̃S ←$ {0, 1}λ.

We can bound the difference that this step introduces in the advantage of A by the

security of the pseudorandom function HKDF.Extract. Note that by Game GC.3, d̃HS

is a uniformly random value and this replacement is sound. Thus:

Adv
GC.4

TLS1.3-PSK-(EC)DHE-0RT,A
≤ Adv

GC.5

TLS1.3-PSK-(EC)DHE-0RT,A

+AdvPRF-sec
HKDF.Extract,B15

.

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 53 of 69 37

Game C.6. In this game, we replace the pseudorandom function HKDF.Expand in all

evaluations of the value M̃S replaced in GC.5 in the targeted session and its match-

ing session. This affects the derivation of the client application traffic secret CATS,

the server application traffic secret SATS the exporter master secret EMS and the re-

sumption master secret RMS. For CATS, SATS and EMS, these evaluations are dis-

tinct from any other session, as the evaluation of HKDF.Expand also takes as input

H4 = H(CH‖SH‖SF) (where CH and SH contain the client and server random values rc

and rs respectively), and by Game G2 we exclude hash collisions. For RMS, this evalu-

ation is distinct from any other session, as the evaluation of HKDF.Expand also takes

as input H5 = H(CH‖SH‖SF‖CF). We replace the derivation of CATS, SATS, EMS,

and RMS with random values C̃ATS, S̃ATS, ẼMS, R̃MS ←$ {0, 1}λ. We can bound the

difference that this step introduces in the advantage of A by the secret of the pseudo-

random function HKDF.Expand. Note that by the previous game M̃S is a uniformly

random and independent value, and these replacements are sound. Thus:

Adv
GC.5

TLS1.3-PSK-(EC)DHE-0RT,A
≤ Adv

GC.6

TLS1.3-PSK-(EC)DHE-0RT,A

+AdvPRF-sec
HKDF.Expand,B16

.

We note that in this game we have now replaced all stages’ keys (with the restriction

that the tested stage is from stages 3-8) in the tested session with uniformly random

values independent of the protocol execution and thus

Adv
GC.6

TLS1.3-PSK-(EC)DHE-0RT,A
= 0.

Combining the given single bounds yields the security statement below:

Adv
G2,FS test with partner
TLS1.3-PSK-(EC)DHE-0RT,A

≤ ns

⎛
⎜⎝

Advdual-snPRF-ODH
HKDF.Extract,G,B12

+ AdvPRF-sec
HKDF.Expand,B13

+ 2 · AdvPRF-sec
HKDF.Expand,B14

+ AdvPRF-sec
HKDF.Extract,B15

+ AdvPRF-sec
HKDF.Expand,B16

⎞
⎟⎠

�

7. Discussion and Conclusions

Our analysis provides several insights into the design and properties of the TLS 1.3

handshake and indicates potential avenues for future research.

7.1. Technical Differences from Our Earlier Work

As noted in the introduction, this paper is a successor to earlier versions of our work

[38,39,47,53,61]. Here we briefly comment on the technical differences of the analyses

of draft-05 in [38], draft-10 and draft-dh in [39], and draft-14 in [53],

compared to the final version of TLS 1.3 analyzed in this paper. We focus on three

37 Page 54 of 69 B. Dowling et al.

main aspects: the stages identified for the multi-stage analysis, the session identifiers of

those stages, and the assumptions used in the security proofs. For the stages and session

identifiers, the changes across our series of works are directly related to how the protocol

flows and key schedule evolved.

Stages—Main Handshake draft-05-(EC)DHE had 3 stages: handshake traffic key,

application traffic key, and the resumption master secret RMS. draft-dh and

draft-10-(EC)DHE added the exporter master secret EMS. In this paper we have

6 stages capturing the final RFC’s main handshake: handshake traffic keys tkchs and

tkshs; application traffic secrets CATS and SATS; and EMS and RMS. The main reason

this paper has 2 stages for the handshake traffic keys and 2 stages for the application

traffic secrets is a change to the key schedule: the earlier drafts had 4 secrets (client write

key, client write IV, server write key, server write IV) derived from each of two secrets

(handshake traffic key and application traffic key), whereas TLS 1.3 has 2 secrets (write

key, write IV) derived from each of four secrets (tkchs, tkshs, CATS, SATS).

Stages—PSK Handshake draft-05-SR had 2 stages: handshake traffic key and appli-

cation traffic key. draft-10-PSK added EMS. draft-14-PSK-0RTT added an early

handshake secret and an early application data secret. In this paper we have 8 stages

capturing the final RFC’s PSK handshake: early traffic secret ETS; early exporter master

secret EEMS; handshake traffic keys tkchs and tkshs; application traffic secrets CATS and

SATS; and EMS and RMS. Again the main reason for the additional stages in this paper

is the aforementioned change to the key schedule.

Session Identifiers In the main handshake, session identifiers for the handshake traf-

fic keys are the same across [38,39] and this paper. For the application keys, ses-

sion identifiers changed based on changes in the message flow which caused changes

to the transcript included in the session hash used for key derivation. In particular,

draft-05-(EC)DHE and draft-10-(EC)DHE included ClientCertificate in

the application key session identifiers but not ServerFinished, whereas TLS 1.3

analyzed in this paper does not include CCRT but does include SF. Similarly, session

identifiers for the PSK handshakes changed across the papers due to changes in message

ordering and what messages were available to be included in the session hash.

Cryptographic Assumptions—Main Handshake The cryptographic assumptions used

in the proofs for draft-05-(EC)DHE, draft-dh, draft-10-(EC)DHE, and this pa-

per remain the same. (In early papers we used the notation PRF-ODH rather than the

newer notation snPRF-ODH introduced by [17], but the actual assumption was the

same.)

Cryptographic Assumptions—PSK Handshake In draft-05, no (EC)DHE variant of

the PSK handshake was present (then called “session resumption handshake”),

so the proof of draft-05-SR relied solely on symmetric-key assumptions.

draft-10-PSK relied on the same assumptions as draft-05-SR, whereas

draft-10-PSK-(EC)DHE added an EUF-CMA assumption on HMAC as well as the

PRF-ODH assumption. draft-14-PSK-0RTT and draft-14-PSK-(EC)DHE-0RTT

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 55 of 69 37

added a randomness assumption on HMAC, which in the analysis of the final RFC’s

TLS1.3-PSK-0RTT and TLS1.3-PSK-(EC)DHE-0RTT in this paper is superseded

by a dual-PRF-sec assumption on HKDF.Extract in the multi-stage security bounds.

The latter more explicitly indicates those places where HKDF.Extract is keyed through

the second argument, which were treated more implicitly in the theorem statements of

earlier versions.

Match-security of TLS1.3-PSK-0RTT and TLS1.3-PSK-(EC)DHE-0RTT in this

paper adds a collision resistance assumption on HMAC due to the introduction of the

PSK binder.

7.2. Comments on the TLS 1.3 Design

Value of Key Separation Earlier versions of TLS used the same session key to encrypt

the application data as well as theFinishedmessages at the end of the handshake. This

made it impossible to show that the TLS session key satisfied standard Bellare–Rogaway-

style key indistinguishability security [25] as noted in [56,63,86], which motivated the

combined handshake+record layer analysis in the authenticated and confidential channel

establishment model of [64]. We confirm that the change in keys for encryption of

handshake messages allows keys established during the TLS 1.3 handshake to achieve

standard key indistinguishability security.

Key Independence All forms of the TLS 1.3 handshake achieve key independence for

all stage keys: one can reveal one stage’s session key without endangering the security of

later-stage keys. This follows from the fact that every key exported or used for encryption

is a leaf node in the directed graph representing the key schedule in Fig. 2. Beyond making

it amenable to generic composition, key independence safeguards the usage of derived

keys against inter-protocol effects of security breakdowns. (Some early drafts had less

key independence: for example, in draft-05, each exported key was derived directly

from the master secret MS. Since MS was also used to derive other keys, it could not

be considered as an output stage key, so every exported key had to be included directly

in the main analysis. Contrast this with the final approach in which an exporter master

secret EMS is derived from MS, and then all exported keys are derived from EMS: we

can treat EMS as an output stage key, and consider the derivation of exported keys as a

symmetric protocol using EMS that is composed with the TLS 1.3 handshake protocol.)

A “Dent” in the Key Schedule In terms of key derivation, we remark that there is a

noteworthy “dent” in the TLS 1.3 key schedule (cf. Fig. 2): all second-level secrets

derived from the main (early/handshake/master) secrets are used solely to derive traffic

encryption keys (in case of traffic secrets) or further purposes (resumption and export-

ing), except for the handshake traffic secrets CHTS/SHTS which, beyond deriving the

handshake traffic keys, are also used to compute the finished keys. This allowed us to

define all but the handshake traffic secrets as output session keys in the multi-stage key

exchange sense, while requiring to descend one level further to capture the handshake

traffic keys.

37 Page 56 of 69 B. Dowling et al.

A more uniform key schedule could have derived the finished keys in a separate branch

from the handshake secret HS, enabling CHTS/SHTS to become first-order session keys

on the same level as all others. This in turn would allow a more uniform interface for

composition with arbitrary symmetric-key protocol and possibly better support the treat-

ment of key updates (cf. [60]). While this is only a minor issue for the TLS 1.3 analysis,

it turned out to complicate a modular analysis of the TLS 1.3 handshake integration into

the QUIC protocol [94] as remarked by Delignat-Lavaud et al. [41].

Including the Session Hash in Signatures and Key Derivation In the TLS 1.3 full

handshake, authenticating parties (the server, and sometimes the client) sign (the hash

of) all handshake messages up to when the signature is issued (the “session hash”). This

is different from TLS 1.2 and earlier, where the server’s signature is only over the client

and server random nonces and the server’s ephemeral public key.

As for key derivation, every stage key is derived using a PRF application that includes

the hash of all messages exchange up to the point when the stage key is derived.

In our analysis, the session identifier for each stage is set to be the transcript of

messages up to that point. Thus, assuming collision resistance of the hash function,

different session identifiers result in different keys. (This was the goal of the session hash

which was introduced in response to the triple handshake attack [13] on TLS 1.2 and

earlier.) The server signing the transcript also facilitates our proofs of the authentication

properties in the full handshake.

Furthermore, if output keys are meant to be used as a channel identifier or for channel

binding (with the purpose of leveraging the session protection and authentication proper-

ties established by TLS in an application-layer protocol), including the session hash is ap-

propriate. While the standardized tls-unique [8] and proposed tls-unique-prf

[65] TLS channel binding methods do not use keys directly for binding, the low cost of

including the session hash seems worth it in case an application developer decides to

use keying material directly for binding.

In the PSK handshake without (EC)DHE, there is no ephemeral shared secret and the

master secret is computed as a series of HKDF.Extract computations over a 0-string

using the pre-shared key as the key. All sessions sharing the same pre-shared secret

then compute the same master secret. However, since derivation of output keys still uses

the session hash as context, output keys are unique assuming uniqueness of protocol

messages (which is assured for example by unique nonces).

Encryption of Handshake Messages A major design goal of TLS 1.3 was to enhance

privacy (against passive adversaries) by encrypting the second part of the handshake

(which contains identity certificates) using the initial handshake traffic keys tkchs and

tkshs. Our analysis shows that the handshake traffic keys do indeed have security against

passive adversaries (and even active adversaries by the time the client handshake traffic

key tkchs is used) and hence this feature of TLS 1.3 does increase the handshake’s privacy.

The secrecy of the remaining stage keys however do not rely on the handshake being

encrypted and would remain secure even if the handshake was done in clear.

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 57 of 69 37

Finished Messages The Finishedmessages sent by both client and server at the end

of the TLS 1.3 handshake are MAC values computed by applying HMAC to the (hash

of the) handshake transcript, keyed by dedicated client/server finished secrets fkC /fkS .

Interestingly, according to our proofs, the Finished messages do not contribute to

the implicit authentication and secrecy of the output keys in the full handshake or the

PSK-only handshake, in the sense that the key exchange would achieve the same security

notion without these messages. This is mainly because, in the full handshake, the signa-

tures already authenticate the transcripts, and, in the PSK-only handshake, all keys are

derived from the PSK which provides implicit authentication. While Finished mes-

sages are not needed to provide implicit authentication in PSK-only handshakes, they

would play a role in providing explicit authentication, but our model does not include

an explicit authentication property. In the PSK-(EC)DHE handshake, the Finished

messages do contribute authentication of the ephemeral Diffie–Hellman public keys

under (a key derived from) the PSK. The Finished messages can still generally be

interpreted as providing some form of (explicit) session key confirmation and authenti-

cation [42,55,61].

Compare these with the case of RSA key transport in the TLS 1.2 full handshake: the

analyses of both Krawczyk et al. [70] and Bhargavan et al. [19] note potential weaknesses

or require stronger security assumptions if Finished messages are omitted.

Upstream Hashing in Signatures, MACs, and Key Derivation In signing (resp. MAC-

ing) the transcript for authentication as well as in deriving keys via HKDF, TLS 1.3

uses the hash of the current transcript as input; if, e.g., the signature algorithm is a

hash-then-sign algorithm, it will then perform an additional hash. From a cryptographic

point of view, it would be preferable to insert the full (unhashed) transcript and let the

respective signature, MAC, or KDF algorithms opaquely take care of processing this

message. For engineering purposes, however, it may be desirable to hash the transcript

iteratively, only storing the intermediate values instead of the entire transcript. In our

security proof, this upstream hashing introduces the collision-resistant assumption for

the hash function (and hence a potential additional source of weaknesses, cf. [15]), which

would otherwise be taken care of by the signature, MAC, resp. KDF scheme.

0-RTT Replays and Forward Secrecy Through our analysis, we capture the effects

of replays in the cryptographic security sense, most importantly confirming that the

replayability of 0-RTT keys has no negative effects on the cryptographic security of

subsequently derived keys. From a practical, application-layer perspective, the potential

for 0-RTT replays, however, remains a critical design choice in TLS 1.3 and has been

subject of controversial discussion (see, e.g., [83]). The TLS 1.3 standard [90, Sect. 8]

acknowledges that “TLS does not provide inherent replay protections for 0-RTT data,”

and at the same time urges implementations to at least implement a certain basic level

of anti-replay protection (like single-use session tickets, ClientHello recording, or

freshness checks). The 0-RTT modes of Google’s QUIC protocol and TLS 1.3 spawned

a series of academic treatments of 0-RTT key exchange [52,62,78] and new designs of

forward-secure encryption [30,59] to achieve forward-secret and non-replayable 0-RTT

key exchange [46,57] and TLS session resumption [6].

37 Page 58 of 69 B. Dowling et al.

Also, from a cryptographic perspective, the Diffie–Hellman-based 0-RTT mode vari-

ant offered a higher level of (forward) security as it did not require the client to keep

secret state for resumption and hence only server compromises would affect the se-

crecy of 0-RTT communication [53,74]. This handshake variant was abandoned with

draft-13 in favor of performance and structural simplification.

7.3. Open Research Questions

Composition Key exchange protocols would be of limited use if applied in isolation;

generally, the derived keys are meant to be deployed in a follow-up (or overall) proto-

col. Encryption (and authentication) of application data via a (cryptographic) channel

protocol is of course a common approach, with the TLS record protocol being a prime

example, but other usage in the TLS setting includes exporting of key material or re-

sumption handshakes (via the exporter resp. resumption master secret).

Key exchange protocols secure in the sense of Bellare–Rogaway [25] are indeed

amenable to generic secure composition with arbitrary follow-up symmetric protocols

as shown by Brzuska et al. [22,26]. Earlier versions of our work [38,61] included adap-

tations of these composition results to the multi-stage setting, demonstrating that stage

keys could be safely used in symmetric key protocols. Those results still apply to our

current model, when restricted to stage keys that are marked for external use, are non-

replayable, and when treating the authentication characteristic as fixed at acceptance

time, not upgradable. However, it is not obvious how to translate the notions of upgrad-

able authentication or replayability generically to a symmetric key protocol. Given that

our focus is on the TLS 1.3 handshake protocol as an authenticated key exchange proto-

col, we leave a composition result translating replayability and upgradable authentication

to future work.

As part of a composed treatment of the overall TLS 1.3 protocol (i.e., handshake

and record layer), a conceptual alternative to our treatment of the handshake could

be to consider all keys—including handshake traffic keys—to be external (from the

handshake’s perspective), and rely on the record protocol for handshake encryption.

This viewpoint is taken especially in analyses based on verified implementations [40]

and would, in the computational setting, require an appropriate amalgamation of channel

models capturing the bidirectional, multi-key, multiplexed, and streaming nature of the

TLS 1.3 record protocol [23,54,60,85,88].

Post-Quantum Key Exchange While our theorems are mostly generic in terms of cryp-

tographic assumptions, they do directly rely on a Diffie–Hellman assumption in a group.

Post-quantum key exchange, however, is usually formulated generically as a key encap-

sulation mechanism (KEM). If TLS 1.3 is to be extended to support post-quantum or

hybrid (i.e., traditional plus post-quantum) key exchange [36], our results on the full

1-RTT and PSK-(EC)DHE modes will need to be revisited in the context of specific

post-quantum KEMs or generic properties of KEMs. As we rely on the PRF-ODH

assumption [17], an interactive assumption which provides some notion of “active se-

curity”, it may be the case that translating our proofs to the KEM setting requires use of

an IND-CCA KEM. Brendel et al. [16] discuss challenges arising when moving Diffie–

Hellman-style key exchanges to the post-quantum setting and Schwabe et al. [93] present

a KEM-based alternative to the TLS 1.3 handshake with modified message flow.

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 59 of 69 37

7.4. Conclusions

In this work, we have updated our prior analyses of the cryptographic security of several

draft TLS 1.3 handshakes to the final, standardized version of TLS 1.3 in RFC 8446 [90].

We analyzed the full 1-RTT handshake mode as well as the PSK-based resumption hand-

shake modes, with optional 0-RTT keys, in the reductionist framework of an enhanced

multi-stage key exchange security model that captures the various security properties of

the several keys derived in TLS 1.3. Our analysis confirmed that the TLS 1.3 handshake

follows sound cryptographic design principles and establishes session keys with their

desired security properties under standard cryptographic assumptions.

The IETF TLS working group developed TLS 1.3 through a novel, proactively trans-

parent standardization process (cf. [89]) that actively solicited industry and academia

alike. In our opinion, this has led to an unprecedented success in having wide-ranging

security analyses for a major Internet security protocol prior to its standardization and

deployment. While security models or formal method tools can never capture the en-

tirety of real-world threats to such protocols, we believe that, through this process, the

boundaries of formal understanding have been pushed to an extent that significantly

strengthens confidence in the soundness of TLS 1.3’s design. As such, the TLS 1.3

standardization process exemplifies a commendable paradigm which rightfully is being

adopted for standardization processes of other major Internet security protocols, and

which we encourage other standards bodies to adopt.

Acknowledgements

We thank Markulf Kohlweiss for insightful discussions on the necessity of the PRF-

ODH assumption for proofs of the TLS 1.3 handshakes. We thank Håkon Jacobsen for

comments on the proof for the pre-shared key handshake, Joseph Jaeger and Damiano

Abram for comments on the formalization of Match security, and Denis Diemert for

comments on the handshake protocol figures. We also thank the reviewers of this and

earlier versions of this work for valuable comments. Benjamin Dowling was supported

by EPSRC grant EP/L018543/1. The work of Marc Fischlin has been funded in part by

the German Federal Ministry of Education and Research and the Hessen State Ministry

for Higher Education, Research and the Arts within their joint support of the National

Research Center for Applied Cybersecurity. Felix Günther has been supported in part

by Research Fellowship grant GU 1859/1-1 of the German Research Foundation (DFG)

and National Science Foundation (NSF) grants CNS-1526801 and CNS-1717640. Dou-

glas Stebila was supported by Australian Research Council (ARC) Discovery Project

grant DP130104304, Natural Sciences and Engineering Research Council of Canada

(NSERC) Discovery grant RGPIN-2016-05146, and NSERC Discovery Accelerator

Supplement grant RGPIN-2016-05146. This work has been co-funded by the DFG as

part of project S4 within the CRC 1119 CROSSING.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

and indicate if changes were made. The images or other third party material in this article are included in the

37 Page 60 of 69 B. Dowling et al.

article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Reducing Multiple to Single Test Queries

In this section we give more details on the hybrid argument to reduce adversaries Amulti which make multiple

Test queries in the Multi-Stage game for the TLS 1.3 handshakes to adversaries Asingle which restrict

themselves to a single Test query. Note that any multi-query adversary cannot make more (reasonable) Test

queries than the number ns of overall sessions times the maximum number M of stages. Any adversary making

more queries needs to repeat queries for some keys, yielding the reply ⊥, and such queries can be easily sorted

out.

The main step is the hybrid argument where adversary Asingle simulates Amulti’s attack, making only a single

Test query. To do so, for a randomly chosen index n between 1 and the maximum number ns of Test queries,

adversary Asingle returns the genuine keys in the first n − 1 queries of Amulti, poses the Test query for the

n-th query as its own query, and returns random keys from query n + 1 on. To get the genuine keys for the

first queries, Asingle instead calls the Reveal oracle.

The above works along the common argument in hybrid games if we can ensure that Asingle does not lose

because of the additional Reveal queries it makes, i.e., if it reveals a key for the partner of the (only) Test

session. One option to ensure this is to demand that Amulti never tests a session and its partner. Luckily, the

multi-stage security model in Sect. 4 supports this smoothly. Namely, testing a session in stage i for which the

testedi flag has been already set to true will immediately return ⊥. This setting of the flag happens in one of

the following cases:

• When the session itself is tested for the first time in this stage, or

• if the session accepts at this stage after a Send call and there is already a partner with testedi = true

(triggered in the Send execution for which the session accepts), or

• if it is partnered to a tested session and has just accepted at the same stage (triggered through the testing

of the partner in the Test oracle execution).

Furthermore, a Test call to a session stage i for which the session has already passed, i.e., stexec �= acceptedi ,

also returns ⊥. In other words, any Test query of Amulti to a partner of a previous Test query returns ⊥. We

can therefore avoid such queries and let Asingle answer ⊥ for such queries directly. In this case the remaining

Reveal queries, substituting the first Test queries in the hybrid argument, cannot cause Asingle to lose, because

now they are for sure not partnered with the (only) Test query of Asingle.

There are two caveats in the above reasoning. First, adversary Asingle needs to know if two session stages

are partnered in order to correctly respond ⊥ for some Test queries. While this is trivial to deduce from the

public communication data for sid1 and sid2, the session identifiers sid3, . . . , sid6 contain confidentially

transmitted messages, protected through the handshake traffic keys derived in stages 1 and 2 in the TLS 1.3

handshake. But if we let Asingle know these two internal keys via carefully selected Reveal queries when

testing for a stage i ≥ 3 then it can decrypt the communication and decide partnering with other sessions for

this stage. Since these further Reveal queries are for earlier stages, they essentially cannot interfere with the

stage of the Test session.

It is convenient to store the information about tested sessions in an internal array simTestedi [label] which is

set to true if session label would have been marked as testedi in the game, if Amulti would have actually made

that query. We write this as an array in order to distinguish this internal list to Asingle from entries in sessions

label. At any point in time, the array simTested in Asingle’s simulation will hold the same information as the

entries tested if Amulti had actually made all Test queries.

The second issue arises from the fact that internal keys (i.e., keys in stages i with USEi = internal) are

overwritten in partners to tested sessions. This can happen in the Send(label, m) command if a partner label

of a tested session stage for label′ (with label′.testedi = true) goes to acceptedi . Then the security game

sets label.keyi ← label′.keyi . The other case can occur in the Test(label, i) query itself if a partnered

session label′ to the tested session is already in state label′.stexec = acceptedi . Then the internal key of

http://creativecommons.org/licenses/by/4.0/

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 61 of 69 37

that session label′ is replaced by the answer for the tested session. But our adversary Asingle with a single

Test query of course only sets one session stage to be tested, influencing at most one further session, whereas

Amulti’s multiple Test queries may overwrite several keys.

Since there is no other mechanism to modify keys in the security model, we need to take care of the issue

manually in the simulation of Amulti through Asingle. Fortunately, the internal keys in TLS 1.3 handshake are

only used for protecting the data in transport, wrapping and unwrapping the data immediately when sending

or receiving. We thus let Asingle keep internal arrays actualKeyi [label] and simKeyi [label] for the internal

keys (in the actual attack of Asingle, resp. in the simulation of Amulti) at stage i ∈ {1, 2} and let Asingle

adapt authenticated encryptions with respect to such keys when relaying them between the simulation Amulti

and Send.

Lemma A.1. Let Amulti be an adversary making at most nTest ≤ M · ns calls to Test attacking TLS 1.3

full 1-RTT handshake in the Multi-Stage game. Then, there exists an adversary Asingle which makes only a

single Test query such that

Adv
Multi-Stage,D

TLS1.3-full-1RTT,Amulti
≤ nTest · Adv

Multi-Stage,D

TLS1.3-full-1RTT,Asingle
.

In addition, Asingle initiates the same maximum number ns of sessions as Amulti.

The lemma holds analogously for the other handshake variants of TLS 1.3 since the argument uses only

specifics which are shared by all variants.

Proof. We build our adversary Asingle from Amulti via a black-box simulation. Adversary Asingle proceeds

as follows. Initially, it picks n ∈ {1, 2, . . . , nTest} at random and initializes empty arrays actualKeyi [] ← ⊥,

simKeyi [] ← ⊥ for i = 1, 2 and simTestedi [] ← false for i ∈ {1, 2, . . . , M}. Algorithm Asingle then

invokes Amulti, relaying all oracle queries except for the Send and Test queries.

Simulating Send queries. A Send(label, m) query is answered by possibly switching encryptions, if the

session has been marked as a (virtually) tested session such that keys need to be adapted. Let i = label.stage

denote the current stage, meaning that the session has already accepted at stage i :

• If i ≤ 1 or m = init or m = continue then pass the command to the own Send oracle. Such messages

are not encrypted, and we do not need to re-encrypt the communication data.

• If i ≥ 2 and simTestedi [label] = true, i.e., the data is encrypted under a key which has potentially

changed due to the (virtual) test, then re-encrypt with the client resp. server handshake traffic key in

the experiment of Asingle. Note that session identifiers (esp. for stages i ≥ 3) are not affected by this

re-encryption as they are defined over the cleartexts:

– If label.role = initiator, i.e., we expect the client to receive a message protected under the server’s

traffic handshake secret (the stage-2 key), then decrypt m with key simKey2[label] and re-encrypt

the result with actualKey2[label] to m′ before passing (label, m′) to the own Send oracle. Here,

and in the following, we assume that encryption always succeeds for messages different from ⊥,

and that ⊥ is encrypted to something which again decrypts to ⊥.

– If label.role = responder, i.e., we expect the server to receive a message protected under the

client’s traffic handshake secret (the stage-1 key), then decrypt m with key simKey1[label] and

re-encrypt the result with actualKey1[label] to m′ before passing (label, m′) to the own Send

oracle.

• In any other case just forward (label, m) to the own Send oracle.

For the response m from the Send oracle do the following:

• If i ≤ 1 then hand back the response unchanged.

• If i ≥ 2 and simTestedi [label] = true, then adapt encryption to the keys expected by Amulti:

· If label.role = initiator then decrypt m with key actualKey1[label] and re-encrypt the result with

simKey1[label] to m′ before returning m′.

37 Page 62 of 69 B. Dowling et al.

· If label.role = responder then decrypt m with key actualKey2[label] and re-encrypt the result

with simKey2[label] to m′ before returning m′.

• In any other case return m.

In addition, check if one needs to set the status of simTested. If the Send call changes the status to

acceptedi+1 —about which the adversary Asingle is informed— then do the following:

• For i + 1 ≤ 2, if there is a session label′ �= label with label′.sidi+1 = label.sidi+1 and

simTestedi+1[label′] = true, then set the test status for the session here, simTestedi+1[label] ←

true. Note that since the session identifiers in the first two stages consists of the cleartext messages, this is

easy to check in this case. Also copy the internal keys, actualKeyi+1[label] ← actualKeyi+1[label′]

and simKeyi+1[label] ← simKeyi+1[label′].

• For i + 1 ≥ 3, if simTested1[label] = true then fetch the key actualKey1[label], else make a Reveal

query (label, 1), and analogously for the key for stage 2. Since the session under consideration has

already accepted in stage i +1 ≥ 3 at this point, our adversary Asingle obtains the two handshake traffic

keys and uses these keys to decrypt the communication (in its attack) to recover sidi+1 in session label.

Compare this value to the session identifiers in all sessions label′ with simTestedi+1[label′] = true

for the same stage i + 1. Note that a session label′ can only be partnered in stage i + 1 ≥ 3 if it

is already partnered in the first two stages, because sidi+1 contains the identifiers sid1 and sid2 as

prefix (except for the label). This also implies that such sessions can only derive the same handshake

traffic keys. Thus, we can use the same handshake keys as for label to decrypt for label′. If there is

a match, then update simTestedi+1[label] ← true and copy the keys from session label′ as before,

actualKeyi+1[label] ← actualKeyi+1[label′] and simKeyi+1[label] ← simKeyi+1[label′].

Except for the copying of the actual key, this now corresponds exactly to the update step in the Send query.

Simulating Test queries. The t-th Test query (label, i) is answered as follows:

• If there is no session label, or the session label has not accepted in stage i yet—which is known to

the adversary because it gets to learn label.stexec upon successful completion of the i-th stage— or

simTestedi [label] = true, then immediately return ⊥.

• Otherwise proceed as follows:

– If t < n then make a Reveal(label, i) call to get the key K and return it to Amulti. Set

simTestedi [label] ← true and, if i ≤ 2 and the key is internal, also set actualKeyi [label] ← K

and simKeyi [label] ← K .

– If t = n then make a Test(label, i) call and return the answer K toAmulti. Set simTestedi [label] ←

true and, if i ≤ 2, also set actualKeyi [label] ← K and simKeyi [label] ← K .

– If t > n then pick a key K ←$ D randomly and return it to Amulti. Set simTestedi [label] ← true

and, if i ≤ 2, this time define actualKeyi [label] ← Reveal(label, i) and simKeyi [label] ← K .

• Finally, we need to check as in the original Test query if there is already a partnered session in ac-

cepted state for the same stage, and, if so, modify its status. If there exists a session label′ �= label

which is partnered, label′.sidi = label.sidi , and where label′.stexec = label.stexec = acceptedi ,

then set simTestedi [label′] ← true. If i ≤ 2 then also copy the keys, actualKeyi [label′] ←

actualKeyi [label] and simKeyi [label′] ← simKeyi [label]. We note that the checking against a match

to label′ is done analogously to the Send query.

We remark that we do not alter the simulated Reveal oracle but let queries through without modifications.

There are cases now where the multi-query adversary Amulti may thus obtain a different internal key than

expected. But this can only happen for sessions which have been (virtually) tested, such that any Reveal query

or such a partnered session where the key has been changed would make Amulti lose. We thus ignore these

cases and simply continue with the misaligned answer.

Analysis Note that the additional Reveal queries, which Asingle makes for internal keys in the sim-

ulation of Send and Test above, cannot interfere with its only Test query. Recall that Asingle may make

Reveal(label, 1) and Reveal(label, 2) queries when simulating the Send and Test queries.

In the simulated Send query we need to check that the potential Reveal(label, 1) and Reveal(label, 2)

queries for the internal keys in stages 1 and 2 do not conflict with the (only) Test query for session labeltested

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 63 of 69 37

which Asingle makes for stage i . Note that these queries would only be made if the session label has accepted

at a stage ≥ 3. Assume that indeed i ∈ {1, 2} and that labeltested is partnered with label in that stage i . For

this distinguish the point in time when the Test call to labeltested is made:

• If the Test call for labeltested is made later, after session label has continued after accepting in stage

i ≤ 2 , then the adversary Amulti loses. The reason is that in this case there is a partnered session label

which has continued beyond stage i ∈ {1, 2} and has used the internal key already. Such a Test call

sets lost ← true according to the model.

• If the Test call for labeltested has already been made for stage i ∈ {1, 2} before session label has

continued after accepting in that stage, then the session (label, i) partnered to (labeltested, i) for i ∈

{1, 2} must have been marked as tested, simTestedi [label] = true, in a simulation of Test or Send

(without using Reveal queries for this stage with cleartext session identifiers). In this case, however,

our algorithm Asingle does not make a Reveal query for this stage but reads off the key from the array

actualKeyi [label].

Hence, in the first case we can only increase the success probability and in the second case we avoid a

conflicting Reveal query straight away. Note that the same is true for the final check in the simulation of Test.

It remains to argue the compatibility of the other potential Reveal queries in the simulated Test query. If the

n-th query for session labeltested and stage i (which Asingle forwards to its Test oracle) would be partnered

with the t-th query (label, i), then the call of Amulti to its (simulated) Test oracle for labeltested later

• would either make Amulti lose if the session labeltested was at the point of the query already past the

state acceptedi for the internal key (according to the description of the Test oracle), or

• the session labeltested is already in state acceptedi when the test query here is made, in which case the

(simulated) Test oracle would mark that session labeltested as tested, simTestedi [labeltested] = true,

because it is partnered to the now (virtually) tested session label, or

• the session labeltested is not yet in state acceptedi when the test query here is made, in which case later

the (simulated) Send oracle would mark that session labeltested as tested when it eventually accepts

in stage i , simTestedi [labeltested] = true, because it is then partnered to the (virtually) tested session

label here.

We ignore the first case because it cannot contribute to Amulti’s success probability. For the latter two cases

it follows that the n-th query of Amulti will actually not be forwarded to Asingle’s oracle Test, because for

such marked sessions with simTestedi [labeltested] = true the simulated Test oracle immediately returns

⊥. Hence, Asingle does not make any Test query in these cases at all, and in particular cannot lose because of

a Reveal query for a session partnered to the one in the Test query.

By the above it follows that Asingle only sets lost in its attack if Amulti does so in the simulation. For the

final step in the analysis of the hybrid argument observe that if n = 1 and btest = 0 (for the challenge bit

in Asingle’s game) then our adversary Asingle only returns random keys to A′
multi (or error messages ⊥) in

simulated Test queries. Furthermore, unless A′
multi loses the game, the simulation is perfectly sound in the

sense that it has the same distribution as in an actual attack; in particular this argument is not violated by the

re-encryption. Hence, in this case we have that Asingle predicts its value btest with the same probability as

A′
multi when receiving only random keys in all (valid) Test queries. Analogously, if n = nTest and btest = 1

then Asingle always returns genuine keys (or errors) to A′
multi, again, in a sound simulation unless A′

multi
loses. This therefore corresponds to the case that A′

multi only receives genuine keys in all (valid) Test queries.

For the analysis, let b be the output of Asingle and btest be its challenge bit. Similarly, let b′ be the output of

Amulti in an actual attack for test bit b′
test. We denote by b = btest resp. b′ = b′

test the events that the bit is

correct and the lost flag is not set. Then,

Pr
[
b = btest

]
=

nTest∑

n0=1

Pr
[
b = btest ∧ n = n0

]

= 1
nTest

·

nTest∑

n0=1

Pr
[
b = btest | n = n0

]

= 1
nTest

·

nTest∑

n0=1

(
1
2 · Pr

[
b = 0 | btest = 0 ∧ n = n0

]

37 Page 64 of 69 B. Dowling et al.

+ 1
2 ·

(
1 − Pr

[
b = 0 | btest = 1 ∧ n = n0

]))

= 1
2 + 1

nTest
·

nTest∑

n0=1

1
2 ·

(
Pr

[
b = 0 | btest = 0 ∧ n = n0

]

− Pr
[
b = 0 | btest = 1 ∧ n = n0

])

and noting that the simulation conditioned on btest = 1 and n = n0 is equivalent to the simulation for

btest = 0 and n = n0 + 1, the telescope sum simplifies to

= 1
2 + 1

nTest
· 1

2

(
Pr

[
b = 0 | btest = 0 ∧ n = 1

]
− Pr

[
b = 0 | btest = 1 ∧ n = nTest

])

= 1
2 + 1

nTest
· 1

2

(
Pr

[
b = 0 | btest = 0 ∧ n = 1

]
− 1 + Pr

[
b = 1 | btest = 1 ∧ n = nTest

])

≥ 1
2 + 1

nTest
·
(
Pr

[
b′ = b′

test

]
− 1

2

)

where we used in the last step that the simulation is perfectly sound (if Amulti does not lose) and thus at least

the probability in an actual attack. We remark that our adversary Asingle may trigger lost ← true less often

than Amulti, e.g., because of the omitted Test queries and potential conflicts with Reveal queries. Hence, we

obtain

Adv
Multi-Stage,D

TLS1.3-full-1RTT,A′
multi

≤ nTest · Adv
Multi-Stage,D

TLS1.3-full-1RTT,Asingle
,

proving the claim of the lemma. �

References

[1] L. Akhmetzyanova, E. Alekseev, E. Smyshlyaeva, A. Sokolov, Continuing to reflect on TLS 1.3 with

external PSK. Cryptology ePrint Archive, Report 2019/421 (2019). https://eprint.iacr.org/2019/421

[2] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J.A. Halderman, N. Heninger, D. Springall,

E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow, S. Zanella-Béguelin, P. Zimmermann, Imperfect

forward secrecy: How Diffie-Hellman fails in practice, in ACM CCS 15 (2015)

[3] G. Arfaoui, X. Bultel, P.-A. Fouque, A. Nedelcu, C. Onete, The privacy of the TLS 1.3 protocol. PoPETs,

2019(4), 190–210 (2019). https://doi.org/10.2478/popets-2019-0065

[4] N. AlFardan, D.J. Bernstein, K.G. Paterson, B. Poettering, J.C.N. Schuldt, On the security of RC4 in

TLS, in Proceedings of 22nd USENIX Security Symposium, pp. 305–320. USENIX (2013)

[5] M. Abdalla, M. Bellare, P. Rogaway, The oracle Diffie-Hellman assumptions and an analysis of DHIES.

In David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS, pp. 143–158. Springer, Heidelberg,

(2001). https://doi.org/10.1007/3-540-45353-9_12

[6] N. Aviram, K. Gellert, T. Jager, Session resumption protocols and efficient forward security for TLS

1.3 0-RTT. Journal of Cryptology (2021). To appear. Available as Cryptology ePrint Archive, Report

2019/228. https://eprint.iacr.org/2019/228

[7] N.J. AlFardan, K.G. Paterson, Lucky thirteen: breaking the TLS and DTLS record protocols, in 2013

IEEE Symposium on Security and Privacy, pp. 526–540. IEEE Computer Society Press, (2013). https://

doi.org/10.1109/SP.2013.42

[8] J. Altman, N. Williams, L. Zhu, Channel Bindings for TLS. RFC 5929 (Proposed Standard), 2010. http://

www.ietf.org/rfc/rfc5929.txt

[9] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub,

J.K. Zinzindohoue, A messy state of the union: taming the composite state machines of TLS, in 2015

IEEE Symposium on Security and Privacy, pp. 535–552. IEEE Computer Society Press, 2015. https://

doi.org/10.1109/SP.2015.39

[10] B. Beurdouche, K. Bhargavan, A. Delignat-Levaud, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, J.K.

Zinzindohoue, A messy state of the union: Taming the composite state machines of TLS, in Proceedings

of IEEE Symposium on Security & Privacy (S&P) 2015, pp. 535–552. IEEE (2015)

https://eprint.iacr.org/2019/421
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.1007/3-540-45353-9_{12}
https://eprint.iacr.org/2019/228
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1109/SP.2013.42
http://www.ietf.org/rfc/rfc5929.txt
http://www.ietf.org/rfc/rfc5929.txt
https://doi.org/10.1109/SP.2015.39
https://doi.org/10.1109/SP.2015.39

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 65 of 69 37

[11] K. Bhargavan, C. Brzuska, C. Fournet, M. Green, M. Kohlweiss, S. Zanella-Béguelin. Downgrade

resilience in key-exchange protocols, in 2016 IEEE Symposium on Security and Privacy, pp. 506–525.

IEEE Computer Society Press, 2016. https://doi.org/10.1109/SP.2016.37

[12] M. Bellare, R. Canetti, H. Krawczyk, Keying hash functions for message authentication, in Neal Koblitz,

editor, CRYPTO’96, vol. 1109 of LNCS, pp. 1–15. Springer, Heidelberg (1996). https://doi.org/10.1007/

3-540-68697-5_1

[13] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, P.-Y. Strub, Triple handshakes and cookie

cutters: breaking and fixing authentication over TLS, in 2014 IEEE Symposium on Security and Privacy,

pp. 98–113. IEEE Computer Society Press (2014). https://doi.org/10.1109/SP.2014.14

[14] M. Bellare, New proofs for NMAC and HMAC: Security without collision-resistance, in Cynthia Dwork,

editor, CRYPTO 2006, vol. 4117 of LNCS, pp. 602–619. Springer, Heidelberg (2006). https://doi.org/10.

1007/11818175_36

[15] J. Brendel, M. Fischlin, F. Günther, Breakdown resilience of key exchange protocols: NewHope, TLS

1.3, and hybrids, in K. Sako, S. Schneider, P.Y.A. Ryan, editors, ESORICS 2019, Part II, volume 11736

of LNCS, pp. 521–541. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-29962-0_25

[16] J. Brendel, M. Fischlin, F. Günther, C. Janson, D. Stebila, Challenges in proving post-quantum key

exchanges based on key encapsulation mechanisms. Cryptology ePrint Archive, Report 2019/1356,

2019. https://eprint.iacr.org/2019/1356

[17] J. Brendel, M. Fischlin, F. Günther, C. Janson, PRF-ODH: relations, instantiations, and impossibility

results. In J. Katz, H. Shacham, editors, CRYPTO 2017, Part III, vol. 10403 of LNCS, pp. 651–681.

Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-63697-9_22

[18] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, Implementing TLS with verified

cryptographic security, in 2013 IEEE Symposium on Security and Privacy, pp. 445–459. IEEE Computer

Society Press (2013). https://doi.org/10.1109/SP.2013.37

[19] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, S. Z. Béguelin, Proving the TLS

handshake secure (as it is). In J.A. Garay, R. Gennaro, editors, CRYPTO 2014, Part II, vol. 8617 of

LNCS, pp. 235–255. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_14

[20] K. Bhargavan, C. Fournet, M. Kohlweiss, miTLS: verifying protocol implementations against real-world

attacks. IEEE Security & Privacy, 14(6), 18–25 (2016) https://doi.org/10.1109/MSP.2016.123

[21] C. Brzuska, M. Fischlin, N.P. Smart, B. Warinschi, S.C. Williams. Less is more: Relaxed yet composable

security notions for key exchange. International Journal of Information Security, 12(4), 267–297 (2013)

https://doi.org/10.1007/s10207-013-0192-y

[22] C. Brzuska, M. Fischlin, B. Warinschi, S.C. Williams, Composability of Bellare-Rogaway key exchange

protocols, in Y. Chen, G. Danezis, V. Shmatikov, editors, ACM CCS 2011, pp. 51–62. ACM Press (2011).

https://doi.org/10.1145/2046707.2046716

[23] C. Boyd, B. Hale, Secure channels and termination: the last word on TLS. In T. Lange, O. Dunkelman,

editors, LATINCRYPT 2017, vol. 11368 of LNCS, pp. 44–65. Springer, Heidelberg (2017). https://doi.

org/10.1007/978-3-030-25283-0_3

[24] C. Badertscher, C. Matt, U. Maurer, P. Rogaway, B. Tackmann, Augmented secure channels and the

goal of the TLS 1.3 record layer. In M. H. Au, A. Miyaji, editors, ProvSec 2015, vol. 9451 of LNCS, pp.

85–104. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-26059-4_5

[25] M. Bellare, P. Rogaway, Entity authentication and key distribution. In D.R. Stinson, editor, CRYPTO’93,

vol. 773 of LNCS, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_

21

[26] C. Brzuska, On the Foundations of Key Exchange. PhD thesis, Technische Universität Darmstadt, Darm-

stadt, Germany (2013). http://tuprints.ulb.tu-darmstadt.de/3414/

[27] M. Bellare, B. Tackmann. The multi-user security of authenticated encryption: AES-GCM in TLS 1.3,

in M. Robshaw, J. Katz, editors, CRYPTO 2016, Part I, vol. 9814 of LNCS, pp. 247–276. Springer,

Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_10

[28] K. Cohn-Gordon, C. Cremers, K. Gjøsteen, H. Jacobsen, T. Jager, Highly efficient key exchange protocols

with optimal tightness, in A. Boldyreva, D. Micciancio, editors, CRYPTO 2019, Part III, vol. 11694 of

LNCS, pp. 767–797. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-26954-8_25

[29] C. Cremers, M. Horvat, J. Hoyland, S. Scott, T. van der Merwe, A comprehensive symbolic analysis of

TLS 1.3. In B.M. Thuraisingham, D. Evans, T. Malkin, D. Xu, editors, ACM CCS 2017, pp. 1773–1788.

ACM Press (2017). https://doi.org/10.1145/3133956.3134063

https://doi.org/10.1109/SP.2016.37
https://doi.org/10.1007/3-540-68697-5_{1}
https://doi.org/10.1007/3-540-68697-5_{1}
https://doi.org/10.1109/SP.2014.14
https://doi.org/10.1007/11818175_{36}
https://doi.org/10.1007/11818175_{36}
https://doi.org/10.1007/978-3-030-29962-0_{25}
https://eprint.iacr.org/2019/1356
https://doi.org/10.1007/978-3-319-63697-9_{22}
https://doi.org/10.1109/SP.2013.37
https://doi.org/10.1007/978-3-662-44381-1_{14}
https://doi.org/10.1109/MSP.2016.123
https://doi.org/10.1007/s10207-013-0192-y
https://doi.org/10.1145/2046707.2046716
https://doi.org/10.1007/978-3-030-25283-0_{3}
https://doi.org/10.1007/978-3-030-25283-0_{3}
https://doi.org/10.1007/978-3-319-26059-4_{5}
https://doi.org/10.1007/3-540-48329-2_{21}
https://doi.org/10.1007/3-540-48329-2_{21}
http://tuprints.ulb.tu-darmstadt.de/3414/
https://doi.org/10.1007/978-3-662-53018-4_{10}
https://doi.org/10.1007/978-3-030-26954-8_{25}
https://doi.org/10.1145/3133956.3134063

37 Page 66 of 69 B. Dowling et al.

[30] R. Canetti, S. Halevi, J. Katz, A forward-secure public-key encryption scheme, in E. Biham, editor,

EUROCRYPT 2003, vol. 2656 of LNCS, pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.

1007/3-540-39200-9_16

[31] C. Cremers, M. Horvat, S. Scott, T. van der Merwe, Automated analysis and verification of TLS 1.3:

0-RTT, resumption and delayed authentication, in 2016 IEEE Symposium on Security and Privacy, pp.

470–485. IEEE Computer Society Press (2016). https://doi.org/10.1109/SP.2016.35

[32] S. Chen, S. Jero, M. Jagielski, A. Boldyreva, C. Nita-Rotaru, Secure communication channel estab-

lishment: TLS 1.3 (over TCP fast open) vs. QUIC, in K. Sako, S. Schneider, P.Y.A. Ryan, editors,

ESORICS 2019, Part I, vol. 11735 of LNCS, pp. 404–426. Springer, Heidelberg (2019). https://doi.org/

10.1007/978-3-030-29959-0_20

[33] R. Canetti, H. Krawczyk, Analysis of key-exchange protocols and their use for building secure channels.

In B. Pfitzmann, editor, EUROCRYPT 2001, vol. 2045 of LNCS, pp. 453–474. Springer, Heidelberg

(2001). https://doi.org/10.1007/3-540-44987-6_28

[34] R. Canetti, H. Krawczyk, Security analysis of IKE’s signature-based key-exchange protocol, in M. Yung,

editor, CRYPTO 2002, vol. 2442 of LNCS, pp. 143–161. Springer, Heidelberg (2002). http://eprint.iacr.

org/2002/120/. https://doi.org/10.1007/3-540-45708-9_10

[35] Codenomicon. The Heartbleed bug. http://heartbleed.com (2014)

[36] E. Crockett, C. Paquin, D. Stebila, Prototyping post-quantum and hybrid key exchange and authentication

in TLS and SSH, in NIST 2nd Post-Quantum Cryptography Standardization Conference 2019 (2019)

[37] T. Dierks, C, Allen, The TLS Protocol Version 1.0. RFC 2246 (Proposed Standard) (1999). Obsoleted

by RFC 4346, updated by RFCs 3546, 5746, 6176, 7465, 7507, 7919. https://www.rfc-editor.org/rfc/

rfc2246.txt, https://doi.org/10.17487/RFC2246

[38] B. Dowling, M. Fischlin, F. Günther, D. Stebila, A cryptographic analysis of the TLS 1.3 handshake

protocol candidates, in I. Ray, N. Li, C. Kruegel, editors, ACM CCS 2015, pp. 1197–1210. ACM Press

(2015). https://doi.org/10.1145/2810103.2813653

[39] B. Dowling, M. Fischlin, F. Günther, D. Stebila, A cryptographic analysis of the TLS 1.3 draft-10 full and

pre-shared key handshake protocol. Cryptology ePrint Archive, Report 2016/081 (2016). http://eprint.

iacr.org/2016/081

[40] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Rastogi, N. Swamy, S. Zanella-Béguelin,

K. Bhargavan, J. Pan, J.K. Zinzindohoue, Implementing and proving the TLS 1.3 record layer, in 2017

IEEE Symposium on Security and Privacy, pp. 463–482. IEEE Computer Society Press (2017). https://

doi.org/10.1109/SP.2017.58

[41] A. Delignat-Lavaud, C. Fournet, B. Parno, J. Protzenko, T. Ramananandro, J. Bosamiya, J. Lallemand,

I. Rakotonirina, Y. Zhou, A security model and fully verified implementation for the IETF QUIC record

layer. Cryptology ePrint Archive, Report 2020/114 (2020). https://eprint.iacr.org/2020/114

[42] C.D. de Saint Guilhem, M. Fischlin, B. Warinschi, Authentication in key-exchange: Definitions, relations

and composition. Cryptology ePrint Archive, Report 2019/1203 (2019). https://eprint.iacr.org/2019/

1203

[43] H. Davis, F. Günther. Tighter proofs for the SIGMA and TLS 1.3 key exchange protocols, in 19th

International Conference on Applied Cryptography and Network Security, ACNS 2021, 2021. To appear.

Available as Cryptology ePrint Archive, Report 2020/1029. https://eprint.iacr.org/2020/1029

[44] N. Drucker, S. Gueron, Selfie: reflections on TLS 1.3 with PSK. Journal of Cryptology (2021). To appear.

Available as Cryptology ePrint Archive, Report 2019/347. https://eprint.iacr.org/2019/347.

[45] D. Diemert, T. Jager, On the tight security of TLS 1.3: theoretically-sound cryptographic parameters

for real-world deployments. Journal of Cryptology (2021). To appear. Available as Cryptology ePrint

Archive, Report 2020/726. https://eprint.iacr.org/2020/726

[46] D. Derler, T. Jager, D. Slamanig, C. Striecks, Bloom filter encryption and applications to efficient forward-

secret 0-RTT key exchange. In J.B. Nielsen, V. Rijmen, editors, EUROCRYPT 2018, Part III, vol. 10822

of LNCS, pp. 425–455. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-78372-7_14

[47] B. Dowling, Provable Security of Internet Protocols. Ph.D. thesis, Queensland University of Technology,

Brisbane, Australia (2017). http://eprints.qut.edu.au/108960/

[48] T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.1. RFC 4346 (Proposed

Standard), April 2006. Obsoleted by RFC 5246, updated by RFCs 4366, 4680, 4681, 5746, 6176, 7465,

7507, 7919. https://www.rfc-editor.org/rfc/rfc4346.txt. https://doi.org/10.17487/RFC4346

https://doi.org/10.1007/3-540-39200-9_{16}
https://doi.org/10.1007/3-540-39200-9_{16}
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1007/978-3-030-29959-0_{20}
https://doi.org/10.1007/978-3-030-29959-0_{20}
https://doi.org/10.1007/3-540-44987-6_{28}
http://eprint.iacr.org/2002/120/
http://eprint.iacr.org/2002/120/
https://doi.org/10.1007/3-540-45708-9_{10}
http://heartbleed.com
https://www.rfc-editor.org/rfc/rfc2246.txt
https://www.rfc-editor.org/rfc/rfc2246.txt
https://doi.org/10.17487/RFC2246
https://doi.org/10.1145/2810103.2813653
http://eprint.iacr.org/2016/081
http://eprint.iacr.org/2016/081
https://doi.org/10.1109/SP.2017.58
https://doi.org/10.1109/SP.2017.58
https://eprint.iacr.org/2020/114
https://eprint.iacr.org/2019/1203
https://eprint.iacr.org/2019/1203
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2019/347
https://eprint.iacr.org/2020/726
https://doi.org/10.1007/978-3-319-78372-7_{14}
http://eprints.qut.edu.au/108960/
https://www.rfc-editor.org/rfc/rfc4346.txt
https://doi.org/10.17487/RFC4346

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 67 of 69 37

[49] T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (Proposed

Standard), August 2008. Updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905,

7919. https://www.rfc-editor.org/rfc/rfc5246.txt, https://doi.org/10.17487/RFC5246

[50] B. Dowling, D. Stebila, Modelling ciphersuite and version negotiation in the TLS protocol, in E. Foo,

D. Stebila, editors, ACISP 15, vol. 9144 of LNCS, pp. 270–288. Springer, Heidelberg (2015). https://doi.

org/10.1007/978-3-319-19962-7_16

[51] T. Duong. BEAST. http://vnhacker.blogspot.com.au/2011/09/beast.html (2011)

[52] M. Fischlin, F. Günther, Multi-stage key exchange and the case of Google’s QUIC protocol, in G.-J.

Ahn, M. Yung, N. Li, editors, ACM CCS 2014, pp. 1193–1204. ACM Press (2014). https://doi.org/10.

1145/2660267.2660308

[53] M. Fischlin, F. Günther, Replay attacks on zero round-trip time: the case of the TLS 1.3 handshake

candidates, in 2017 IEEE European Symposium on Security and Privacy, EuroS&P 2017, pp. 60–75,

Paris, France (2017). IEEE

[54] M. Fischlin, F. Günther, G.A. Marson, K.G. Paterson, Data is a stream: Security of stream-based channels,

in R. Gennaro, M.J.B. Robshaw, editors, CRYPTO 2015, Part II, vol. 9216 of LNCS, pp. 545–564.

Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_27

[55] M. Fischlin, F. Günther, B. Schmidt, B. Warinschi, Key confirmation in key exchange: a formal treatment

and implications for TLS 1.3, in 2016 IEEE Symposium on Security and Privacy, pp. 452–469. IEEE

Computer Society Press (2016). https://doi.org/10.1109/SP.2016.34

[56] S. Gajek, A universally composable framework for the analysis of browser-based security protocols, in

J. Baek, F. Bao, K. Chen, X. Lai, editors, ProvSec 2008, vol. 5324 of LNCS, pp. 283–297. Springer,

Heidelberg (2008)

[57] F. Günther, B. Hale, T. Jager, S. Lauer, 0-RTT key exchange with full forward secrecy, in J.-S. Coron, J.B.

Nielsen, editors, EUROCRYPT 2017, Part III, vol. 10212 of LNCS, pp. 519–548. Springer, Heidelberg

(2017). https://doi.org/10.1007/978-3-319-56617-7_18

[58] F. Giesen, F. Kohlar, D. Stebila, On the security of TLS renegotiation, in A.-R. Sadeghi, V.D. Gligor,

M. Yung, editors, ACM CCS 2013, pp. 387–398. ACM Press (2013). https://doi.org/10.1145/2508859.

2516694

[59] M.D. Green, I. Miers, Forward secure asynchronous messaging from puncturable encryption, in 2015

IEEE Symposium on Security and Privacy, pp. 305–320. IEEE Computer Society Press (2015). https://

doi.org/10.1109/SP.2015.26

[60] F. Günther, S. Mazaheri, A formal treatment of multi-key channels, in J. Katz, H. Shacham, editors,

CRYPTO 2017, Part III, vol. 10403 of LNCS, pp. 587–618. Springer, Heidelberg (2017). https://doi.org/

10.1007/978-3-319-63697-9_20

[61] F. Günther, Modeling advanced security aspects of key exchange and secure channel protocols. PhD

thesis, Technische Universität Darmstadt, Darmstadt, Germany (2018). http://tuprints.ulb.tu-darmstadt.

de/7162/

[62] B. Hale, T. Jager, S. Lauer, J. Schwenk, Simple security definitions for and constructions of 0-RTT key

exchange, in D. Gollmann, A. Miyaji, H. Kikuchi, editors, ACNS 17, vol. 10355 of LNCS, pp. 20–38.

Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-61204-1_2

[63] J. Jonsson, B.S. Kaliski Jr., On the security of RSA encryption in TLS, in Moti Yung, editor,

CRYPTO 2002, vol. 2442 of LNCS, pp. 127–142. Springer, Heidelberg (2002). https://doi.org/10.1007/

3-540-45708-9_9

[64] T. Jager, F. Kohlar, S. Schäge, J. Schwenk, On the security of TLS-DHE in the standard model, in R.

Safavi-Naini, R. Canetti, editors, CRYPTO 2012, vol. 7417 of LNCS, pp. 273–293. Springer, Heidelberg

(2012). https://doi.org/10.1007/978-3-642-32009-5_17

[65] S. Josefsson, Channel bindings for TLS based on the PRF. https://tools.ietf.org/html/draft-josefsson-

sasl-tls-cb-03 (2015)

[66] T. Jager, J. Schwenk, J. Somorovsky, On the security of TLS 1.3 and QUIC against weaknesses in

PKCS#1 v1.5 encryption, in I. Ray, N. Li, C. Kruegel, editors, ACM CCS 2015, pp. 1185–1196. ACM

Press (2015). https://doi.org/10.1145/2810103.2813657

[67] H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-Hashing for Message Authentication. RFC 2104

(Informational) (1997). Updated by RFC 6151. https://www.rfc-editor.org/rfc/rfc2104.txt, https://doi.

org/10.17487/RFC2104

https://www.rfc-editor.org/rfc/rfc5246.txt
https://doi.org/10.17487/RFC5246
https://doi.org/10.1007/978-3-319-19962-7_{16}
https://doi.org/10.1007/978-3-319-19962-7_{16}
http://vnhacker.blogspot.com.au/2011/09/beast.html
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1007/978-3-662-48000-7_{27}
https://doi.org/10.1109/SP.2016.34
https://doi.org/10.1007/978-3-319-56617-7_{18}
https://doi.org/10.1145/2508859.2516694
https://doi.org/10.1145/2508859.2516694
https://doi.org/10.1109/SP.2015.26
https://doi.org/10.1109/SP.2015.26
https://doi.org/10.1007/978-3-319-63697-9_{20}
https://doi.org/10.1007/978-3-319-63697-9_{20}
http://tuprints.ulb.tu-darmstadt.de/7162/
http://tuprints.ulb.tu-darmstadt.de/7162/
https://doi.org/10.1007/978-3-319-61204-1_{2}
https://doi.org/10.1007/3-540-45708-9_{9}
https://doi.org/10.1007/3-540-45708-9_{9}
https://doi.org/10.1007/978-3-642-32009-5_{17}
https://tools.ietf.org/html/draft-josefsson-sasl-tls-cb-03
https://tools.ietf.org/html/draft-josefsson-sasl-tls-cb-03
https://doi.org/10.1145/2810103.2813657
https://www.rfc-editor.org/rfc/rfc2104.txt
https://doi.org/10.17487/RFC2104
https://doi.org/10.17487/RFC2104

37 Page 68 of 69 B. Dowling et al.

[68] H. Krawczyk, P. Eronen, HMAC-based Extract-and-Expand Key Derivation Function (HKDF).

RFC 5869 (Informational) (2010). https://www.rfc-editor.org/rfc/rfc5869.txt, https://doi.org/10.17487/

RFC5869

[69] M. Kohlweiss, U. Maurer, C. Onete, B. Tackmann, D. Venturi, (De-)constructing TLS 1.3, in A. Biryukov,

V. Goyal, editors, INDOCRYPT 2015, vol. 9462 of LNCS, pp. 85–102. Springer, Heidelberg (2015).

https://doi.org/10.1007/978-3-319-26617-6_5

[70] H. Krawczyk, K.G. Paterson, H. Wee, On the security of the TLS protocol: a systematic analysis. In R.

Canetti, J.A. Garay, editors, CRYPTO 2013, Part I, vol. 8042 of LNCS, pp. 429–448. Springer, Heidelberg

(2013). https://doi.org/10.1007/978-3-642-40041-4_24

[71] H. Krawczyk, The order of encryption and authentication for protecting communications (or: How secure

is SSL?). In J. Kilian, editor, CRYPTO 2001, vol. 2139 of LNCS, pp. 310–331. Springer, Heidelberg

(2001). https://doi.org/10.1007/3-540-44647-8_19

[72] H. Krawczyk, SIGMA: the “SIGn-and-MAc” approach to authenticated Diffie-Hellman and its use in

the IKE protocols, in D. Boneh, editor, CRYPTO 2003, vol. 2729 of LNCS, pp. 400–425. Springer,

Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_24

[73] H. Krawczyk, Cryptographic extraction and key derivation: the HKDF scheme, in T. Rabin, editor,

CRYPTO 2010, vol. 6223 of LNCS, pp. 631–648. Springer, Heidelberg (2010). https://doi.org/10.1007/

978-3-642-14623-7_34

[74] H. Krawczyk, [IETF TLS mailing list] Re: Call for consensus: Removing DHE-based 0-RTT. https://

mailarchive.ietf.org/arch/msg/tls/xmnvrKEQkEbD-u8HTeQkyitmclY (2016)

[75] H. Krawczyk, A unilateral-to-mutual authentication compiler for key exchange (with applications to

client authentication in TLS 1.3). In E.R. Weippl, S. Katzenbeisser, C. Kruegel, A.C. Myers, S. Halevi,

editors, ACM CCS 2016, pp. 1438–1450. ACM Press (2016). https://doi.org/10.1145/2976749.2978325

[76] F. Kohlar, S. Schäge, and J. Schwenk, On the security of TLS-DH and TLS-RSA in the standard model.

Cryptology ePrint Archive, Report 2013/367 (2013). http://eprint.iacr.org/2013/367

[77] H. Krawczyk, H. Wee, The OPTLS protocol and TLS 1.3, in 2016 IEEE European Symposium on

Security and Privacy, pp. 81–96. IEEE (2016). https://doi.org/10.1109/EuroSP.2016.18

[78] R. Lychev, S. Jero, A. Boldyreva, C. Nita-Rotaru, How secure and quick is QUIC? Provable security and

performance analyses, in 2015 IEEE Symposium on Security and Privacy, pp. 214–231. IEEE Computer

Society Press (2015). https://doi.org/10.1109/SP.2015.21

[79] B.A. LaMacchia, K. Lauter, A. Mityagin, Stronger security of authenticated key exchange, in W. Susilo,

J.K. Liu, Y. Mu, editors, ProvSec 2007, vol. 4784 of LNCS, pp. 1–16. Springer, Heidelberg (2007)

[80] A. Luykx, K.G. Paterson. Limits on authenticated encryption use in TLS (2017). http://www.isg.rhul.

ac.uk/~kp/TLS-AEbounds.pdf

[81] Y. Li, S. Schäge, Z. Yang, F. Kohlar, J. Schwenk, On the security of the pre-shared key ciphersuites

of TLS, in H. Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pp. 669–684. Springer, Heidelberg

(2014). https://doi.org/10.1007/978-3-642-54631-0_38

[82] X. Li, J. Xu, Z. Zhang, D. Feng, H. Hu, Multiple handshakes security of TLS 1.3 candidates, in 2016

IEEE Symposium on Security and Privacy, pp. 486–505. IEEE Computer Society Press (2016). https://

doi.org/10.1109/SP.2016.36

[83] C. MacCárthaigh, [IETF TLS mailing list] Security review of TLS1.3 0-RTT. https://mailarchive.ietf.

org/arch/msg/tls/mHxi-O3du9OQHkc6CBWBpc_KBpA (2017)

[84] B. Möller, T. Duong, K. Kotowicz, This POODLE bites: exploiting the SSL 3.0 fallback. https://www.

openssl.org/~bodo/ssl-poodle.pdf (2014)

[85] G.A. Marson, B. Poettering, Security notions for bidirectional channels. IACR Trans. Symm. Cryptol.,

2017(1):405–426 (2017). https://doi.org/10.13154/tosc.v2017.i1.405-426

[86] P. Morrissey, N.P. Smart, B. Warinschi, A modular security analysis of the TLS handshake protocol, in J.

Pieprzyk, editor, ASIACRYPT 2008, vol. 5350 of LNCS, pp. 55–73. Springer, Heidelberg (2008). https://

doi.org/10.1007/978-3-540-89255-7_5

[87] K.G. Paterson, T. Ristenpart, T. Shrimpton, Tag size does matter: attacks and proofs for the TLS record

protocol, in D.H. Lee, X. Wang, editors, ASIACRYPT 2011, vol. 7073 of LNCS, pp. 372–389. Springer,

Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_20

[88] C. Patton, T. Shrimpton, Partially specified channels: the TLS 1.3 record layer without elision, in D. Lie,

M. Mannan, M. Backes, X. Wang, editors, ACM CCS 2018, pp. 1415–1428. ACM Press (2018). https://

doi.org/10.1145/3243734.3243789

https://www.rfc-editor.org/rfc/rfc5869.txt
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC5869
https://doi.org/10.1007/978-3-319-26617-6_{5}
https://doi.org/10.1007/978-3-642-40041-4_{24}
https://doi.org/10.1007/3-540-44647-8_{19}
https://doi.org/10.1007/978-3-540-45146-4_{24}
https://doi.org/10.1007/978-3-642-14623-7_{34}
https://doi.org/10.1007/978-3-642-14623-7_{34}
https://mailarchive.ietf.org/arch/msg/tls/xmnvrKEQkEbD-u8HTeQkyitmclY
https://mailarchive.ietf.org/arch/msg/tls/xmnvrKEQkEbD-u8HTeQkyitmclY
https://doi.org/10.1145/2976749.2978325
http://eprint.iacr.org/2013/367
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.1109/SP.2015.21
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
https://doi.org/10.1007/978-3-642-54631-0_{38}
https://doi.org/10.1109/SP.2016.36
https://doi.org/10.1109/SP.2016.36
https://mailarchive.ietf.org/arch/msg/tls/mHxi-O3du9OQHkc6CBWBpc_{KBpA}
https://mailarchive.ietf.org/arch/msg/tls/mHxi-O3du9OQHkc6CBWBpc_{KBpA}
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://doi.org/10.13154/tosc.v2017.i1.405-426
https://doi.org/10.1007/978-3-540-89255-7_{5}
https://doi.org/10.1007/978-3-540-89255-7_{5}
https://doi.org/10.1007/978-3-642-25385-0_{20}
https://doi.org/10.1145/3243734.3243789
https://doi.org/10.1145/3243734.3243789

A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Page 69 of 69 37

[89] K.G. Paterson, T. van der Merwe, Reactive and proactive standardisation of TLS, in L. Chen, D.A.

McGrew, C.J. Mitchell, editors, Security Standardisation Research: Third International Conference

(SSR 2016), volume 10074 of Lecture Notes in Computer Science, pp. 160–186, Gaithersburg, MD,

USA, December 5–6 (2016). Springer

[90] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Proposed Standard)

(2018). https://www.rfc-editor.org/rfc/rfc8446.txt, https://doi.org/10.17487/RFC8446

[91] P. Rogaway, Formalizing human ignorance, in P.Q. Nguyen, editor, Progress in Cryptology - VIETCRYPT

06, vol. 4341 of LNCS, pp. 211–228. Springer, Heidelberg (2006)

[92] E. Rescorla, H. Tschofenig, N. Modadugu, The Datagram Transport Layer Security (DTLS) Protocol

Version 1.3 – draft-ietf-tls-dtls13-33. https://tools.ietf.org/html/draft-ietf-tls-dtls13-33 (2019)

[93] P. Schwabe, D. Stebila, T. Wiggers, Post-quantum TLS without handshake signatures, in J. Ligatti, X.

Ou, J. Katz, G. Vigna, editors, ACM CCS 20, pp. 1461–1480. ACM Press (2020). https://doi.org/10.

1145/3372297.3423350

[94] M. Thomson, S. Turner, Using TLS to Secure QUIC – draft-ietf-quic-tls-29. https://tools.ietf.org/html/

draft-ietf-quic-tls-29 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

https://www.rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.17487/RFC8446
https://tools.ietf.org/html/draft-ietf-tls-dtls13-33
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1145/3372297.3423350
https://tools.ietf.org/html/draft-ietf-quic-tls-29
https://tools.ietf.org/html/draft-ietf-quic-tls-29

	A Cryptographic Analysis of the TLS 1.3 Handshake Protocol
	1. Introduction
	1.1. Development and Standardization of TLS 1.3
	1.2. Security Analyses of TLS
	1.3. Our Contributions

	2. Preliminaries
	2.1. Notation
	2.2. Collision-Resistant Hash Functions
	2.3. HMAC and HKDF
	2.4. Dual PRF Security and the PRF-ODH Assumption

	3. The TLS 1.3 Handshake Protocol
	3.1. Key-Exchange Phase
	3.2. Authentication Phase
	3.3. NewSessionTicket

	4. Multi-Stage Key Exchange Security Model
	4.1. Syntax
	4.2. Adversary Model
	4.3. Security of Multi-Stage Key Exchange Protocols
	4.3.1. Match Security
	4.3.2. Multi-Stage Security

	5. Security Analysis of the TLS 1.3 Full 1-RTT Handshake
	5.1. Match Security
	5.2. Multi-Stage Security

	6. Security Analysis of the TLS 1.3 PSK/PSK-(EC)DHE (with Optional 0-RTT) Handshakes
	6.1. TLS 1.3 PSK-only (0-RTT optional)
	6.1.1. Match Security
	6.1.2. Multi-Stage Security

	6.2. TLS 1.3 PSK-(EC)DHE (0-RTT optional)
	6.2.1. Match Security
	6.2.2. Multi-Stage Security

	7. Discussion and Conclusions
	7.1. Technical Differences from Our Earlier Work
	7.2. Comments on the TLS 1.3 Design
	7.3. Open Research Questions
	7.4. Conclusions

	Acknowledgements
	References

