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Abstract. We present the first cryptographically sound security proof of the
well-known Otway-Rees protocol. More precisely, we show that the protocol
is secure against arbitrary active attacks including concurrent protocol runs if
it is implemented using provably secure cryptographic primitives. Although we
achieve security under cryptographic definitions, our proof does not have to deal
with probabilistic aspects of cryptography and is hence in the scope of current
proof tools. The reason is that we exploit a recently proposed ideal cryptographic
library, which has a provably secure cryptographic implementation. Together with
composition and preservation theorems of the underlying model, this allows us
to perform the actual proof effort in a deterministic setting corresponding to a
slightly extended Dolev-Yao model. Besides establishing the cryptographic secu-
rity of the Otway-Rees protocol, our result also exemplifies the potential of this
cryptographic library. We hope that it paves the way for cryptographically sound
verification of security protocols by means of formal proof tools.

1 Introduction

Many practically relevant cryptographic protocols like SSL/TLS, IPSec, or SET use
cryptographic primitives like signature schemes or encryption in a black-box way, while
adding many non-cryptographic features. Vulnerabilities have accompanied the design
of such protocols ever since early authentication protocols like Needham-Schroeder
[34, 15], over carefully designed de-facto standards like SSL and PKCS [40, 13], up to
current widely deployed products like Microsoft Passport [17]. However, proving the
security of such protocols has been a very unsatisfactory task for a long time.

One way to conduct such proofs is the cryptographic approach, whose security def-
initions are based on complexity theory, e.g., [19, 18, 20, 10]. The security of a cryp-
tographic protocol is proved by reduction, i.e., by showing that breaking the protocol
implies breaking one of the underlying cryptographic primitives with respect to its cryp-
tographic definition. This approach captures a very comprehensive adversary model and
allows for mathematically rigorous and precise proofs. However, because of probabil-
ism and complexity-theoretic restrictions, these proofs have to be done by hand so far,
which yields proofs with faults and imperfections. Moreover, such proofs rapidly be-
come too complex for larger protocols.

The alternative is the formal-methods approach, which is concerned with the au-
tomation of proofs using model checkers and theorem provers. As these tools currently
cannot deal with cryptographic details like error probabilities and computational re-
strictions, abstractions of cryptography are used. They are almost always based on the
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so-called Dolev-Yao model [16]. This model simplifies proofs of larger protocols con-
siderably and has given rise to a large body of literature on analyzing the security of
protocols using various techniques for formal verification, e.g., [31, 29, 25, 14, 37, 1].

Among the protocols typically analyzed in the Dolev-Yao model, the Otway-Rees
protocol [35], which aims at establishing a shared key between two users by means of
a trusted third party, stands out as one of the most prominent protocols. It has been
extensively studies in the past, e.g., in [36, 24, 37], and various new approaches and
formal proof tools for the analysis of security protocols were validated by showing that
they can prove the protocol in the Dolev-Yao model (respectively that they can find the
well-known type-flaw attack if the underlying model does not provide sufficient typing
itself; the model that our proof is based upon excludes this attack). However, all existing
proofs of security of the Otway-Rees protocol are restricted to the Dolev-Yao model,
i.e., no theorem exists which allows for carrying over the results of an existing proof to
the cryptographic approach with its much more comprehensive adversary. Thus, despite
of the tremendous amount of research dedicated to the Otway-Rees protocol, it is still
an open question whether an actual implementation based on provably secure crypto-
graphic primitives is secure under cryptographic security definitions. We close this gap
by providing the first security proof of the Otway-Rees protocol in the cryptographic
approach. We show that the protocol is secure against arbitrary active attacks if the
Dolev-Yao-based abstraction of symmetric encryption is implemented using a symmet-
ric encryption scheme that is secure against chosen-ciphertext attacks and additionally
ensures integrity of ciphertexts. This is the standard security definition of authenticated
symmetric encryption schemes [12, 11], and efficient symmetric encryptions schemes
provably secure in this sense exist under reasonable assumptions [11, 39].

Obviously, establishing a proof in the cryptographic approach presupposes dealing
with the mentioned cryptographic details, hence one naturally assumes that our proof
heavily relies on complexity theory and is far out of scope of current proof tools. How-
ever, our proof is not performed from scratch in the cryptographic setting, but based
on a recently proposed cryptographic library [8, 9, 7], which provides cryptographically
faithful, deterministic abstractions of cryptographic primitives, i.e., the abstractions can
be securely implemented using actual cryptography. Moreover, the library allows for
nesting the abstractions in an arbitrary way, quite similar to the original Dolev-Yao
model. While this was shown for public-key encryption and digital signatures in [8]
and subsequently extended with message authentication codes in [9], the most recent
extension of the library further incorporated symmetric encryption [7] which constitutes
the most commonly used cryptographic primitive in the typical proofs with Dolev-Yao
models, and also serves as the central primitive for expressing and analyzing the Otway-
Rees protocol. However, as shown in [7], there are intrinsic difficulties in providing a
sound abstraction from symmetric encryption in the strong sense of security used in [8].
Very roughly, a sound Dolev-Yao-style abstraction of symmetric encryption can only be
established if a so-called commitment problem does not occur, which means that when-
ever a key that is not known to the adversary is used for encryption by an honest user
then this key will never be revealed to the adversary. We will elaborate on the origin of
this problem in more detail in the paper. While [7] discusses several solutions to this
problem, the one actually taken is to leave it to the surrounding protocol to guarantee
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that the commitment problem does not occur, i.e., if a protocol that uses symmetric en-
cryption should be faithfully analyzed, it additionally has to be shown that the protocol
guarantees that keys are no longer sent in a form that might make them known to the
adversary once an honest participant has started using them. Our proof shows that this is
a manageable task that can easily be incorporated in the overall security proof without
imposing a major additional burden on the prover.

Once we have shown that the Otway-Rees protocol does not raise the commitment
problem, it is sufficient to prove the security of the Otway-Rees protocol based on
the deterministic abstractions; then the result automatically carries over to the crypto-
graphic setting. As the proof is deterministic and rigorous, it should be easily express-
ible in formal proof tools, in particular theorem provers. Even done by hand, our proof
is much less prone to error than a reduction proof conducted from scratch in the cryp-
tographic approach. We also want to point out that our result not only provides the
up-to-now missing cryptographic security proof of the Otway-Rees protocol, but also
exemplifies the usefulness of the cryptographic library [8] and their extensions [9, 7] for
the cryptographically sound verification of cryptographic protocols.

Further Related Work. Cryptographic underpinnings of a Dolev-Yao model were first
addressed by Abadi and Rogaway in [3]. However, they only handled passive adver-
saries and symmetric encryption. The protocol language and security properties handled
were extended in [2, 26], but still only for passive adversaries. This excludes most of
the typical ways of attacking protocols, e.g., man-in-the-middle attacks and attacks by
reusing a message part in a different place or a concurrent protocol run. A full crypto-
graphic justification for a Dolev-Yao model, i.e., for arbitrary active attacks and within
arbitrary surrounding interactive protocols, was first given recently in [8] with exten-
sions in [9, 7]. Based on the specific Dolev-Yao model whose soundness was proven
in [8], the well-known Needham-Schroeder-Lowe protocol was proved in [6]. Besides
the proof that we present in this paper, the proof in [6] is the only Dolev-Yao-style,
computationally sound proof that we are aware of. However, it is considerably simpler
than the one we present in this work since it only addresses integrity properties whereas
our proof additionally establishes confidentiality properties; moreover, the Needham-
Schroeder-Lowe protocols does not use symmetric encryption, hence the commitment
problem does not occur there which greatly simplifies the proof. Another cryptograph-
ically sound proof of this protocol was concurrently developed by Warinschi [41]. The
proof is conducted from scratch in the cryptographic approach which takes it out of the
scope of formal proof tools.

Laud [27] has recently presented a cryptographic underpinning for a Dolev-Yao
model of symmetric encryption under active attacks. His work enjoys a direct con-
nection with a formal proof tool, but it is specific to certain confidentiality properties,
restricts the surrounding protocols to straight-line programs in a specific language, and
does not address a connection to the remaining primitives of the Dolev-Yao model.
Herzog et al. [21, 22] and Micciancio and Warinschi [30] have recently also given a
cryptographic underpinning under active attacks. Their results are considerably weaker
than the one in [8] since they are specific for public-key encryption; moreover, the for-
mer relies on a stronger assumption whereas the latter severely restricts the classes of
protocols and protocol properties that can be analyzed using this primitive. Section 6
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of [30] further points out several possible extensions of their work which all already
exist in the earlier work of [8].

Efforts are also under way to formulate syntactic calculi for dealing with probabil-
ism and polynomial-time considerations, in particular [32, 28, 33, 23] and, as a second
step, to encode them into proof tools. However, this approach can not yet handle pro-
tocols with any degree of automation. Generally it is complementary to, rather than
competing with, the approach of proving simple deterministic abstractions of cryptog-
raphy and working with those wherever cryptography is only used in a blackbox way.

Outline. Section 2 introduces the notation used in the paper and briefly reviews the
aforementioned cryptographic library. Section 3 shows how to model the Otway-Rees
protocol based on this library as well as how initially shared keys can be represented
in the underlying model. Section 4 contains the security property of the Otway-Rees
protocol in the ideal setting, and this property is proven in Section 5. Section 6 shows
how to carry these results over to the cryptographic implementation of the protocol.
Section 7 concludes.

2 Preliminaries

In this section, we give an overview of the ideal cryptographic library of [8, 9, 7] and
briefly sketch its provably secure implementation. We start by introducing the notation
used in this paper.

2.1 Notation

We write “:=” for deterministic and “←” for probabilistic assignment. Let ↓ denote
an error element available as an addition to the domains and ranges of all functions
and algorithms. The list operation is denoted as l := (x1, . . . , xj), and the arguments
are unambiguously retrievable as l[i], with l[i] = ↓ if i > j. A database D is a set of
functions, called entries, each over a finite domain called attributes. For an entry x ∈ D,
the value at an attribute att is written x.att . For a predicate pred involving attributes,
D[pred ] means the subset of entries whose attributes fulfill pred . If D[pred ] contains
only one element, we use the same notation for this element.

2.2 Overview of the Ideal and Real Cryptographic Library

The ideal (abstract) cryptographic library of [8, 9, 7] offers its users abstract crypto-
graphic operations, such as commands to encrypt or decrypt a message, to make or test
a signature, and to generate a nonce. All these commands have a simple, deterministic
semantics. To allow a reactive scenario, this semantics is based on state, e.g., of who
already knows which terms; the state is represented as a database. Each entry has a type
(e.g., “ciphertext”), and pointers to its arguments (e.g., a key and a message). Further,
each entry contains handles for those participants who already know it. A send opera-
tion makes an entry known to other participants, i.e., it adds handles to the entry. The
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ideal cryptographic library does not allow cheating. For instance, if it receives a com-
mand to encrypt a message m with a certain key, it simply makes an abstract database
entry for the ciphertext. Another user can only ask for decryption of this ciphertext if
he has obtained handles to both the ciphertext and the secret key. To allow for the proof
of cryptographic faithfulness, the library is based on a detailed model of asynchronous
reactive systems introduced in [38] and represented as a deterministic machine THH,
called trusted host. The parameter H ⊆ {1 . . . , n} denotes the honest participants,
where n is a parameter of the library denoting the overall number of participants. De-
pending on the considered setH, the trusted host offers slightly extended capabilities for
the adversary. However, for current purposes, the trusted host can be seen as a slightly
modified Dolev-Yao model together with a network and intruder model, similar to “the
CSP Dolev-Yao model” or “the inductive-approach Dolev-Yao model”.

The real cryptographic library offers its users the same commands as the ideal one,
i.e., honest users operate on cryptographic objects via handles. The objects are now real
cryptographic keys, ciphertexts, etc., handled by real distributed machines. Sending a
term on an insecure channel releases the actual bitstring to the adversary, who can do
with it what he likes. The adversary can also insert arbitrary bitstrings on non-authentic
channels. The implementation of the commands is based on arbitrary secure encryp-
tion and signature systems according to standard cryptographic definitions, with certain
additions like type tagging and additional randomizations.

The security proof of [8] states that the real library is at least as secure as the ideal
library. This is captured using the notion of reactive simulatability [38], which states
that whatever an adversary can achieve in the real implementation, another adversary
can achieve given the ideal library, or otherwise the underlying cryptography can be
broken [38]. This is the strongest possible cryptographic relationship between a real
and an ideal system. In particular it covers arbitrary active attacks. Moreover, a compo-
sition theorem exists in the underlying model [38], which states that one can securely
replace the ideal library in larger systems with the real library, i.e., without destroying
the already established simulatability relation.

2.3 Detailed Description of the State of the Cryptographic Library

We conclude this section with the rigorous definition of the state of the ideal crypto-
graphic library. A rigorous definition of the commands of the ideal library used for
modeling the Otway-Rees protocol and for capturing the slightly extended adversary
capabilities can be found in the long version of this paper [4].

The machine THH has ports inu? and outu ! for inputs from and outputs to each
user u ∈ H and for u = a, denoting the adversary. The notation follows the CSP con-
vention, e.g., the cryptographic library obtains messages at inu? that have been output
at inu !. Besides the number n of users, the ideal cryptographic library is parameter-
ized by a tuple L of length functions which are used to calculate the “length” of an
abstract entry, corresponding to the length of the corresponding bitstring in the real im-
plementation. Moreover, L contains bounds on the message lengths and the number of
accepted inputs at each port. These bounds can be arbitrarily large, but have to be poly-
nomially bounded in the security parameter. Using the notation of [8], the ideal cryp-
tographic library is a system Syscry,id

n,L that consists of several structures ({THH},SH),



94 Michael Backes

one for each value of the parameter H. Each structure consists of a set of machines,
here only containing the single machine THH, and a set SH := {inu?, outu ! | u ∈ H}
denoting those ports of THH that the honest users connect to. Formally, we obtain
Syscry,id

n,L := {({THH},SH) | H ⊆ {1, . . . , n}}. In the following, we omit the parame-
ters n and L for simplicity1.

The main data structure of THH is a database D. The entries of D are abstract rep-
resentations of the data produced during a system run, together with the information on
who knows these data. Each entry in D is of the form (recall the notation in Section 2.1)

(ind , type, arg , hndu1 , . . . , hndum , hnda, len)

whereH = {u1, . . . , um}. For each entry x ∈ D:

– x.ind ∈ INDS , called index, consecutively numbers all entries in D. The set
INDS is isomorphic to N and is used to distinguish index arguments from others.
The index is used as a primary key attribute of the database, i.e., we write D[i] for
the selection D[ind = i].

– x.type ∈ typeset identifies the type of x.
– x.arg = (a1, a2, . . . , aj) is a possibly empty list of arguments. Many values ai are

indices of other entries in D and thus in INDS . We sometimes distinguish them
by a superscript “ind”.

– x.hndu ∈ HNDS ∪{↓} for u ∈ H∪{a} are handles by which a user or adversary
u knows this entry. x.hndu = ↓ means that u does not know this entry. The set
HNDS is yet another set isomorphic to N. We always use a superscript “hnd” for
handles.

– x.len ∈ N0 denotes the “length” of the entry; it is computed by applying the func-
tions from L.

Initially, D is empty. THH has a counter size ∈ INDS for the current size of D. For
the handle attributes, it has counters curhndu (current handle) initialized with 0.

3 The Otway-Rees Protocol

The Otway-Rees protocol [35] is a four-step protocol for establishing a shared secret
encryption key between two users. The protocol relies on a distinguished trusted third
party T, i.e., T �∈ {1, . . . , n}, and it is assumed that every user u initially shares a secret
key Kut with T. Expressed in the typical protocol notation, the Otway-Rees protocol
works as follows2.

1. u→ v : M, (Nu, M, u, v)Kut

2. v → T : M, (Nu, M, u, v)Kut , (Nv, M, u, v)Kvt

3. T→ v : M, (Nu, Kuv)Kut , (Nv, Kuv)Kvt

4. v → u : M, (Nu, Kuv)Kut .

1 Formally, these parameters are thus also parameters of the ideal Otway-Rees system SysOR,id

that we introduce in Section 3.2.
2 For simplicity, we omit the explicit inclusion of u and v in the unencrypted part of the first and

second message since the cryptographic library already provides the identity of the (claimed)
sender of a message, which is sufficient for our purpose.
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3.1 Capturing Distributed Keys in the Abstract Library

In order to capture that keys shared between users and the trusted third party have
already been generated and distributed, we assume that suitable entries for the keys
already exist in the database. We denote the handle of u to the secret key shared with
v, where either u ∈ {1, . . . , n} and v = T or vice versa, as sksehnd

u,v . More formally,
we start with an initially empty database D, and for each user u ∈ H two entries of the
following form are added (the first one being a public-key identifier for the actual secret
key as described below in more detail):

(ind := pkseu , type := pkse, arg := (), len := 0); 3

(ind := skseu , type := skse, arg := (ind − 1),
hndu := sksehnd

u,T, hndT := sksehnd
T,u, len := skse len∗(k)).

Here pkseu and skseu are two consecutive natural numbers; skse len∗(k) denotes the
abstract length of the secret key which will not matter in the following.

The first entry has to be incorporated in order to reflect special capabilities that the
adversary may have with respect to symmetric encryption schemes in the real world.
For instance it must be possible for an adversary against the ideal library to check
whether encryptions have been created with the same secret key since the definition of
symmetric encryption schemes does not exclude this and it can hence happen in the real
system. For public-key encryption, this was achieved in [8] by tagging ciphertexts with
the corresponding public key so that the public keys can be compared. For symmetric
encryption, this is not possible as no public key exists, hence this problem is solved by
tagging abstract ciphertexts with an otherwise meaningless “public key” solely used as
an identifier for the secret key. Note that the argument of a secret key points to its key
identifier. In the following, public-key identifiers will not matter any further.

We omit the details of how these entries for user u are added by a command
gen symenc key, followed by a command send s for sending the secret key over a se-
cure channel.

3.2 The Otway-Rees Protocol Using the Abstract Library

We now model the Otway-Rees protocol in the framework of [38] and using the ideal
cryptographic library.

For each user u ∈ {1, . . . , n} we define a machine MOR
u , called a protocol machine,

which executes the protocol sketched above for participant identity u. It is connected to
its user via ports KS outu !, KS inu? (“KS” for “Key Sharing”) and to the cryptographic
library via ports inu !, outu?. We further model the trusted third party as a machine MOR

T .
It does not connect to any users and is connected to the cryptographic library via ports
inT!, outT?. The combination of the protocol machines MOR

u , the trusted third party
MOR

T , and the trusted host THH is the ideal Otway-Rees system SysOR,id. It is shown in
Figure 1; H and A model the arbitrary joint honest users and the adversary, respectively.

3 Treating public-key identifiers as being of length 0 is a technicality in the proof of [7] and will
not matter in the sequel.
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Fig. 1. Overview of the Otway-Rees Ideal System.

Using the notation of [8], we have SysOR,id := {(M̂H,SH) | H ⊆ {1, . . . , n}}, cf.
the definition of the ideal cryptographic library in Section 2.3, where M̂H := {THH}∪
{MOR

u | u ∈ H ∪ {T}} and SH := {KS inu?, KS outu ! | u ∈ H}, i.e., for a given set
H of honest users, only the protocol machines MOR

u with u ∈ H are actually present in
a protocol run. The others are subsumed in the adversary.

The state of the protocol machine MOR
u consists of the bitstring u and a set Nonceu

of pairs of the form (nhnd, mhnd, v, j), where nhnd, mhnd are handles, v ∈ {1, . . . , n},
and j ∈ {1, 2, 3, 4}. Intuitively, a pair (nhnd, mhnd, v, j) states that MOR

u generated the
handle nhnd in the j-th step of the protocol in a session run with v and session identifier
mhnd. The set Nonceu is initially empty. The trusted third party MOR

T maintains an
initially empty set SIDT to store already processed session IDs.

We now define how the protocol machine MOR
u evaluates inputs. They either come

from user u at port KS inu? or from THH at port outu?. The behavior of MOR
u in both

cases is described in Algorithm 1 and 3 respectively, which we will describe below.
The trusted third party MOR

T only receives inputs from the cryptographic library, and its
behavior is described in Algorithm 2. We refer to Step i of Algorithm j as Step j.i. All
three algorithms should immediately abort if a command to the cryptographic library
does not yield the desired result, e.g., if a decryption requests fails. For readability we
omit these abort checks in the algorithm descriptions; instead we impose the following
convention on all three algorithms.

Convention 1 For all w ∈ {1, . . . , n} ∪ {T} the following holds. If MOR
w enters a

command at port inw ! and receives ↓ at port outw? as the immediate answer of the
cryptographic library, then MOR

w aborts the execution of the current algorithm, except
if the command was of the form list proj or send i.

Protocol start. The user of the protocol machine MOR
u can start a new protocol with user

v ∈ {1, . . . , n} \ {u} by inputting (new prot, Otway Rees, v) at port KS inu?. Our se-
curity proof holds for all adversaries and all honest users, i.e., especially those that start
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Algorithm 1 Evaluation of Inputs from the User (Protocol Start).
Input: (new prot, Otway Rees, v) at KS inu? with v ∈ {1, . . . , n} \ {u}.
1: nhnd

u ← gen nonce().
2: IDhnd ← gen nonce().
3: Nonceu := Nonceu ∪ {(nhnd

u , IDhnd, v, 1)}.
4: uhnd ← store(u).
5: vhnd ← store(v).
6: lhnd

1 ← list(nhnd
u , IDhnd, uhnd, vhnd).

7: chnd
1 ← sym encrypt(sksehnd

u,T, lhnd
1 ).

8: mhnd
1 ← list(IDhnd, chnd

1 ).
9: send i(v, mhnd

1 ).

protocols with the adversary (respectively a malicious user) in parallel with protocols
with honest users. Upon such an input, MOR

u builds up the term corresponding to the
first protocol message using the ideal cryptographic library according to Algorithm 1.
The command gen nonce generates the ideal nonce as well as the session identifier.
MOR

u stores the resulting handles nhnd
u and mhnd in Nonceu for future comparison to-

gether with the identity of v and an indicator that these handles were generated in the
first step of the protocol. The command store inputs arbitrary application data into the
cryptographic library, here the user identities u and v. The command list forms a list
and sym encrypt is symmetric encryption. The final command send i means that MOR

u

sends the resulting term to v over an insecure channel. The effect is that the adversary
obtains a handle to the term and can decide what to do with it (such as forwarding it to
MOR

v ).

Evaluation of network inputs for protocol machines. The behavior of the protocol ma-
chine MOR

u upon receiving an input from the cryptographic library at port outu? (cor-
responding to a message that arrives over the network) is defined similarly in Algo-
rithm 3. By construction of THH, such an input is always of the form (v, u, i, mhnd)
where mhnd is a handle to a list. To increase readability, and to clarify the connection
between the algorithmic description and the usual protocol notation, we augment the
algorithm with explanatory comments at its right-hand side to depict which handle cor-
responds to which Dolev-Yao term. We further use the naming convention that ingoing
and outgoing messages are labeled m, where outgoing messages have an additional
subscript corresponding to the protocol step. Encryptions are labeled c, the encrypted
lists are labeled l, both with suitable sub- and superscripts.

MOR
u first determines the session identifier and aborts if it is not of type nonce. MOR

u

then checks if the obtained message could correspond to the first, third, or fourth step of
the protocol. (Recall that the second step is only performed by T.) This is implemented
by looking up the session identifier in the set Nonceu. After that, MOR

u checks if the
obtained message is indeed a suitably constructed message for the particular step and
the particular session ID by exploiting the contents of Nonceu. If so, MOR

u constructs a
message according to the protocol description, sends it to the intended recipient, updates
the set Nonceu, and possibly signals to its user that a key has been successfully shared
with another user.
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Algorithm 2 Behavior of the Trusted Third Party.

Input: (v, T, i, mhnd) at outT? with v ∈ {1, . . . , n}.
1: IDhnd ← list proj(mhnd, 1). {IDhnd ≈M}
2: type1 ← get type(IDhnd).

3: c(3)hnd ← list proj(mhnd, 3). {c(3)hnd ≈ {Nv, M, u, v}Kvt}
4: l(3)

hnd ← sym decrypt(sksehnd
T,v, c(3)hnd

). {l(3)hnd ≈ {Nv , M, u, v}}
5: yhnd

i ← list proj(l(3)
hnd

, i) for i = 1, 2, 3, 4.
6: yi ← retrieve(yhnd

i ) for i = 3, 4.
7: if (IDhnd ∈ SIDT)∨(type1 �= nonce)∨(yhnd

2 �= IDhnd)∨(y3 �∈ {1, . . . , n}\{v})∨(y4 �=
v) then

8: Abort
9: end if

10: SIDT := SIDT ∪ {IDhnd}.
11: c(2)hnd ← list proj(mhnd, 2). {c(2)hnd ≈ {Nu, M, u, v}Kut}
12: l(2)

hnd ← sym decrypt(sksehnd
T,y3

, c(2)hnd
). {l(2)hnd ≈ {Nu, M, u, v}}

13: xhnd
i ← list proj(l(2)

hnd
, i) for i = 1, 2, 3, 4.

14: type2 ← get type(xhnd
1 ).

15: xi ← retrieve(xhnd
i ) for i = 3, 4.

16: if (type2 �= nonce) ∨ (xhnd
2 �= yhnd

2 ) ∨ (x3 �= y3) ∨ (x4 �= y4) then
17: Abort
18: end if
19: sksehnd ← gen symenc key(). {sksehnd ≈ Kuv}
20: l

(2)hnd

3 ← list(xhnd
1 , sksehnd). {l(2)hnd

3 ≈ {Nu, Kuv}}
21: c

(2)hnd

3 ← sym encrypt(sksehnd
T,y3

, l
(2)hnd

3 ). {c(2)hnd

3 ≈ {Nu, Kuv}Kut}
22: l

(3)hnd

3 ← list(yhnd
1 , sksehnd). {l(3)hnd

3 ≈ {Nv , Kuv}}
23: c

(3)hnd

3 ← sym encrypt(sksehnd
T,v, l

(3)hnd

3 ). {c(3)hnd

3 ≈ {Nv , Kuv}Kvt}
24: mhnd

3 ← list(IDhnd, c
(2)hnd

3 , c
(3)hnd

3 ). {mhnd
3 ≈M, {Nu, Kuv}Kut , {Nv , Kuv}Kvt}

25: send i(v, mhnd
3 ).

Behavior of the trusted third party. The behavior of MOR
T upon receiving an input

(v, T, i, mhnd) from the cryptographic library at port outT? is defined similarly in Al-
gorithm 2. We omit an informal description.

3.3 On Polynomial Runtime

In order to use existing composition results of the underlying model, the protocol ma-
chines MOR

w and MOR
T must be polynomial-time. Similar to the cryptographic library,

we define that each of these machines maintains explicit polynomial bounds on the
message lengths and the number of inputs accepted at each port.

4 The Security Property

In the following, we formalize the security property of the ideal Otway-Rees protocol.
The property consists of a secrecy property and a consistency property. The secrecy
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Algorithm 3 Evaluation of Inputs from THH (Network Inputs).

Input: (v, u, i, mhnd) at outu? with v ∈ {1, . . . , n} \ {u}.
1: IDhnd ← list proj(mhnd, 1). {IDhnd ≈M}
2: type1 ← get type(IDhnd).
3: if type1 �= nonce then
4: Abort
5: end if
6: if v �= T ∧ ∀j, nhnd : (nhnd, IDhnd, v, j) �∈ Nonceu then {First Message is input}
7: c(2)hnd ← list proj(mhnd, 2). {c(2)hnd ≈ (Nv, M, v, u)Kvt}
8: nhnd

u ← gen nonce().
9: Nonceu := Nonceu ∪ {(nhnd

u , IDhnd, v, 2)}.
10: uhnd ← store(u).
11: vhnd ← store(v).

12: l
(3)hnd

2 ← list(nhnd
u , IDhnd, vhnd, uhnd). {l(3)hnd

2 ≈ Nu, M, v, u}
13: c

(3)hnd

2 ← sym encrypt(sksehnd
u,T, l

(3)hnd

2 ). {c(3)hnd

2 ≈ (Nu, M, v, u)Kut}
14: mhnd

2 ← list(IDhnd, c(2)hnd

, c
(3)hnd

2 ). {mhnd
2 ≈M, (Nv, M, v, u)Kvt , (Nu, M, v, u)Kut}

15: send i(T, mhnd
2 ).

16: else if v = T then {Third Message is input}
17: c(2)hnd ← list proj(mhnd, 2). {c(2)hnd ≈ (Nv , Kuv)Kvt}
18: c(3)hnd ← list proj(mhnd, 3). {c(3)hnd ≈ (Nu, Kuv)Kut}
19: l(3)

hnd ← sym decrypt(sksehnd
u,T, c(3)hnd

). {l(3)hnd ≈ Nu, Kuv}
20: yhnd

i ← list proj(l(3)
hnd

, i) for i = 1, 2.
21: type2 ← get type(yhnd

2 ).
22: if ( � ∃!w ∈ {1, . . . , n} \ {u} : (yhnd

1 , IDhnd, w, 2) ∈ Nonceu) ∨ (type2 �= skse) then
23: Abort
24: end if
25: Nonceu := (Nonceu \ {(yhnd

1 , IDhnd, w, 2)}) ∪ {(yhnd
1 , IDhnd, w, 3)}.

26: mhnd
4 ← list(IDhnd, c(2)hnd

). {mhnd
4 ≈M, {Nv , Kuv}Kvt}

27: send i(w, mhnd
4 ).

28: Output (ok, Otway Rees, w, IDhnd, yhnd
2 ) at KS outu !.

29: else if v �= T ∧ ∃!nhnd : (nhnd, IDhnd, v, 1) then {Fourth Message is input}
30: c(2)hnd ← list proj(mhnd, 2). {c(2)hnd ≈ {Nu, Kuv}Kut}
31: l(2)

hnd ← sym decrypt(sksehnd
u,T, c(2)hnd

). {l(2)hnd ≈ {Nu, Kuv}}
32: xhnd

i ← list proj(l(2)
hnd

, i) for i = 1, 2.
33: type3 ← get type(xhnd

2 ).
34: if xhnd

1 �= nhnd ∨ type3 �= skse then
35: Abort
36: end if
37: Nonceu := (Nonceu \ {(xhnd

1 , IDhnd, v, 1)}) ∪ {(xhnd
1 , IDhnd, v, 4)}.

38: Output (ok, Otway Rees, v, IDhnd, xhnd
2 ) at KS outu !.

39: else
40: Abort
41: end if
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∀u, v ∈ H, ∀t1, t2 ∈ N : # For all honest users u and v,

(t1 : KS outu !(ok, Otway Rees, v , IDhnd, sksehnd
u ) # if u has established a shared key with v

⇒ # then

t2 : D[hndu = sksehnd
u ].hnd a = ↓) # the adversary never learns this key

Fig. 2. The Secrecy Property ReqSec.

∀u, v ∈ H,∀t1, t2 ∈ N : # For all honest users u and v,

t1 : KS outu !(ok, Otway Rees, v , IDhnd
u , sksehnd

u ) ∧ # if u has established a key with v

t2 : KS outv !(ok, Otway Rees,w , IDhnd
v , sksehnd

v ) ∧ # and v has established a key with w

t1 : D[hndu = IDhnd
u ] = t2 : D[hndv = IDhnd

v ] # and the sessions are equal

⇒ (u = w⇔ # then u is equal to w if and only if

t1 : D[hndu = sksehnd
u ] = t2 : D[hndv = sksehnd

v ]) # both keys are equal.

Fig. 3. The Consistency Property ReqCons.

property states that if two honest users successfully terminate a protocol session and
then share a key, the adversary will never learn this key, which captures the confiden-
tiality aspects of the protocol. The consistency property states that if two honest users
establish a session key then both need to have a consistent view of who the peers to the
session are, i.e., if an honest user u establishes a key with v, and v establishes the same
key with user w, then u has to equal w. Moreover, we incorporate the correctness of
the protocol into the consistency property, i.e., if the aforementioned outputs occur and
u = w holds, then both parties have obtained the same key4. In the following defini-
tions, we write t : D to denote the contents of database D at time t, i.e., at the t-th step
of the considered trace, and t : p?m and t : p!m to denote that message m occurs at
input port respectively output port p at time t.

The secrecy property ReqSec is formally captured as follows: If an output
(ok, Otway Rees, v, IDhnd, sksehnd

u ) occurs at KS outv ! at an arbitrary time t1, then
the key corresponding to sksehnd

u never gets an adversary handle, i.e., t2 : D[hndu =
sksehnd

u ].hnd a = ↓ for all t2. Figure 2 contains the formal definition of ReqSec.
The consistency property ReqCons is formally captured as follows: Assume that out-

puts (ok, Otway Rees, v, IDhnd
u , sksehnd

u ) and (ok, Otway Rees, w, IDhnd
v , sksehnd

v ) oc-
cur at KS outu ! respectively at KS outv ! at arbitrary times t1 and t2 for honest users u
and v such that the session identifiers are the same, i.e., t1 : D[hndu = IDhnd

u ] = t2 :
D[hndv = IDhnd

v ]. Then the handles sksehnd
u and sksehnd

v point to the same entry in the
database, i.e., t1 : D[hndu = sksehnd

u ] = t2 : D[hndv = sksehnd
v ] if and only if u = w.

The formal definition of ReqCons is given in Figure 3.

4 A violation of the consistency property has been pointed out in [24] which arises since in their
modeling the trusted third party creates multiple keys if it is repeatedly triggered with the same
message. We explicitly excluded this in our definition of the trusted third party by storing the
session IDs processed so far, cf. Step 7 and 10 in Algorithm 2.
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The notion of a system Sys fulfilling a property Req essentially comes in two fla-
vors [5]. Perfect fulfillment, Sys |=perf Req , means that the property holds with proba-
bility one (over the probability spaces of runs, a well-defined notion from the underly-
ing model [38]) for all honest users and for all adversaries. Computational fulfillment,
Sys |=poly Req , means that the property only holds for polynomially bounded users and
adversaries, and only with negligible error probability. Perfect fulfillment implies com-
putational fulfillment. The following theorem captures the security of the ideal Otway-
Rees protocol.

Theorem 1. (Security of the Otway-Rees Protocol based on the Ideal Cryptographic
Library) Let SysOR,id be the ideal Otway-Rees system defined in Section 3.2, and
ReqSec and ReqCons the secrecy and consistency property of Figure 2 and 3. Then
SysOR,id |=perf ReqSec ∧ ReqCons. �

5 Proof in the Ideal Setting

This section sketches the proof of Theorem 1, i.e., the proof of the Otway-Rees protocol
using the ideal, deterministic cryptographic library. The complete proof can be found
in the long version of this paper [4]. The proof idea is the following: If an honest user
u successfully terminates a session run with another honest user v, then we first show
that the established key has been created before by the trusted third party. After that,
we exploit that the trusted third party as well as all honest users may only send this key
within an encryption generated with a key shared between u and T respectively v and
T, and we conclude that the adversary hence never gets a handle to the key. This shows
the secrecy property, and the consistency property can also be easily derived from this.
The main challenge was to find suitable invariants on the state of the ideal Otway-Rees
system. This is somewhat similar to formal proofs using the Dolev-Yao model, and the
similarity supports our hope that the new, sound cryptographic library can be used in
the place of the Dolev-Yao models in automated tools.

The first invariants, correct nonce owner and unique nonce use, are easily proved
and essentially state that handles xhnd where (xhnd, ·, ·, ·) is contained in a set Nonceu

indeed point to entries of type nonce, and that no nonce is in two such sets. The next two
invariants, nonce secrecy and nonce-list secrecy, deal with the secrecy of certain terms.
They are mainly needed to prove the invariant correct list generation, which establishes
who created certain terms. The last invariant, key secrecy, states that the adversary never
learns keys created by the trusted third party for use between honest users.

– Correct Nonce Owner. For all u ∈ H, and for all (xhnd, ·, ·, ·) ∈ Nonceu, it holds
D[hndu = xhnd] �= ↓ and D[hndu = xhnd].type = nonce.

– Unique Nonce Use. For all u, v ∈ H, all w, w′ ∈ {1, . . . , n}, and all j ≤ size: If
(D[j].hndu , ·, w, ·) ∈ Nonceu and (D[j].hndv , ·, w′, ·) ∈ Noncev, then (u, w) =
(v, w′).

Nonce secrecy states that the nonces exchanged between honest users u and v remain
secret from all other users and from the adversary. For the formalization, note that the
handles xhnd to these nonces are contained as elements (xhnd, ·, v, ·) in the set Nonceu.
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The claim is that the other users and the adversary have no handles to such a nonce in
the database D of THH:

– Nonce Secrecy. For all u, v ∈ H and for all j ≤ size: If (D[j].hndu , ·, v, ·) ∈
Nonceu then D[j].hndw �= ↓ implies w ∈ {u, v, T}. In particular, this means
D[j].hnd a = ↓.

Similarly, the invariant nonce-list secrecy states that a list containing such a handle can
only be known to u, v, and T. Further, it states that the identity fields in such lists
are correct. Moreover, if such a list is an argument of another entry, then this entry is
an encryption created with the secret key that either u or v share with T. (Formally
this means that this entry is tagged with the corresponding public-key identifier as an
abstract argument, cf. Section 3.1.)

– Nonce-List Secrecy. For all u, v ∈ H and for all j ≤ size with D[j].type = list:
Let x ind

i := D[j].arg [i] for i = 1, 2, 3, 4. If (D[x ind
1 ].hndu , ·, v, l) ∈ Nonceu then

a) D[j].hndw �= ↓ implies w ∈ {u, v, T} for l ∈ {1, 2, 3, 4}.
b) If l ∈ {1, 4} and D[x ind

3 ].type = data, then D[x ind
3 ].arg = (u) and

D[x ind
4 ].arg = (v).

c) If l ∈ {2, 3} and D[x ind
3 ].type = data, then D[x ind

3 ].arg = (v) and
D[x ind

4 ].arg = (u).
d) for l ∈ {1, 2, 3, 4} and for all k ≤ size it holds j ∈ D[k].arg only if

D[k].type = symenc and D[k].arg [1] ∈ {pkseu, pksev}.

The invariant correct list owner states that certain protocol messages can only be con-
structed by the “intended” users respectively by the trusted third party.

– Correct List Owner. For all u, v ∈ H and for all j ≤ size with D[j].type = list:
Let x ind

i := D[j].arg [i] for i = 1, 2 and xhnd
1,u := D[x ind

1 ].hndu .
a) If (xhnd

1,u , ·, v, l) ∈ Nonceu and D[x ind
2 ].type �= skse, then D[j] was created by

MOR
u in Step 1.6 if l = 1 and in Step 3.12 if l = 2.

b) If (xhnd
1,u , IDhnd

u , v, l) ∈ Nonceu and D[x ind
2 ].type = skse, then D[j] was cre-

ated by MOR
T in Step 2.22 if l = 3 and in Step 2.20 if l = 4. Moreover, we have

D[hndu = IDhnd
u ] = D[hndT = IDhnd

T ], where IDhnd
T denotes the handle that

T obtained in Step 2.1 in the same execution.

Finally, the invariant key secrecy states that a secret key entry that has been generated
by the trusted third party to be shared between honest users u and v can only be known
to u, v, and T. In particular, the adversary will never get a handle to it. This invariant is
key for proving the secrecy and the consistency property of the Otway-Rees protocol.

– Key Secrecy. For all u, v ∈ H and for all j ≤ size with D[j].type = skse:
If D[j] was created by MOR

T in Step 2.19 and, with the notation of Algorithm 2, we
have that y3 = u and y4 = v in the current execution of MOR

T , then D[j].hndw �= ↓
implies w ∈ {u, v, T}.



A Cryptographically Sound Dolev-Yao Style Security Proof 103

6 Proof of the Cryptographic Realization

If Theorem 1 has been proven, it remains to show that the Otway-Rees protocol based
on the real cryptographic library computationally fulfills corresponding secrecy and
consistency requirements. Actually, different corresponding requirements can easily be
derived from the proof in the ideal setting. Obviously, carrying over properties from the
ideal to the real system relies crucially on the fact that the real cryptographic library is
at least as secure as the ideal one. This has been established in [8, 7], but only subject
to the side condition that the surrounding protocol, i.e., the Otway-Rees protocol in our
case, does not raise a so-called commitment problem. Establishing this side condition
is crucial for using symmetric encryption in abstract, cryptographically sound proofs.
We explain the commitment problem in the next section to illustrate the cryptographic
issue underlying the commitment problem, and we exploit the invariants of Section 5 to
show that the commitment problem does not occur for the Otway-Rees protocol. As our
proof is the first Dolev-Yao-style, cryptographically sound proof of a protocol that uses
symmetric encryption, our result also shows that the commitment problem, and hence
also symmetric encryption, can be conveniently dealt with in cryptographically sound
security proofs by means of the approach of [7].

For technical reasons, one further has to ensure that the surrounding protocol does
not create “encryption cycles” (such as encrypting a key with itself), which had to be
required even for acquiring properties weaker than simulatability, cf. [3] for further
discussions. This property is only a technical subtlety and clearly holds for the Otway-
Rees protocol.

6.1 Absence of the Commitment Problem for the Otway-Rees Protocol

As the name suggests, a “commitment problem” in simulatability proofs captures a sit-
uation where the simulator commits itself to a certain message and later has to change
this commitment to allow for a correct simulation. In the case of symmetric encryption,
the commitment problem occurs if the simulator learns in some abstract way that a ci-
phertext was sent and hence has to construct an indistinguishable ciphertext, knowing
neither the secret key nor the plaintext used for the corresponding ciphertext in the real
world. To simulate the missing key, the simulator will create a new secret key, or rely
on an arbitrary, fixed key if the encryption systems guarantees indistinguishable keys,
see [3]. Instead of the unknown plaintext, the simulator will encrypt an arbitrary mes-
sage of the correct length, relying on the indistinguishability of ciphertexts of different
messages. So far, the simulation is fine. It even stays fine if the message becomes known
later because secure encryption still guarantees that it is indistinguishable that the simu-
lator’s ciphertext contains a wrong message. However, if the secret key becomes known
later, the simulator runs into trouble, because, learning abstractly about this fact, it has
to produce a suitable key that decrypts its ciphertext into the correct message. It can-
not cheat with the message because it has to produce the correct behavior towards the
honest users. This is typically not possible.

The solution for this problem taken in [7] for the cryptographic library is to leave it
to the surrounding protocol to guarantee that the commitment problem does not occur,
i.e., the surrounding protocol must guarantee that keys are no longer sent in a form that
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might make them known to the adversary once an honest participant has started using
them. To exploit the simulatability results of [7], we hence have to prove this condition
for the Otway-Rees protocol. Formally, we have to show that the following property
NoComm does not occur: “If there exists an input from an honest user that causes a
symmetric encryption to be generated such that the corresponding key is not known to
the adversary, then future inputs may only cause this key to be sent within an encryption
that cannot be decrypted by the adversary”. This event can be rigorously defined in the
style of the secrecy and consistency property but we omit the rigorous definition due to
space constraints and refer to [7]. The event NoComm is equivalent to the event “if there
exists an input from an honest user that causes a symmetric encryption to be generated
such that the corresponding key is not known to the adversary, the adversary never gets
a handle to this key” but NoComm has the advantage that it can easily be inferred from
the abstract protocol description without presupposing knowledge about handles of the
cryptographic library. For the Otway-Rees protocol the event NoComm can easily be
verified by inspection of the abstract protocol description, and a detailed proof based on
Algorithms 1-3 can also easily be performed by exploiting the invariants of Section 5.

Lemma 1. (Absence of the Commitment Problem for the Otway-Rees Protocol)
The ideal Otway-Rees system SysOR,id perfectly fulfills the property NoComm, i.e.,
SysOR,id |=perf NoComm. �

Proof. Note first that the secret key shared initially between a user and the trusted third
party will never be sent by definition in case the user is honest, and it is already known
to the adversary when it is first used in case of a dishonest user. The interesting cases
are thus the keys generated by the trusted third party in the protocol sessions.

Let j ≤ size , D[j].type = skse such that D[j] was created by MOR
T in Step 2.19,

where, with the notation of Algorithm 2, we have y3 = u and y4 = v for y3, y4 ∈
{1, . . . , n}. If u or v were dishonest, then the adversary would get a handle for D[j] after
MOR

T finishes its execution, i.e., in particular before D[j] has been used for encryption
for the first time, since the adversary knows the keys shared between the dishonest users
and the trusted third party. If both u and v are honest, key secrecy then immediately
implies that t : D[j].hnda = ↓ for all t ∈ N, which finishes the proof.

6.2 Proof of Secrecy and Consistency

As the final step in the overall security proof, we show how to derive corresponding
secrecy and consistency properties from the proofs in the ideal setting and the simulata-
bility result of the underlying library.

We show this only for secrecy and sketch the proof for consistency. Note that the
secrecy property ReqSec specifically relies on the state of THH, hence it cannot be used
to capture the security of the real Otway-Rees system, where THH is replaced with the
secure implementation of the cryptographic library. The natural counterpart of ReqSec

in the real system is to demand that the adversary never learns the key (now as an actual
bitstring), which can be captured in various ways. One possibility that allows for a
very convenient proof is to capture the property as a so-called integrity property in the
sense of [5]. Integrity properties correspond to sets of traces at the in- and output ports
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connecting the system to the honest users, i.e., properties that can be expressed solely
via statements about events at the port set SH; in particular, integrity properties do not
rely on the state of the underlying machine. Integrity properties are preserved under
simulatability, i.e., they carry from the ideal to the real system without any additional
work. Formally, the following preservation theorem has been established in [5].

Theorem 2. (Preservation of Integrity Properties (Sketch)) Let two systems Sys1, Sys2

be given such that Sys1 is at least as secure as Sys2 (written Sys1 ≥poly
sec Sys2). Let

Req be an integrity property for both Sys1 and Sys2, and let Sys2 |=poly Req . Then
also Sys1 |=poly Req . �

We can now easily rephrase the secrecy property ReqSec into an equivalent integrity
property that is well-defined for both the ideal and the real Otway-Rees system by
employing standard techniques, e.g., by assuming that once the adversary has learned
the shared key, the adversary sends the key to an honest user. Formally, we may
augment the behavior the protocol machine MOR

u so that if it receives a message
(broken, sksehnd

u ) from a dishonest sender, it outputs this message to its user u at
port KS outu !. The property ReqSec can then be rewritten by replacing the statement
t2 : D[hndu = sksehnd

u ].hnda = ↓with t2 : KS outu !m =⇒ m �= (broken, sksehnd
u ).

We call the resulting integrity property ReqSec
real. If we denote the ideal Otway-Rees sys-

tem based on these augmented protocol machines by Sys ′OR,id then we clearly have
SysOR,id |=perf ReqSec if and only if Sys ′OR,id |=perf ReqSec

real since a user may only
receive a message (broken, sksehnd

u ) if the adversary already has a handle to sksehnd
u ,

and conversely if an adversary has a handle to sksehnd
u it can create and send the mes-

sage (broken, sksehnd
u ). This can easily be turned into a formal proof by inspection of

the commands list and send i offered by the trusted host. The preservation theorem now
immediately allows us to carry over the secrecy property to the real Otway-Rees system.

Theorem 3. (Security of the Real Otway-Rees Protocol) Let Sys ′OR,real denote the
Otway-Rees system based on the real cryptographic library and the protocol machines
augmented for capturing the integrity property ReqSec

real. Then Sys ′OR,real |=poly ReqSec
real.

�

Proof. Let Syscry,id and Syscry,real denote the ideal and the real cryptographic library
from [8] augmented with symmetric encryption as introduced in [7]. In [8, 7] it has al-
ready been shown that Syscry,real ≥poly

sec Syscry,id holds for suitable parameters in the
ideal system, provided that neither the commitment problem nor encryption cycles oc-
cur. We have shown both conditions in the previous section. Let Sys ′OR,id denote the
ideal Otway-Rees system based on the augmented protocol machines. Since Sys ′OR,real

is derived from Sys ′OR,id by replacing the ideal with the real cryptographic library,
Sys ′OR,real ≥poly

sec Sys ′OR,id follows from the composition theorem of [38]. We only
have to show that the theorem’s preconditions are in fact fulfilled. This is straightfor-
ward, since the machines MOR

u are polynomial-time (cf. Section 3.3). Now Theorem 1
implies SysOR,id |=poly ReqSec which yields Sys ′OR,id |=poly ReqSec

real. Since ReqSec
real is an

integrity property Theorem 2 yields Sys ′OR,real |=poly ReqSec
real.

Similar to the secrecy property, the consistency property ReqCons specifically relies on
the state of THH. The corresponding consistency property for the real Otway-Rees
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system can be defined by requiring that both handles point to the same bitstring, i.e., by
replacing t1 : D[hndu = sksehnd

u ] = t2 : D[hndv = sksehnd
v with t1 : Du[hndu =

sksehnd
u ].word = t2 : Dv[hndv = sksehnd

v ].word for the databases Du and Dv of the
real library. We omit a formal proof that the real Otway-Rees system computationally
fulfills this property; the proof can be established similar to the proof of the secrecy
property where one additionally exploits that if the real Otway-Rees protocol is run with
an arbitrary adversary and we have t1 : D[hndu = sksehnd

u ] = t2 : D[hndv = sksehnd
v ]

then there always exist an adversary against the ideal Otway-Rees protocol such that
t1 : Du[hndu = sksehnd

u ].word = t2 : Dv[hndu = sksehnd
u ].word , cf. [8, 7].

6.3 Towards Stronger Properties

To conclude, we sketch that also stronger properties can be derived for the real Otway-
Rees protocol from Theorem 1 and the proof of the simulatability result of the crypto-
graphic library, e.g., a stronger notion of secrecy: There does not exist a polynomial-
time machine that is able to distinguish the adversary’s view in a correct protocol exe-
cution from the adversary’s view in a protocol execution where all keys shared between
honest users are replaced with a fixed message of equal length (which means that the
adversary does not learn anything about these keys except for their lengths). It is easy to
show that the real Otway-Rees protocol fulfills this property because one could other-
wise exploit Theorem 1 to distinguish the ideal cryptographic library from the real one
using standard techniques, which would yield a contradiction to the results of [8, 7].

The proof idea is as follows: In the simulatability proof of the cryptographic library,
the simulator simulates all keys for which no adversary handle exists with a fixed mes-
sage since it does not know the appropriate key [7]. Moreover, when run with the ideal
system and the simulator, the adversary does not learn any information in the Shannon
sense about those symmetric keys for which it does not have a handle [8, 7]. Hence
Theorem 1 implies that these statements in particular hold for the secret keys shared
between honest users. Now if an adversary ADis existed that violated the above property
with not negligible advantage over pure guessing, we could define a distinguisher Dis
for the ideal and real library by first triggering ADis as a black-box submachine with
the obtained view and by then outputting the guess of ADis as a guess for distinguishing
the ideal and the real library. It is easy to show that Dis provides a correct simulation
for ADis and hence succeeds in distinguishing the ideal and the real library with not
negligible probability.

7 Conclusion

We have proven the Otway-Rees protocol in the real cryptographic setting via a de-
terministic, provably secure abstraction of a real cryptographic library. Together with
composition and preservation theorems from the underlying model, this library allowed
us to perform the actual proof effort in a deterministic setting corresponding to a slightly
extended Dolev-Yao model. We hope that it paves the way for the actual use of auto-
matic proof tools for this and many similar cryptographically faithful proofs of security
protocols.
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