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Abstract. Many long-standing image processing problems in applied
science domains are finding solutions through the application of deep
learning approaches to image processing. Here we present one such
application; the case of classifying images of protein crystallisation
droplets. The Collaborative Crystallisation Centre in Melbourne, Aus-
tralia is a medium throughput service facility that produces between five
and twenty thousand images per day. This submission outlines a reli-
able and robust machine learning pipeline that autonomously classifies
these images using CSIRO’s high-performance computing facilities. Our
pipeline achieves improved accuracies over existing implementations and
delivers these results in real time. We discuss the specific tools and tech-
niques used to construct the pipeline, as well as the methodologies for
testing and validating externally developed classification models.
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1 Introduction

Knowing the shape of an object reveals much about its function: a single glimpse
of a Ferrari and a bus allows one to predict quite accurately which vehicle would
go faster. Similarly, given a high-resolution picture of a biological molecule (e.g.
a protein molecule) a biologist can tell much about how it works. X-ray crystal-
lography is the only technique that can generate very high-resolution pictures
of molecules - pinpointing positions of individual atoms within a large complex
molecule [10]. This technique, X-ray crystallography, is the basis for modern
drug discovery, synthetic biology and indeed any field - academic or commer-
cial - where understanding biology down to the atomic level is important. To
generate an X-ray picture, a crystal of the biological molecule is bathed in a
powerful beam of X-rays [7]. Production of the crystal samples used in X-ray
crystallography is the limiting step in ‘seeing’ biology, and thus understanding
it. Figure 1 illustrates the crystallography pipeline in structural biology.

Fig. 1. Structural biology pipeline. Obtaining a crystallised protein is just the begin-
ning. Once a crystal has been grown it is irradiated with X-rays (often at a synchrotron
light source). The diffraction images produced at the synchrotron are then used to cal-
culate the atomic structure of the protein.

Crystals of proteins suitable for X-ray analysis are notoriously difficult to
produce [17]. For each protein, hundreds or sometimes thousands of experiments
are set up, where the protein sample is mixed with different cocktails of chemi-
cals in an unsophisticated trial-and-error approach to identify conditions under
which the protein will crystallise [30]. Crystal growth is a time-dependent (and
intrinsically stochastic) process, so that the trials have to be examined repeatedly
over a time-frame of many weeks, with the knowledge that trials that could sup-
port crystal growth may not show any crystals, due to the inherent randomness
of crystal nucleation. Crystal growth of proteins, or indeed simple molecules like
table salt, require that the solution becomes supersaturated and that nucleation
occurs. Given supersaturation of a protein solution, the most likely outcome
is the formation of a disordered precipitate. Sometimes the crystallisation trial
will result in phase separation, and sometimes supersaturation is simply not
achieved, and the droplet remains clear. For each of the basic classes of out-
come: crystals, phase separation and precipitation there is a huge variation in
the type and extent of the outcome. Even in the clear class, where the drop
is unchanged, extraneous matter - dust, for example, can give a drop that has
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features, which are not part of the intended experiment. Further, there are no
clear boundaries between the classes - for example, a clear droplet is very hard
to distinguish from one with a light precipitate. Often, many outcomes can be
seen in the same experiment, see Fig. 2.

The last two decades have seen the application of automation to protein
crystallisation experiments - enabling more experiments to be set up, and allow-
ing for the automatic imaging of the experiments. The relative ease of setting
up experiments (and the subsequent explosion in the number of experiments
created) has made human interpretation of the results unsustainable; even a
human annotation of all images containing crystals is becoming increasingly
rare, let alone annotation of all the non-crystal outcomes. The high-throughput
Collaborative Crystallisation Centre (C3) in Melbourne, Australia has been in
operation for over a decade, and has 100 or so active users at any given time.
Since its inception in 2006 the C3 has built up a collection of almost 50 million
visible light images of the > 3.9 million crystallisation experiments set up; 5–20
thousand new images are collected daily. Less than 5% of the C3 images have
been annotated by hand.

Statistics gathered by Structural Genomics initiatives and other studies [32]
have suggested that only a small percentage of initial crystallisation experiments
produce diffraction quality crystals, and most useful crystals are grown by opti-
mising near misses identified in the initial screening. Although it is widely recog-
nised that there must be useful information that can be garnered from the trials
that did not produce crystals, there are no widely available, broadly applicable
methods for extracting this information. The paucity of headway in gleaning
information from the experiments which fail to yield crystals can be attributed
to three factors - incomplete/noisy data about how the trials were set up, incom-
plete/noisy data about the output of crystallisation trials, and the lack of a clear
way of correlating these first two factors, although the value of this type of anal-
ysis has been long recognised [13]. The first issue - the problem of defining the
crystallisation experiment relies on the development and adoption of standard
vocabularies for describing crystallisation experiments, along with punctilious
record keeping by the experimentalist [33,35]. The second issue; that of assigning
an outcome to each experiment is more tractable, as there are already hundreds
of millions of images which capture the output of the crystallisation experiment,
due to the widespread adoption of imaging technology in crystallisation labs.
What is missing is the reliable and widespread translation of the qualitative
image data into quantitative data that could be used in downstream analyses.
This process of assigning a value to an image (or to a visual inspection) of a
crystallisation experiment is most often called scoring, and is the primary focus
of this work. The third matter - the lack of tools for correlating the input to
the output of an experiment is understandable given the limited amount of data
available describing both the input and the output of most crystallisation trials.
That is the failure to adequately solve issues one and two.

Analyses of images of crystallisation trials (a solution to the second issue)
must fulfil two goals: most importantly, it has to aid in the identification of
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crystals that might be useful in diffraction experiments, or that might be used
as the starting point for optimisation. The longer goal is to have a consistent
set of annotations for data mining experiments which would improve the success
rate of the current crystallisation process. Crystal formation happens rarely;
although no hard numbers are available it is estimated that significantly less
than 10% of outcomes are crystalline, which implies low tolerance for false nega-
tives in crystal recognition. To complicate things further, there is no universally
recognised set of classes into which images could be sorted, for either machine
or human classification. Current scoring systems are generally one-dimensional:
“crystal”, “precipitate” and “clear”. Images which have both crystals and pre-
cipitate would be generally annotated as “crystal”, as that is the noteworthy
outcome. Thus the current human annotations don’t necessarily give a good
description of what the drop image contains, but are more an indication of the
most interesting component of the drop. The blurred boundaries of any crystal
image classification system is highlighted by previous work which has shown less
than 85% agreement for classification amongst human experts [48].

(a) Crystal (b) Precipitate (c) Clear

(d) Crystal + Precip-
itate

(e) Plate features (f) skin

Fig. 2. Some example droplet images. Images a-c are clearly single class images (and
labelled accordingly), however image d is an illustration of two classes (clear and pre-
cipitate) present in a single image. Images e-f are examples of difficult images. e shows
a clear droplet where moulding features of the plastic substrate appear like crystals, f
shows a droplet with a wrinkled protein skin covering the droplet.

This work presents an automated solution that applies this one-dimensional
labelling scheme at scale in a fully distributed High Performance Computing
(HPC) environment. We will give an overview of the data challenges, model
development and parallelisation strategies used to ensure continuous and robust
labelling of new droplet images in near real time.
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2 Training and Testing Datasets

With its wealth of crystallisation data and access to world class machine learn-
ing engineers, C3 has pioneered the development of an automated classification
pipeline, C4 (C3 Classifier), in an attempt to remedy the second problem out-
lined in Sect. 1, that of incomplete/noisy data about the output of crystallisation
trials. To aid in the construction of the pipeline, C3 developed two high qual-
ity datasets to use for testing and training purposes, [36]. The images in these
datasets were collected using a Rigaku Minstrel crystal imaging system which
captured 5 megapixel images with a pixel width representing approximately
5 µm. The current imaging system is a Formulatrix RI1000 (www.formulatrix.
com) which produces 5 megapixel images with a pixel width representing between
2 and 10 µm.

The first dataset, “Well Scored”, is a collection of fourteen thousand images
scored by a single expert into four classes as listed in Table 1. The second dataset,
“One Year”, is a collection of seventeen thousand images collected during the
one year period between October 2014 and October 2015. As will be discussed
in Sect. 4 the classification model currently in production scores images into the
four classes used in the “Well Scored” dataset. Table 1 outlines the mapping
from the original “One Year” class labels to the simpler four class system, as
well as the mapping for an additional scoring system discussed in Sect. 4.

As will be discussed in Sect. 4 the classification model currently in production
scores images into the four classes used in the “Well Scored” dataset. Table 1
outlines the mapping from the original “One Year” class labels to the simpler four
class system, as well as the mapping for an additional scoring system discussed
in Sect. 4.

In the experiments described in this work the “Well Scored” dataset was
used as a completely separate held out test set. That is, we never used the “Well
Scored” data for training. We trained all models on the “One Year” dataset and
tested on the “Well Scored”. This was primarily due to the empirical perception
that the “One Year” dataset was more diverse than the “Well Scored” data,
and thus provided a richer training set for the models. As we will discuss in
the work that follows we found it particularly important to have a second, com-
pletely unseen, held out dataset. The generalisation of the model was of utmost
importance and simply testing on a held out fraction of data was not enough
to guarantee performance on similar data captured in a different crystallisation
facility.

Finally Fig. 3 illustrates the distribution of images across the four classes
described above. We can note a fairly similar distribution between the two dif-
ferent datasets, but it is also quite apparent the major over representation of the
“crystal” and “precipitate” classes. This is due, in part, to the ambiguity of the
definition for both the “clear” and “other” classes.

www.formulatrix.com
www.formulatrix.com
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Table 1. Simplified four class mapping

Well scored One year DeepCrystal

Crystal Crystals high Alternate spectrum positive

Crystals mid Macro

Crystals low Micro

Crystal

Crystalline

Salt crystals

Precipitate Bad precipitate Precipitate amorphous

Precipitate Precipitate non-amorphous

Good precipitate

Clear Clear Clear

Other Phase separation Alternate spectrum negative

Spherulites Spherulites

Clear with stuff Dry

Indeterminate Skin

Null experiment Contaminants

Fig. 3. Distribution of data points across the training (one year) and validation
(well scored) datasets.
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3 Early Attempts

Armed with an abundance of data and a targeted objective (generating accu-
rate annotations for said data) the development of an automated classification
pipeline began. This problem is important enough to have driven the develop-
ment of several machine learning tools already, although none of these tools have
been widely adopted, or even used outside of the laboratory in which they were
initially developed. We began our work in the area by implementing three exist-
ing, externally developed, image classification tools in our own laboratory. See
[46] for sample code. This was non-trivial, as none of the three applications we
implemented (Besra [11], ALICE [48] and TexRank [34]) had been developed for
anything but local use.

Besra was developed as a binary Support Vector Machine classifier [15], using
the bag-of-visual-words [16] method to extract a feature vector. The visual vocab-
ulary is computed from the training set by first extracting features (Speeded Up
Robust Features [3]) and clustering them into a default 150 clusters using the bag
of words k-means [3] clustering function in OpenCV [9]. This training is done on
local images. By using Besra alone we obtained a 56.93 ± 4.63% accuracy when
training a binary crystal/not crystal classifier and 63.77± 5.0% accuracy for the
binary clear/not clear classifier, these results are summarised in Table 2.

ALICE is a pretrained classifier trained using 1024 × 1024 × 8 bit grayscale
bitmap images, corresponding to a pixel width of about 3 µm. It was built using
Self-Organising Maps (SOMs) [25] and Learning Vector Quantisation (LVQ) [26]
together with Bayesian probabilities [4]. Running ALICE on our test dataset
gave an accuracy of 55.68 ± 1.37% accuracy when trained as a binary crys-
tal/not crystal classifier and 75.90 ± 2.49% accuracy for the binary clear/not
clear classifier, these results are summarised in Table 2. Although this was the
poorest performing classifier its results were impressive given the fact that there
was no training on local images.

Texrank is another pretrained algorithm, however, this tool was not devel-
oped as a classifier. Instead the algorithm was designed to rank a set of images
according to their probability of containing a crystal. The ranking is performed
by first extracting features by using a pretrained dictionary of textons [23],
essentially a numerical descriptor of the textural features in a given image. This
feature vector is then passed to a random forest classifier [43], the posterior prob-
ability obtained from the classifier is then used to rank droplets. The dataset
used to train Texrank contained images with a resolution corresponding to a
pixel width of about 4.5 µm. In our binary classification implementations we
simply calculated a threshold on the “One Year” independently for both the
crystal and clear classifiers. Running Texrank on our test dataset gave an accu-
racy of 75.03 ± 0.96% when trained as a binary crystal/not crystal classifier and
74.09 ± 2.37% accuracy for the binary clear/not clear classifier, these results are
summarised in Table 2.

Finally, we amalgamated all three of these methods into a single binary classi-
fier, Combiner, using a simple linear combination. We trained a single layer neu-
ral network on the “One Year” dataset, labelling the dataset for both crystal and
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clear classifications. Unsurprisingly the combined approach outperformed the
individual techniques, although it never quite reached the level of human accu-
racy. Running Combiner on our test dataset gave an accuracy of 76.31 ± 2.78%
when training a binary crystal/not crystal classifier and 85.12 ± 3.42% accuracy
for the binary clear/not clear classifier, these results are summarised in Table 2.

Table 2. Classification accuracies for the binary crystal/not crystal and clear/not
clear classifications models when applied to C3 data. Errors are given by the standard
deviation over a 10-fold cross validation. The baseline value is generated by predicting
each sample to be the majority class. Bold values represent the highest accuracy model
for each classifier.

Classifier Crystal Clear

Baseline 63.87 % 84.87 %

Besra 56.93 ± 4.63% 63.77 ± 5.0%

ALICE 55.68 ± 1.37% 75.90 ± 2.49%

TexRank 75.03 ± 0.96% 74.09 ± 2.37%

Combiner 76.31 ± 2.78% 85.12 ± 3.42%

CNN 75.80 ± 2.54% 75.80 ± 2.10%

DeepCrystal 76.39 ± 1.00% 80.27 ± 1.01%

MARCO 91.00 ± 5.00% 97.90 ± 5.00%

During the development of these traditional hand crafted feature extraction
approaches it was difficult to ignore the huge advances that were being made
with deep learning, particularly in the image processing domains [20,27,39,42].
With this in mind we set out to develop a simple test network to evaluate the
efficacy of the approach. Our initial experiments were built using tflearn [18]
a Tensorflow [2] powered Python framework. The final network was a simple
variant on the original AlexNet [27] architecture: four convolution layers [29]
with ReLU activations [31] and max pooling followed by two dense layers with
dropout for regularisation [40], the details of which are outlined in Table 3. The
immense learning capacity of the network allowed it to outperform any of the
traditional computer vision approaches and be on a comparable level to the
combination of all methods. Although we were still below the level of human
ability, this deep learning approach gave an accuracy of 75.80 ± 2.54% when
trained as a binary crystal/not crystal classifier and 75.80 ± 2.10% accuracy
for the binary clear/not clear classifier using our test dataset, these results are
summarised (as CNN) in Table 2.

4 Deep Learning Solution

Motivated by the same advances in deep learning that excited us, the VC backed
world of Silicon Valley has driven the development of a wealth of applications
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Table 3. Preliminary convolutional neural network architecture.

Layer Description

Input 128 × 128 × 3 RGB image

Convolution 3 × 3, 32 outputs, ReLU activation

Max pool 2 × 2

Convolution 3 × 3, 64 outputs, ReLU activation

Max pool 2 × 2

Convolution 3 × 3, 128 outputs, ReLU activation

Max pool 2 × 2

Convolution 3 × 3, 256 outputs, ReLU activation

Max pool 2 × 2

Dense 512 outputs, tanh activation

Dropout dropout rate = 0.5

Dense 512 outputs, tanh activation

Dropout dropout rate = 0.5

Dense 2 outputs

focused machine learning technology. Fortuitously one such application was in
the area of machine learning for interpreting crystallisation images. This applica-
tion was targeted at pharmaceutical and large biotech firms which use structural
biology in their lead development pipeline. The recently acquired DeepCrystal
(www.deepcrystal.com) had developed a 13-class droplet classification model
based on Facebook’s high performing convolutional architecture, ResNext [49].
The success of the DeepCrystal model was not so much due to the algorithm
itself, which was an implementation of an existing tool, but lay in the diversity of
their training data. Through their collaborations with both academic and private
institutions (as well as a concentrated web-scraping effort) DeepCrystal was able
to build a model with a (self reported) accuracy of 91%. An astounding result.
In the spirit of collaboration C3 provided DeepCrystal with a small sample of
competently scored images that were representative of those encountered at C3.
In exchange DeepCrystal provided access to a closed, black-box implementation
of their model, i.e. we were able to pass images in and get classifications out,
however we were unable to modify or fine tune the model at all.

The closed nature of the model posed some challenges when trying to val-
idate the claimed accuracy, and complicated comparisons to the other models
implemented in C3. The comparison of results from the DeepCrystal model to
the others implemented in C3 was stymied by the lack of accepted standards
describing outcome classes of crystallisation experiments. We used the mapping
shown in Table 1 to map the 13 classes of the DeepCrystal model to a simpler
four class output for comparison. Two classes of the DeepCrystal model (the two
Alternate Spectrum classes) are inappropriate for the visual light images that

www.deepcrystal.com
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we used in our tests. Applying the class mapping we obtained an accuracy of
55.96 ± 1.84% for the four class scoring task. This poor performance is mostly
likely due to the unclear mappings between DeepCrystal classes and C3 classes.

(a) Clear (b) Crystal

Fig. 4. Reciever Operator Characteristic curves for the binary DeepCrystal clear and
crystal classifiers.

If we were able to modify the architecture we could simply have adjusted the
output layer to match our classification system, and run a few epochs to fine tune
the network, unfortunately that option was not possible. Instead the approach we
took was to consider the output value for a single class and threshold that value
to create a binary classifier. In the case of the crystal/not-crystal binary classifier
we thresholded the “Macro” class, such that if “Macro” probability was above a
certain value we would flag the presence of a crystal. Similarly for the clear/not-
clear classifier we thresholded the “Clear” class. Using the holdout dataset we
were able to optimise the threshold values by inspecting the behaviour of their
corresponding ROC curves, shown in Figs. 4(a) and (b). The threshold values
were found to be 0.4% and 4.3% for the “Clear” and “Macro” classes respectively.
These values result in binary classification accuracies of 80.27 ± 1.01% for clear
and 76.39 ± 1.00% for crystal. However, this system is still better than any
of the other single tools, and performed similarly to Combiner, but had the
advantage of being significantly simpler and faster than Combiner (in the sense
that it was a single model). The ROC curves show far from ideal behaviour
resulting in an appreciable false negative rate (FPR) even for low true positive
rates (TPRs). In determining the optimum value for the threshold it was decided
that an acceptable minimum TPR was 0.8. Users of the crystallisation centre
are typically very intolerant of false negatives. Protein crystals are extremely
hard to produce, and as such users do not want to miss any samples that may
possibly contain a crystal. As a result users are more tolerant of false positives,
that is, the inclusion of images with no crystals in the set containing crystals
is an acceptable compromise in order to not miss any images that may contain
crystals.
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Around the time that DeepCrystal was being acquired and support for its
improvement was lost the MAchine Recognition of Crystal Outcomes (MARCO)
initiative was bearing fruit [12]. This collaborative effort between an interna-
tional collection of academic institutions and pharmaceutical companies amassed
a dataset of almost 500,000 images, which have been made publicly available, [14]
and have been classified using the same four class system described in Sect. 2. The
MARCO model uses the Inception-v3 architecture [41], has been trained using
the open source MARCO dataset and has been open sourced itself [45], making
it more flexible than our DeepCrystal implementation. Additionally MARCO
reports some excellent results1, producing accuracies of 97.90 ± 5.00% for clear
and 91.00 ± 5.00% for crystal. Such results are far greater than any previously
implemented approaches thus we now deploy the MARCO model as part of the
image classifying pipeline discussed in Sect. 5.

Fig. 5. Illustration of the C4 parallelisation scheme. Inspections of images are processed
in parallel which are further classified in parallel on using GPU accelerated Tensorflow
models.

5 Enabling Infrastructure

Previous sections have outlined the machine learning component of our solution:
the models tested and how they are used. Here we will describe in more detail
how the machine learning has been integrated into a fully autonomous end-to-
end image classification pipeline, C3 Classifier (C4). This code is available at
[47]. The two automated imagers in C3 (Formulatrix RI1000, www.formulatrix.
com) produce JPG images of all droplets found in a single experimental plate
– this is called an inspection; each inspection contains either 24 or 96 (or some
multiple) images. Initially the images are stored locally on the imaging machine,

1 The results reported here are those from [12], and thus have been produced using
the MARCO dataset.

www.formulatrix.com
www.formulatrix.com
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but are transferred almost immediately to a larger in-house cloud storage device
(Bowen) for long term storage. Simultaneously the metadata for both the inspec-
tion and each image collected as part of the inspection is pushed into an Oracle
database that is hosted in the same local cloud data centre. There are front-
end applications which are available to the C3 users that allow them to inspect
and classify images. Both the scores, and other associated information (scorer,
score time) are captured in this same database. Scores generated by the machine
learning tool are also stored in the database, the “scorer” field in the database is
used to mark these as machine generated scores. Thus the database contains a
record of all past and present images, noting which images have been classified,
either manually by a human or automatically by our autonomous pipeline.

C4 is run from CSIRO’s GPU cluster, Bracewell2, which is composed of 114
Dell PowerEdge C4130 servers each with 4 NVIDIA Tesla P100s and dual Intel
Xeon 14-core E5-2690 v4s connected on a FDR10 InfiniBand interconnect (a
total of 456 GPUs, 228 Xeons; approximately 2.5 Pflops). This cluster is located
in physically located about 600 Km from C3, at the Canberra Data Centre.
Overall, the pipeline follows these steps:

– Check database for new, unscored (by C4) images
– Copy unscored images from cloud storage on Bowen to local storage on

Bracewell
– Inspect images using the algorithms discussed in Sect. 4
– Save raw output to local cold storage
– Upload scores to the database
– Remove local image copies

C4 is written using Python and is tightly integrated with the Slurm Workload
Manager. Some initial experiments were developed using the Luigi [8] workflow
package for Python, but integration of Luigi with Slurm didn’t fit the traditional
High Performance Computing (HPC) model. A possible substitute is SciLuigi
[28] which natively supports Slurm. The custom work flow employed by C4 has
been modelled on Luigi: several distinct components, with checkpoints at the
end of each component. The components of C4 are described in detail in the
sections that follow and have been illustrated in Fig. 5.

5.1 Inspection Finder

C4 is set up to be run on an hourly basis, the initial execution is managed
by a Cron job. Cron launches a single batch job which runs the Python script
for inspecting the database for new inspections (via the Oracle ORM Python
package). For each new un(auto)scored inspection a series of dependant batch
jobs will be launched. This allows us to process all new inspections in parallel
across the cluster. First the inspection classification script is queued. Then the
post processing script is queued with the classification job listed as a dependency,
so that it will not launch until the classification job has exited. Finally a data

2 https://www.csiro.au/en/Research/Technology/Scientific-computing/Bracewell.

https://www.csiro.au/en/Research/Technology/Scientific-computing/Bracewell
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egress script is launched which has all of the previously submitted batch jobs
(classification and post-processing) listed as dependencies. Only a single instance
of this script is run and it will collate all the results and update the database
with a single post so as to minimise the number of database connections. The
post processing script also performs the clean up. All of these dependencies can
be programatically determined, with their job IDs, from within Python. There
are several Slurm Python wrappers, but we have made use of the PySlurm [37]
implementation.

5.2 Inspection Classifier

Each individual classification job copies all the images in an inspection from
Bowen cloud storage to node local Bracewell storage via scp. Specifically the
copy is made using a combination of the Paramiko [19] and scp Python packages.

Once the image copy is complete the images are classified in parallel using
the MARCO model discussed in Sect. 4. The MARCO model is an Inception-
v3 architecture written using Tensorflow. The architecture and weights for the
model can be obtained from [45]. As such the model can be called directly from
within Python scripts and easily accelerated using the GPU. Images are currently
processed in batches of 32. Probability distribution vectors returned from the
MARCO model are saved into a temporary file as a means of checkpointing.
Once the outputs had been successfully written to file we could remove the
original inspection images and safely exit the program which would enable the
corresponding post processing script to be executed when sufficient resources
were available.

5.3 Post Processing

The post processing script takes the output probability distribution and identifies
any interesting drops. Since replacing the DeepCrystal model with MARCO the
post processing stage has become much simpler. First it reads in the temp file
containing the probabilities for each image. Then it applies an argmax to the
probability distribution, returning the most probably class prediction. These
results are then saved in a new temp file, awaiting final processing.

5.4 Upload Results and Clean up

Once the all the inspections are processed the final data egress script will collate
the results in all of the temp files and upload the interesting drops to the database
in a single INSERT call, minimising the number of database connections the need
to be made. The temp files are then removed, with the results probability files
appended to a larger single file in long term storage.
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5.5 Logging

With a fully autonomous pipeline running independently of human oversight, it
can be quite tempting to simply assume it is running correctly. Software engi-
neering best practices however, suggest that in these situations it is best to set
up a logger, that is code which outputs information about the pipelines state
at any given time. Using Python’s logging package C4 has been able to build
multiple loggers for each component of the pipeline. That is, each component
has a regular logger printing to stdout, a debug logger printing to file as well
as a custom logger that posts to a Slack channel in the project’s team space.
The Slack logger is the most important as experience has shown us how easy it
is to forget to inspect log files. This custom logger will post selected updates to
it’s own channel, so as not to clutter the regular communication streams. The
posts have also been formatted such that errors and progress updates are easily
discernible, as well as the point of failure should an error occur. Future imple-
mentations of the logger will also send failure alerts via email, should Slack’s
current raging popularity diminish.

5.6 Cinder and Ashes

In an effort to improve the model on an ongoing basis we have begun collecting
images that humans perceive MARCO has scored incorrectly. In a weekly Python
script, Ashes, we identify any newly scored images where the human classifica-
tion disagrees with the MARCO classification. These images are collected and
saved for fine tuning in the future. However as discussed in Sect. 1 there is often
disagreement among domain specialists as to what score to assign to images.
Thus it is not enough to merely take the human score as the ground truth. To
remedy this problem C3 has upgraded its image scoring app, Cinder [1] (Crys-
tallographic Tinder), to allow for consensus scoring of badly scored images. That
is to say, through the Cinder app users (generally crystallography experts) can
score images that have been collected by Ashes. Once we have collected enough
scores which are in agreement about a single image we can add that image to the
data set for training, satisfied that its ground truth label is sufficiently accurate.
This “citizen science” approach to data labelling has only begun recently and
sufficient data has not yet been collected to begin the fine tuning process.

6 Deployment and Future Challenges

C4 has been in operation for over a year and its deployment has been well
received. This has been most notably observed through a reduction in human
scoring activity. C4 seamlessly processes up to twenty thousand images per day,
casually fitting brief batch jobs into the typical HPC scheduler. A single inspec-
tion (∼200 images) can be processed in under two minutes, with the majority
of the processing time being consumed by data transport and database commu-
nication. While C4 is more than capable of keeping up with the continuously
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produced images, the ultimate goal of the C4 pipeline is to score the large back-
log of over forty million images, enabling an understanding of the crystallisation
landscape. While C4 has been designed with this goal in mind at present there
are two limiting components: data ingress and data egress.

The server which manages the copying of data from storage to the compute is
a low powered cloud machine. As such it cannot handle multiple connections over
ssh. This has resulted in C4 limiting the number of simultaneous connections to
the data server to ten, which ultimately stems the flow of data to the compute
servers. We are currently investigating the root cause of the data flow problem,
but it will most likely be solved by smarter scheduling around data handling.
Similarly on the data egress front, the database does not accept a high number
of simultaneous connections. This issue is currently handled by collating batches
into a single upload, but this solution will not be acceptable nor stable enough to
manage processing the backlog of data. One possible solution (for both ingress
and egress) is to have some sort of data buffer that is periodically filled and
emptied as required.

Fig. 6. An example visualisation from the See3 web inspection application available
to C3 users. Typically users are shown an interface displaying thumbnails of their
processed experiments. All scores are shown as border colours, The border starts at
9 o’clock and the colours are arranged so that user scores are shown first. An image
with two scores will have two colours, with the upper colour being the human score,
and the lower colour the machine score, an image with a single colour border has only
been assigned a single score. (Color figure online)

With the droplet classifications stored in a database it is easy to integrate
the findings into the existing C3 web application, See3. Figure 6 illustrates how
the C4 classifications have been integrated into the See3 application. The yellow
and orange colours on the upper border indicate that the user has assigned these
images a crystal class (C3 uses multiple levels within the 4 broad categories in
its classification system). The two samples F1.2 and F4.2 that have a pink lower
border are images that have been flagged by C4 as containing crystals. The cases
that have a single colour are images that have been scored only by the user, that
is C4 has missed these images. You can see in this random sampling that C4 has
missed quite a few instances of crystallisation.

The multiple shades for each class are an attempt at circumventing the class
labelling issue discussed in Sect. 4. By refining the crystal (or other) class into
more nuanced subclasses we are able to better capture the continuous nature
of the crystallisation spectrum. In practice, there is not a discrete phase change
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from say, precipitate to crystal; there is a continuum between droplets containing
only precipitate, droplets containing both precipitate and crystals and droplets
containing only crystals; as such it can be difficult to define class boundaries. This
partly explains the divergence of classification labels among domain specialists,
with each expert identifying different features that are interesting to them. One
potential approach to solving this problem may be to investigate the use of
unsupervised learning methods. Given that C3 has a wealth of unlabelled diverse
data we could use this to train an unsupervised feature extractor, something like
a convolutional autoencoder [5]. The features learned by the autoencoder could
then be used by a clustering algorithm, perhaps t-Stochastic Neighbourhood
Embedding [44], to find local groups of visually similar images. If obviously
distinct classes cannot be differentiated perhaps at least some intuition as to
how the droplet classes can be arranged together. Additionally, the labelled and
unlabelled datasets could be combined in a semi-supervised scheme similar to
[6,21,22] or [24].

One of the fundamental lessons we have learned is that the diversity of the
data set is of critical importance. We have experienced a number of times that
models trained on datasets that do not accurately represent the data to be
classified post training fail to generalise in their application. Whether it be over
sampled classes, redundant (or repeated) images or general lack of diversity in
samples and sources, the dataset quality is key to the model performance. This
is one of the most pressing issues in automating the online training process; how
to ensure quality in the automatically extracted training set. While there is some
work that suggests deep neural networks are robust to noise in the training data
[38], when we are trying to fine tune a network it will be quality, well classified
images from the boundaries of the class domains that will ensure a robust and
reliable model moving forward.

7 Conclusions

C3 has developed and deployed a reliable and robust autonomous classifica-
tion system for protein crystallisation images. The system has been deployed
in a production system delivering almost real time results through the mas-
sive parallelisation of image processing. The pipeline has received qualitatively
good feedback on its performance, although it is clear that further develop-
ment is required. With the ability to compare human and machine scores C3 is
now seeking to develop an online training technique by mining hard-to-classify
images.
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