
TRANSACTIONS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 323, Number 2, February 1991

A CUBIC COUNTERPART OF JACOBI'S IDENTITY AND THE AGM

J. M. BORWEIN AND P. B. BORWEIN

Abstract. We produce exact cubic analogues of Jacobi's celebrated theta func-

tion identity and of the arithmetic-geometric mean iteration of Gauss and

Legendre. The iteration in question is

al + anh + bl\

The limit of this iteration is identified in terms of the hypergeometric func-

tion 2F\ (1/3 > 2/3 ; 1 ; •), which supports a particularly simple cubic transfor-
mation.

0. Introduction

The crux of this paper is a surprisingly simple cubic analogue of the arith-

metic-geometric mean iteration of Gauss and Legendre and is given in Theorem

2.1(b) and Theorem 2.3(a). The arithmetic-geometric mean iteration lies at the

heart of elliptic function and theta function theory [4]. In Chapter 21 of Ra-

manujan's second notebook [3] and in his 1914 paper on n [9], Ramanujan indi-

cates the existence of hypergeometric functions that admit transformations and

modular equations similar to those possessed by the complete elliptic integral of

the first kind, K, which in hypergeometric terms is (n/2)2Fx(l/2, 1/2; 1 ; A:2).

This similar behaviour occurs for the function 2Fx(s + 1/2, -s + 1/2 ; 1 ; k2),

when s := 1/3, 1/4, 1/6, and essentially for no other hypergeometric func-

tions.

For s := 1/3, 1/4, the simple explicit algebraic relationship between K and

the corresponding hypergeometric function is given in §5.5 of [4], wherein, for

s := 1/6, a less simple relationship is also given. These considerations lead

to what Ramanujan calls "corresponding theories" [8, 9] of elliptic functions

based on 2Fx(s + 1/2, -s + 1/2; 1; k2), when s := 1/3, 1/4, 1/6, and to
his many remarkable series for 1/n, including that used by Gosper (see §5.5 of
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692 J. M. BORWEIN AND P. B. BORWEIN

[4]) and extending to the series used by the Chudnovskys in recent large scale

computations of pi (see [7]).

In this paper we primarily analyse the case 5 := 1/6, which gives rise to a

correspondingly simple cubic transformation of 2Fx(l/3, 2/3; 1 ; ). The out-

line of this work is as follows. We first introduce a general parametric family of

iterations (TV > 1) that specialize to the classical AGM (TV = 2) and to our iter-

ation for (N = 3). We then indicate the preferred role of these two parameters;

establish the underlying cubic transformation possessed by 2FX ( 1/3, 2/3 ; 1 ; ) ;

provide identification (uniformization) of 2^(1/3, 2/3; 1 ; ) and of the cubic

transformation in terms of both one-dimensional and two-dimensional theta

functions, and list some related identities including Lambert series. We also

include its precise logarithmic asymptotic behaviour. We briefly consider the

corresponding results for 5 := 1/4. (For s := 1/3 everything reduces to a

study of Klein's absolute invariant [4, 10] as follows from Proposition 5.7 in

[4]; this also leads to the Chudnovskys' series [7, 6].) Finally, we-write down

three very simple iterations for n (one quadratic, one cubic, and one quartic)

which obtain from the previous analysis.

As much as possible our notation and terminology are as in Whittaker and

Watson [11] and in [4]. Some arguments are similar to ones detailed in [4] and

these will be given fairly briefly. In addition, we list a few extra verifiable asser-

tions whose derivations will be detailed in [5]. Those familiar with the classical

AGM will observe that to an uncanny degree our results are what obtains if

"twos" are replaced by "threes."

1.  A GENERAL ITERATION

Let N > 1 be given. Consider the two term (mean) iteration AGN which

begins with a > b > 0, sets a0 := a and bQ:= b, and computes

an+\— /y and     Cn+l —        Jf—>

where
,NNN
bn   ■= an~Cn-

Then the values an (and bf) converge to a limit, AGN(a, b), with order N,

essentially because

un+\       un+l        I        ft

If (suppressing N) we introduce the involution

x := y 1 - x

we may observe that the ratio kn := cn/an is computable from

1-kf
k"+i        +(N- l)k*f
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Also, the ratio RN(x) := AGN(1, x*)/AGN(l, x)  satisfies the functional

equation:

RN(y) = NRN(x)

when
1

y      l + (N-l)x*'

This much is true for any N : to analyse AGN(l, x) further it is relevant to

ask if RN(x) is asymptotic to a power of a logarithm as x —► 0. This, given the

superiluear convergence of the underlying iteration, can be numerically checked

and one discovers that such appears to be the case for TV := 2, 3 and for no

other small integer or reasonable fraction. Given the existence of a logarithmic

asymptote, one knows that AGN(1, x) must be expressible in terms of elliptic

functions; as is classical for N = 2 and as we now make explicit for N = 3.

In fact, this is not the route we initially followed in discovering these results.

We began with Ramanujan's quadratic modular equation listed in Remark 2.4(i)

below and working by analogy with the AGM we symbolically discovered (in

MAPLE) Theorem 2.3(a) and then Theorem 2.1(b). At some level this was

a proof of the results, given the modular underpinnings as described in the

proof of Theorem 2.3. We have, however, indicated more conventional proofs.

These are still verificational and simple direct proofs would be much more

satisfactory.

2. The quadratic and cubic iterations

In the case of AG2 we begin with a0 := a , b0:= b and compute

a. + b
a

2

while in the case of AG3 we compute

«+1 := "V^     and     K+\ '= \/anbn .

an+l •■--

What is remarkable about these two iterations is that they both have limits

easily expressible in terms of familiar nonalgebraic special functions. The for-

mer is classical and well appreciated; the latter appears both new and unlikely.

The appropriate identification of the limits follows:

Theorem 2.1.  (a) For 0 < k < 1

AG2(l,k) = l/2Fx(l/2, 1/2; 1; 1 - k2).

(b) For 0 < s < 1

AG2(l,s) = l/2Fx(l/3,2/3; 1; l-s2).

Proof. Many proofs of (a) are presented in the first chapter of [4].
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694 J. M. BORWEIN AND P. B. BORWEIN

Several of these can be adjusted to verify (b). It is perhaps easiest to estab-

lish (b) as follows. First, note that AGfx, y) is positively homogeneous and

invariant under the iteration. Thus, observe that G(x) := l/AGfl/x) satisfies

(2.1) G(r) = (l+2s*)G(s)   if (I+2r)(l+ 2s*) = 3,

that is when

_    1-5*
r l + 2s*-

Next, we use either Theorem 1.5 in [4] or the hypergeometric differential equa-

tion [1, 4, 11] to verify that 2Fx(l/3, 2/3; 1 ; 1 -s3) and l/AGfl, s) satisfy
the same functional equation and agree at 1. Hence they coincide. Since the

underlying differential equation is of second order with algebraic coefficients

this identification reduces to an entirely elementary though fairly complicated

calculation.    D

From (2.1) we may easily derive the following products for

which is expressible as

F(s):= /,(l/3,2/3; l;j3),

(3«n*«-££S(i) ■
In terms of F (2.1) becomes the promised cubic transformation:

Fis) = (l+ 2r)F(r)    if (1 + 2r)(l + 2s*) = 3.

In explicit form this is the lovely cubic equation: for x G (0, 1)

2FX (I, \; 1; 1 -/) = j^A (i, \; 1; {^) J .

It also follows that for sQ := s one has

°°       3 °° 1—5*

^)=nTT27=n(i+2,j if,n+I:=TT#.
n=0 n       «¡=1 "

These give  practical  cubically  convergent  algorithms  for   F   and  so  for

2F,(1/3, 2/3; l;x).
Let us recall the following theta function definitions. The special theta func-

tions are defined by

H<i)-=   E  «" '     6M)-=   E (-OV ,     d2(q):=   J2  a
«=—oo n=—oo n=—oo

and satisfy

(n+l/2)2

flj(«) = ej(i) + öj(9)    (Jacobi's identity),

ert series
oo

/>(<?):= 1 - 24 £

We also will use the Lambert series
OO 2«!

nq

i l~Q
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and Ramanujan's evaluation P(e~n) = 3/n (see [4, 9]). The standard theory is

recapitulated as

Theorem 2.2. Let \q\ < 1 be given.

(a) Then

1 1

2Fx(l/2, 1/2; 1 ; k2) = dj(q)   for k = 6-M and k* = ^1
Gfq) Ofq)

Moreover, if q := e~nt then k*(t) = k(l/t), for re t > 0.

(b)

and

(c)

00 n2n+^

6](q) = 1+4^-1)"-^
«i=o L    a

e% )_4P(q*)-P(q)W- 3

Proof. These are classical. Proofs of (a) are presented in the second chapter

of [4]. In large part this reduces to the parametrization of the AGM via theta

functions. Proofs of (b) and (c) are to be found in Chapter 9 of [4]. (In

particular, see (9.1.1) and the identity preceding it.)   D

Before giving our main result we need to introduce the appropriate multidi-

mensional theta functions. First, we sum over the norms (n - nm + m ) of

integers in Q(co), where co is the principal cube root of unity:

oo

L(q):=     £    q"
n,m=—oo

(analogously 03 sums over the norms (n +m ) of integers in (2(0) • We may

also write

(2.2) L(q) = dfq)dfqi) + d2(q)d2(q3),

L(q4) = [d3(q)e3(q3) + dfq)dfq3)]/2.

For notational convenience we set

a(q):=L(q),     b(q) := [3L(q3) - L(q))/2,     c(q) := [L(qX/3) - L(q)]/2.

Theorem 2.3. Let \q\ < 1 be given.

(a) If s = c(q)/a(q) then s* = b(q)/a(q) and

2Fx(l/3, 2/3; I ;s3) = a(q).

Moreover, if q := e~n2t/s/3 then s*(t) = s(l/t),for ret > 0.

(b)
OO     C        _3«1+1 n3n+2       )
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696 J. M. BORWEIN AND P. B. BORWEIN

and

(c)

lV) = 3f(g3)2-f(g).

Proof. Part (a) goes as follows. By definition

a(qi) = [a(q) + 2b(q)]/3   and   c(q3) = [a(q) - b(q)]/3.

We assert that

(2.3) a(q)  = b(q) + c(q)     (basic cubic identity).

Once this has been established, we argue as follows. As q —► q3 we have a

parametric (cubically convergent) solution of AG3 with the additional property

that a(0) = b(0) = 1 . More explicitly,

AGfa(q), b(q)) = AG3(a(q3), b(q3)) = ■■■ = AGfa(0), 0(0)).

Here we have used the facts that AG3 is continuous and \q\ < 1. It follows

that AG3(a(q), b(q)) = 1. Since AG3 is positively homogeneous,

AG3(l,b(q)/a(q)) = l/a(q).

Moreover the basic cubic identity (2.3) becomes

[b(q)/a(q)]* = c(q)/a(q),

and (a) now follows from Theorem 2.1(b).

To establish (2.3) we resort to some modular function theory. We first use the

two factorizations of L given in (2.2) and the one-dimensional theta transform

(in §2.3 of [4]) to deduce that

ta(t) = a(l/t),    tb(t) = c(l/t),    tc(t) = b(l/t).

In particular, it follows that

(2.4) c(t)/a(t) = s(l/t).

We re-express b(q) as

oo , ,
, ,   , v~* (n — m)   n +nm+mb(q)=     2^     oj q

«i ,m=—oo

and use the multidimensional theta transform as given in [2] to deduce that

oc

ciq) =    E    Q(n+l/3)2+(n+l/3)(m-(-l/3)+(m+l/3)2

«i ,m=—oo

which shows that c(q) = qx/3fi(q) with / analytic at 0. (This also follows from

the number-theoretic considerations of Remark 2.4(h).) Thus c (q) is analytic.

On setting A(t) := s3(t) +s3(l/t) and using (2.4) we have

(2.5) A(0 = A(l/0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A CUBIC COUNTERPART OF JACOBI'S IDENTITY 697

while, for trivial reasons,

(2.6) A(t + iy/3) = Ait).

We observe from the cubic modular equation (p. 110 of [4]) that a(q) has

a single zero in the ¿-fundamental region at q0 = -e2n/3 and check that

b(qf) = c(qf . Thus A(it) is a modular function for the group generated by the

transformations / —► 1/t and ?—>«*+ iy/3 . Additionally, A has no poles. This

implies that A is bounded and so constant. Letting t —> 0 allows us to identify

the constant: A(t) = 1.

Part (b) is once again classical and can be deduced from the Lambert series

for 63(q)63(q3) due to Lorenz given on p. 287 of [4]. Part (c) then follows

from exercise 4b) on the same page, which itself follows from a more general

identity of Ramanujan's.   D

Remarks 2.4. (i) Ramanujan gives modular equations of order 2, 5, 7, 11 for F,

but not the fundamental cubic equation (see [3, Chapter 21]). Having found the

basic modular function s(t), we can verify these identities much as in Theorem

2.3. The two nicest are in our notation:

s(t)s(2t) + s*(t)s*(2t) = 1    (quadratic)

and

s(t)s(5t) + s*(t)s*(5t) + 3[s(t)s(5t)s*(t)s*(5t)]X/2 = 1    (quintic).

(ii) The Lambert series in (b) is equivalent to r3(k) = 6[dx(k) - d2(k)],

where rfk) counts representations of k = n  + nm + m   including sign and

permutation and dj is the number of divisors congruent to ;' mod 3 .

Also
oo

a(q) = I+Y,rfk)qk.
k=\

Elementary arguments show that r3(3rc) — r3(k) and that r3(3k + 2) = 0 so

that

,   x l/3vW3fc+l)    *
c(q) = q     }^   —t-q  '

k=0

which again establishes the analyticity of c (q).

Correspondingly recall that r2(k) = 4[«i1(^) - d3(k)], where r2(k) counts

representations of k = n +m and dj is the number of divisors congruent to

y mod 4 (this is the number theoretic equivalent to (b) of Theorem 2.2).

(iii) Both c (q) and b (q) have simple Lambert series:

«1=1 y n=l ^
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where ^_3(«) is (3\n) and

t3
3,_,     I,  , ^q"il-q")

a (q)
.i/i     _«\

i + ey
¿Í 1-tf3"

(iv) Note that (2.3) is the cubic analogue of Jacobi's identity.

The following logarithmic asymptotes follow from the modularity of k and

of 5 respectively.

Theorem 2.5.  (a)

as k -► 0+

(b)

7T/2 (4- log '
AG2(l,k)        b\k

n/2 3^f3,     (3
log   -

AG3(l,s)        4      b\s

as s —► 0+ .

Proof, (b) Use Theorem 2.3 and Theorem 2.1(b) to write

l/AGfl, s(t)) ~ AGfl, s*(t))/AG3(l, s(t)) = a(l/t)/a(t) = t,

where q = e2nl/V3. But 5 ~ c(q) ~ 3?1/3. Thus í2tt - 3V31og(3/s).

(a) is similar and is given in [4].   □

In (a) the error is of the order k log k ; in (b) the error is of the order 5 log 5 .

We finish this section by giving similar results for another hypergeometric

function, 2Fj(l/4, 3/4; 1 ; x), which corresponds to 5 := 1/4. We consider

the mean iteration that commences with a0:= a , b0:= b and computes

a„ + 3bn , /,   fa. + b.
a.,,:=   "  .    ",       b_,,:=ib.

«1+1 • 4       ' «¡+i •    A/      V      2

and let the common quadratically attained limit be denoted by A fa, b).

Theorem 2.6.   (a) For 0 < h < 1

Afl,h) = l/2Fx(l/4,3/4; 1; 1 - h2)2.

(b) If \q\ < 1 and we set

a(q) := d\(q) + d'fq),    b(q) := 6*(q),    c(q) := 20¡(q)623(q),

then

,F2(l/4, 3/4; l;h2) = a(q)   for h = ^ andh*2) = a(q)   fior h = C-^-and h* = ^y >

where h*  + h  = 1.
Moreover, if q := e~ntl^2, then h*(t) = h(l/t),fior ret>0.

(c)

a(q2) = 2P(q2) - P(q)
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and

(d)

-HI_-Liog(T)VA-JÏTfT)    V2l0g\h)

as h — 0+ .

Proof. Proposition 5.7 in [4], when expressed in terms of theta functions, is

precisely (b). Now one checks (using elementary theta function identities) that

a and b provide a parametrization of the iteration in the sense that

a(q2) = [a(q) + 3b(q)]/4   and   b(q2) = {b(q)[a(q) + b(q)]/2}X/2

from which we deduce (a). Part (c) is a direct consequence of identities (3.2.20)

and (3.2.21) for 4th powers of theta functions, coupled with (3.2.19) in [4].

Now (d) follows either from (a) or from the asymptote for AG.   O

Ramanujan [3] gives the corresponding cubic modular equation as

h(t)h(3t) + h*(t)h*(3t) + 4[h(t)h(3t)h* (t)h* (3t)]x'2 = 1.

3. Three iterations for n

We observe that part (c) of Theorems 2.6, 2.3, and 2.2 may be written as

(N - l)gN(q) = N[P(qN) - 1] - [P(q) - 1], where gN is related to the corre-

sponding iteration. On summing this identity,

«1=0

since P(0) = 1 . For q := e~n the right-hand side is (1 - n/3)/(N - 1). Using

the exact form of gN gives an iteration for n that converges with order N.

Sum 3.1 (cubic). For aQ := 1 , b0 := [(\/3 - l)/2]* with an computed from

AG3

1       v^oo   t««+1/   2 2     , '
l-£„=03       ian-an+\)

We may truncate the sum after k + 1 terms and replace AG3 by ak+x to ob-

tain an approximation nk for n ; alternatively we may re-express this iteration

as an iteration for l/nk .

Iteration 3.2 (cubic). Let a0 := 1/3, s0 := (yf3 - l)/2 and

(l+2sn)(l+2s*n_x) = 3   where s3 +s*3 = 1,

an:= (1 +2snfan_x- 3"-X[(l +2snf - I].

Then l/an converges cubically to n .
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The iteration gives 1, 5, 21, 70,...  digits correct and more than triples

accuracy at each step.

Sum 3.3 (quartic). For a0 := 1, b0 := (12^2- 16)1/4 with an computed from

two steps of AG2, viz.,

a„+b„ , *a„bl + b„a3
n        ._ _n_n_ u        ._ a /    n   n_n   n
un+\ ■— '     J        ' n+x '~ V 2 '

n = lim -;-líp—.--.—.

<—i-eL4"+i(«:-o
We may re-express this iteration as

Iteration 3.4 (quartic). Let a0 := 1/3, s0 := \f2 - 1 and

(1+sn)(l+s*n_x) = 2   where 5 + s*  =1,

ccn:=(l+sn)\n_x-4n[(l+snf-l]/3.

Then l/an converges quartically to n.

The iteration gives 1, 8, 41, 171,... digits correct and more than quadru-

ples accuracy at each step.

Sum 3.5 (quadratic). For a0 := 1, b0 := 1/3 with an computed from A4

n = iim -_^*±!-.

We may re-express the iteration as

Iteration 3.6 (quadratic). Let a0 := 1/3, s0 := 1/3 and

(1 + 3sn)(l + 3s*n_x) = 4   where s2 + s*2 = 1,

a«:=(1 + 3s«K-i-2\-

Then 1 ¡an converges quadratically to n.

The iteration gives 1, 3, 8, 19,... digits correct and more than doubles

accuracy at each step.

These sums and iterations seem well suited for extended precision computa-

tion of pi.

Added in proof. 1. David Bailey has computed 98,300 digits of Pi by each

of these six algorithms (and several previously discovered methods including

the Brendt-Gauss-Salamin algorithm) using one processor of a CRAY Y-MP at

NASA Ames. The fastest is Sum 3.3 which took 10.215 CPU seconds.

2. Bruce Brendt (private communication) has informed us that he can es-

tablish our key result (2.3) by Ramanujan's methods. Moreover, a version of

(2.1) and of Theorem 2.3(a) can be found on page 258 of Ramanujan's Second

Notebook. As with most of Ramanujan's results these are given without proof.
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