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Abstract. Data on global agricultural production are usually available as statistics at administrative units, which

does not give any diversity and spatial patterns; thus they are less informative for subsequent spatially explicit

agricultural and environmental analyses. In the second part of the two-paper series, we introduce SPAM2010

– the latest global spatially explicit datasets on agricultural production circa 2010 – and elaborate on the im-

provement of the SPAM (Spatial Production Allocation Model) dataset family since 2000. SPAM2010 adds

further methodological and data enhancements to the available crop downscaling modeling, which mainly in-

clude the update of base year, the extension of crop list, and the expansion of subnational administrative-unit

coverage. Specifically, it not only applies the latest global synergy cropland layer (see Lu et al., submitted to

the current journal) and other relevant data but also expands the estimates of crop area, yield, and production

from 20 to 42 major crops under four farming systems across a global 5 arcmin grid. All the SPAM maps are

freely available at the MapSPAM website (http://mapspam.info/, last access: 11 December 2020), which not

only acts as a tool for validating and improving the performance of the SPAM maps by collecting feedback

from users but is also a platform providing archived global agricultural-production maps for better targeting the

Sustainable Development Goals. In particular, SPAM2010 can be downloaded via an open-data repository (DOI:

https://doi.org/10.7910/DVN/PRFF8V; IFPRI, 2019).

1 Introduction

Civilization is founded on the agricultural use of land (Fu

and Liu, 2019), which remains as important today as it was

10 000 years ago (Lev-Yadun et al., 2000). Agricultural land,

which refers to the land area that is arable, under permanent

crops, and under permanent meadows and pastures accord-

ing to the Food and Agriculture Organization of United Na-

tions (FAO), is currently 4.9 billion ha in 2019. This is 37.6 %

of the earth’s terrestrial surface – the largest use of land on

the planet. Historically, the agricultural use of land has trans-

formed ecosystem patterns and processes across most of the

terrestrial biosphere (Ellis et al., 2013). The way we use agri-

cultural land will significantly determine whether we are able

to solve the multiple challenges embodied in the 17 Sustain-

able Development Goals (SDGs), e.g., feeding the world’s

growing population, mitigating climate change, and halting

biodiversity loss (FAO, 2018; Ehrensperger et al., 2019). As

the fundamental connection between people and the planet,

the spatiotemporal characteristics of agricultural land is im-
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portant for the anthroposphere and beyond as such informa-

tion allows us to undertake more responsive and evidence-

based analysis on the interaction and better resource alloca-

tion across land, water, energy, and the environment.

Cropland mapping has made great progress in the past few

decades and provided great support for global agricultural

monitoring and assessment. For example, it allows us to be

able to know where agriculture has infringed into natural

ecosystems and where cropland has been taken as a conse-

quence of urbanization (Chen et al., 2015; Gong et al., 2019).

However, this type of work mainly focuses on the agricultural

changes at the land cover level, without paying attention to

the subtle characteristics at the land use and land manage-

ment level (Verburg et al., 2011). These subtle level charac-

teristics related to agricultural production, ranging from crop

allocation to land use intensity, are the core of agricultural

management and have been proven to have equally impor-

tant impacts on food systems (Sun et al., 2018; Pretty, 2018),

climate systems (Searchinger et al., 2018; Bonan and Doney,

2018), and ecosystems (Peters et al., 2019; Poore and Ne-

mecek, 2018). Yet data on global agricultural production are

usually representative at national and subnational adminis-

trative units (e.g., provinces, districts). This level of statistics

does not give a sense of the diversity and spatial patterns in

agricultural production and is not spatially explicit, which is

critical for many environmental and ecological assessments

(Yu et al., 2012).

There are a few attempts to develop global spatially ex-

plicit datasets on agricultural production by fusing census

statistics with maps of agricultural land cover (Fig. 1). Leff

et al. (2004) applied a simplified proportional disaggregat-

ing approach and mapped the global harvested area of 18

major crops circa 1992. By using a similar approach, Mon-

freda et al. (2008) mapped both harvested area and yield for a

full coverage of 175 crops circa 2000 (the dataset is referred

to as M3 hereafter). Portmann et al. (2010) developed the

MIRCA (Monthly Irrigated and Rainfed Crop Areas) dataset

that contains the harvested area for 26 crops circa 2000 by

using M3 as a starting point. It further allocates the total har-

vested area for each crop into rainfed and irrigated areas.

Fischer et al. (2012) developed the GAEZ dataset (Global

Agro-ecological Zones), which contains the potential har-

vested area and yield for 23 crops circa 2000 considering

the crop-specific agroclimatic and edaphic suitability crite-

ria. You and Wood (2006) developed the Spatial Production

Allocation Model (SPAM) firstly at the continental scale then

subsequently at the global scale by using an entropy-based

model to downscale crop production. The first global SPAM

dataset is available for the year 2000, at the time when M3,

MIRCA, and GAEZ were also available (Fig. 1).

Changes in agricultural lands over time are as important

as over space, especially given that the changes in cropping

pattern and crop yields are more frequent than those at the

land cover level (Verburg et al., 2011). While there are four

spatially explicit datasets on global agricultural production

available around the year 2000 (Anderson et al., 2015), three

of them, i.e., M3, MIRCA, and GAEZ, are no longer avail-

able after 2000. Agricultural-production systems are con-

stantly changing, and these changes are not trivial. How-

ever, a lot of recent agricultural and environmental assess-

ments were still based on those maps produced decades ago

(Deutsch et al., 2018; Nanni et al., 2019; Estes et al., 2018;

Prestele et al., 2018; Erb et al., 2018; Porwollik et al., 2019;

Yu et al., 2017b), suggesting that an update of existing global

agricultural-production maps is very desirable for subsequent

analysis.

SPAM had committed to updating maps every 5 years

(You et al., 2014; Wood-Sichra et al., 2016), which sub-

stantially fills the data gap and extends the work for global

agricultural-production mapping by operating a global grid-

scape at the confluence between earth and farming systems

in multiple time stages. The SPAM model has become a crit-

ical tool to many initiatives within and beyond the Consulta-

tive Group for International Agricultural Research (CGIAR).

Moreover, SPAM data are frequently downloaded and widely

used by researchers and analysts from international origi-

nations, academia, and governments agencies all over the

world. The global spatially explicit datasets in multiple time

stages enable scientists as well as policymakers to better ad-

dress the global change challenges within the anthroposphere

and beyond, such as targeting agricultural and rural devel-

opment policies and investments and increasing food secu-

rity and growth with minimal environmental impacts. Suc-

cessful examples include AGRODEP (African Growth and

Development Policy Modeling Consortium) Library (http:

//www.agrodep.org/fr/node/1794, last access: 11 December

2020), GEOGLAM (Global Agricultural Monitoring Ini-

tiative) (http://www.geoglam.org, last access: 11 Decem-

ber 2020), USAID (United States Agency for International

Development) Feed the Future Innovation Lab for Small-

scale Irrigation (https://ilssi.tamu.edu/, last access: 11 De-

cember 2020), Africa Infrastructure (https://openknowledge.

worldbank.org/handle/10986/2692, last access: 11 December

2020), and so on. In this paper, we introduce SPAM2010, the

latest update of the SPAM family. The next section gives an

overview of the SPAM model. Section 3 provides a detailed

description and improvements of SPAM2010. Section 4 in-

troduces the data preparation, and Sect. 5 presents some of

the results produced by SPAM2010. Finally, we conclude

with some advice on using the maps and our own plan for

the future of SPAM.

2 SPAM overview

The main purpose of SPAM is to disaggregate crop statistics

(e.g., harvested area, production quantity, and yield) by dif-

ferent farming systems and to further allocate such disaggre-

gated statistics into spatially gridded units (Fig. 2). In SPAM,

disaggregation is processed before allocation because crop
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Figure 1. Overview of the global spatially explicit datasets on agricultural production. Each dataset is plotted in a coordinate system with

the x axis representing the time span and the y axis representing the number of crops that have been included. For each dataset, the first row

indicates the major measurement(s) of agricultural production, the second row indicates the cropland cover layer, and the third row indicates

the main approach for allocating production. The dashed line within the chart indicates the evolution of a dataset family.

yields are likely to be substantially different between differ-

ent farming systems (e.g., irrigation versus rainfed) even at

the same location. The whole procedure entails a data fusion

approach that combines information from different sources

and at different spatial scales by deploying various matching

and calibration processes. Then all the data elements are pro-

cessed by the optimization model, which generates results at

the grid level (Fig. 2).

The SPAM methodology was first developed in a trial

project for six major crops in Latin America and the

Caribbean by combining satellite imagery and crop statis-

tics. Later on, it was used to derive regional estimates of

spatially disaggregated crop production in Brazil and sub-

Saharan Africa (You and Wood, 2006; You et al., 2009).

Over the years the model has evolved, adding more crops

and using additional data and increasingly complicated opti-

mization equations as well as expanding to global coverage

(You et al., 2014). The SPAM methodology is different from

its counterparts. For example, M3 has no distinction across

farming systems and is allocated proportionally (within each

crop) to each grid cell within each subnational unit; hence the

M3 dataset provides interpolated estimates of output by crop

at the resolution of the satellite data (Fig. 1). SPAM not only

considers the crop yield variation across farming systems but

also assigns production weighted by price to grid cells rather

than pure proportionality (Donaldson and Storeygard, 2016).

Moreover, MIRCA and GAEZ focus more on the biophysical

aspects of agricultural production, while SPAM uses a trian-

gulation of any and all relevant background and partial infor-

mation, which includes not only national or subnational crop

production statistics and satellite data on land cover but also

maps of irrigated areas, crop potential suitability, secondary

data on population density, market accessibility, cropping in-

tensity, and crop prices (Fig. 2).

The SPAM model produces global gridded maps of agri-

cultural production at a 5 arcmin spatial resolution. The first

SPAM maps, known as SPAM2000, represent global agricul-

tural production circa 2000 for 20 crops, with the exception

of a few small island states and conflict zones (You et al.,

2014). Subsequently, the SPAM maps have been updated ev-

ery 5 years. SPAM2005 acts as an intermediate update which

expands the coverage of crops from SPAM2000. The 42 crop

categories are further adopted in SPAM2010 (Fig. 1).

3 Model improvement for SPAM2010

There are three submodules in a standardized SPAM model:

disaggregation, optimization, and allocation. We conceptu-

alize the SPAM2010 based on this general setting, while it

adds further methodological and data improvements, which

mainly include the update of base year, the expansion of sub-

national administrative-unit coverage, the extension of crop

list, and the substitution of the latest hybrid cropland map

as the basic allocation layer. Considering the huge number
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Figure 2. The overall structure of the SPAM model. The rhombuses indicate spatial data inputs and outputs, while the other shapes indicate

nonspatial data inputs (see the detailed data description in the following section). The orange color indicates how crop statistics are disaggre-

gated by administrative unit (k), crop type (j ), and farming system (l). The green color indicates how the spatial parameters are collected and

prepared at a unified spatial resolution (i) and in a harmonized manner. The yellow color indicates the spatial allocation inputs/outputs. The

darker colors, either in orange or in green, highlight the essential elements in SPAM: the former indicates the farming system disaggregation

scheme, while the latter indicates (i.e., priors of physical area) a key parameter with which the spatial and nonspatial data are connected and

the iterative spatial allocation is able to take place.

of input data and multiple-year efforts, such an update is not

trivial and will be critical for the user community. In this sec-

tion, we briefly introduce the model structure and how these

submodules are processed and connected.

3.1 Disaggregation

The first step for SPAM is to disaggregate crop statistics of

agricultural production (e.g., the yield, harvested area, and

total production) by administrative-unit levels (k), crop type

(j ), and farming system (l) from coarser scale to finer scale

(illustrated by orange shapes in Fig. 2). For example, the

national-level statistics are disaggregated into subnational

levels, statistics for crop aggregates are divided into individ-

ual crop types, and the crop statistics are further separated

by rainfed and irrigated conditions. Disaggregation is a non-

spatial module. For the administrative unit (ADM), we con-

sider three levels – k = 0 (national level), 1 (subnational level

1), and 2 (subnational level 2) – and refer to the country-

specific administrative level as the statistical reporting units

(SRUs; SRU = k0, k1 or k2). In general, the SPAM model

will have better performance if crop statistics are more dis-

aggregated by the ADM. Therefore, we prefer to collect crop

statistics for ADM1 and ADM2, despite statistics mostly be-

ing available at the ADM0 level and the subnational cover-

age always being less complete. Comparing to the previous

SPAM products, the subnational coverage percentage has in-

creased markedly for SPAM2010, which is described in de-

tail in Sect. 4.1.

We improve the model capacity in SPAM2010 as well: we

simultaneously allocate 42 crops and crop aggregates (versus

the 20 crops and crop aggregates in SPAM2000) and consider

four farming systems for each crop (Fig. 2). In SPAM2010,

we keep the farming systems conceptualized for SPAM2000,

which have proven to be useful to represent the different crop

performances under different management systems; e.g., the
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irrigated yields of a particular crop are likely to be substan-

tially different from the corresponding rainfed yields. The

four farming systems are defined as follows:

– The irrigated farming system (I) refers to the crop area

equipped with either full or partial control irrigation.

Normally the crop production on the irrigated fields uses

a high level of inputs such as modern varieties and fer-

tilizer as well as advanced management such as soil and

water conservation measures.

– The rainfed high-input farming system (H) refers to the

market-oriented crop area, which uses high-yield vari-

eties; machinery with low labor intensity; and optimum

applications of nutrients and chemical pest, disease, and

weed control.

– The rainfed low-input farming system (L) refers to crop

area which uses traditional varieties and mainly man-

ual labor without (or with little) application of nutrients

or chemicals for pest and disease control. Production is

mostly for personal consumption.

– The rainfed subsistence farming system (S) is intro-

duced to account for situations where cropland and suit-

able areas do not exist, but farmland is still present in

some way. Production is mostly for personal consump-

tion, which is also low-input.

The four conceptualized farming systems are mainly delin-

eated by the water supply system and inputs used by farmers,

despite global data on farming system shares for each crop

being largely absent. For a small number of large countries,

e.g., Brazil, China, India, Russia, the United States (see more

details in Sect. 4.1), we have data on farming system shares

at the ADM1 level. For the other countries we first assign the

national farming system shares to each ADM1 level and then

adjust individual ADM1 farming system shares in light of the

supporting evidence. For example, if the national share for ir-

rigation of wheat was 30 %, we assign that to all ADM1 units.

Then we look at individual units, and if supporting evidence

(e.g., the Global Map of Irrigation Areas, GMIA, data) indi-

cates that there was no irrigated area present in a particular

AMD1 unit, we set the irrigation share of wheat to 0 in that

administrative unit. Finally the farming system shares at the

national level are recalculated as the weighted average of the

adjusted ADM1 estimates. For a few countries which have

very limited data accessibility, experts may give their opin-

ions. For example, it was often necessary to use farming sys-

tem shares from one crop as proxies for similar crops (e.g.,

farming system shares for beans are used for all pulses) or to

apply shares from one country to similar countries (e.g., the

geographically smaller countries in the Middle East, includ-

ing Kuwait, Oman, and Qatar, are assigned the same farming

system shares).

For irrigated farming systems, the crop-specific shares are

derived by dividing the harvested area cultivated under full-

control irrigation obtained from AQUASTAT, MIRCA, and

country-level statistics by the overall harvested area. For

rainfed farming systems, crop-specific shares are primarily

estimated based on generalized assumptions for individual

countries and crops. For example, all cereals in western Eu-

rope are produced with high inputs, whereas 20 % of cereals

in sub-Saharan Africa are grown under a subsistence farm-

ing system. We also assume fertilization as a proxy for high-

input use, so if irrigated crop areas and overall fertilized and

nonfertilized areas of a crop are known, it is possible to de-

duce rainfed–high shares by subtracting the irrigated areas

from fertilized areas. The remainder of fertilized area will

be then classified as rainfed–high, and the nonfertilized ar-

eas will be further split between rainfed–low and rainfed–

subsistence. In addition, the shares of rainfed–subsistence are

assigned when there is not enough suitable area for rainfed–

low conditions to satisfy the completeness of disaggregated

crop statistics in terms of area extent and/or production quan-

tity. In such cases a portion of the rainfed–low statistics were

assumed to stem from rainfed–subsistence. Although disag-

gregation is a nonspatial module of SPAM, it is applied inter-

actively with the spatial modules by the support of multiple

spatial data and nonspatial data, which are elaborated in de-

tail in the section “Data preparation for SPAM2010”.

3.2 Optimization

The core part of the SPAM model is the cross-entropy mod-

ule (illustrated by the dashed green frame in Fig. 2), which

is used to achieve the allocation for each spatial grid (i).

It works by (iteratively) minimizing the error between the

preallocated shares of physical area (πij l) and the allocated

shares of physical area (sij l) in each pixel i by crop j and

production system l:

min
{sij l}

CE
(

sij l, πij l

)

=
∑

i

∑

j

∑

l
sij l lnsij l

−
∑

i

∑

j

∑

l
sij l lnπij l, (1)

where CE is the abbreviation for cross-entropy, which is de-

fined as the log function of probability. The difference be-

tween {s lns} versus {s lnπ} means the estimated probability

s and its prior probability π are minimized subject to certain

constraints.

i. Constraint specifying the range of allocated physical-

area shares:

0 ≤ sij l ≤ 1, ∀i∀j∀l; (2)

ii. Constraint specifying the sum of allocated physical-area

shares within a grid:
∑

i
sij l = 1, ∀j∀l; (3)

iii. Constraint specifying that the sum of allocated physical

area over all crops and farming systems within a grid

https://doi.org/10.5194/essd-12-3545-2020 Earth Syst. Sci. Data, 12, 3545–3572, 2020
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should not exceed the actual cropland within the same

grid:

∑

j

∑

l
AdjCropAj lkSRU

× sij l ≤ AdjCropLandi,

∀i ∈ kSRU; (4)

iv. Constraint specifying that the allocated physical area by

grid, crop, and farming system should not exceed the

suitable area within the grid with the corresponding crop

and farming system:

AdjCropAj lkSRU
× sij l ≤ AdjSuitAreaij l, ∀i ∈ kSRU; (5)

v. Constraint specifying that the sum of allocated physi-

cal area over all farming systems within a subnational

unit should be equal to the sum of statistical physical

area over all farming systems within the corresponding

subnational unit:
∑

i∈kSRU

∑

l
AdjCropAj lkSRU

× sij l

=
∑

l
AdjCropAj lkSRU

, ∀j ∈ P, (6)

where P is the set of commodities for which subnational

statistics exist;

vi. Constraint specifying that the sum of allocated physical

area under an irrigated farming system within the grid

should not exceed the area equipped for irrigation in the

grid:

∑

j∈Q
AdjCropAjIkSRU

× sij I ≤ AdjIrrAreai,

∀i ∈ kSRU, (7)

where Q is the set of commodities which are fully or

partly irrigated within grid i.

Shares sij l are the probability values between 0 and 1:

sij l =
AllocAij l

AdjCropAj l

, (8)

where AdjCropAj l is the total physical area of a given SRU

for crop j at input level l to be allocated. AllocAij l is the area

allocated to grid i for crop j at input level l.

πij l indicates the decision to produce a particular crop

under a specific production system, which is normally de-

pendent on both biological and economic factors. However,

subsistence farmers mainly grow crops for their own con-

sumption, largely uncoupled from price, market access, or

crop-potential-suitability conditions. Therefore, we first as-

sume that the prior allocation for subsistence physical area

(CropAijS) in grid i by crop j under this circumstance is

simply dependent on rural population density:

CropAijS = AdjCropAjkS ×
AggRurPopi

∑

i∈kAggRurPopi

∀i∀j, (9)

where AdjCropAjkS is the generated physical area for crop

j at the subsistence farming system for the given SRU k, and

AggRurPopi is the rural population density at grid i (see the

detailed description in Sect. 4).

Then for the three remaining farming systems, we assume

that the potential unit revenue of planting a certain crop

(Revij l) would affect farmers’ crop choices:

Revij l =
AdjCropAj lkSRU
∑

iAdjCroplandi

× Pricej × Accessi

× PotYieldij l, (10)

where AdjCroplandi , Pricej , Accessij , and PotYieldij l are

the adjusted cropland area, market price, accessibility pa-

rameter, and potential-yield values for crop j in farming sys-

tem l and grid i (see the detailed description in the following

Sect. 4).

Then we assume that the priors for the remaining three

farming systems are mainly influenced by the estimated rev-

enue, cropland area, and irrigated area.

For an irrigated farming system (I),

CropAij I = AdjIrrAreai ×
Revij I

∑

j Revij I
∀i∀j. (11)

For rainfed–high (H) and/or a rainfed–low (L) farming sys-

tems,

CropAij l =
(

AdjCropLandi − AdjIrrAreai − CropAijS

)

×
Revij l

∑

j Revij l

, l = HL ∀i∀j, (12)

where AdjCropLandi and AdjIrrAreai are the cropland area

and irrigated area at grid i (see the detailed description in the

following Sect. 4).

Finally, the main inputs for the optimization procedure are

converted to shares and written as

πij l =
CropAij l

∑

i∈kSRU
CropAij l

. (13)

The optimization module in SPAM2010 is almost the same

as that in previous versions. We apply the cross-entropy pro-

cess in the General Algebraic Modeling System (GAMS),

which ensures that the optimization procedure iterates un-

til a solution is found. Once the allocation is successful,

meaning that an optimal or locally optimal solution has been

found, the routine immediately returns the allocated physi-

cal area (AllocAij l) by grid i, crop j , and farming system

l, and the program continues with postprocessing automati-

cally (Fig. 2). If the solution is infeasible or nonoptimal, the

program stops, allowing for manual scrutiny, adjustment, and

rerun (see data harmonization in the following section).

3.3 Allocation

Using the results of the optimization, the allocation mod-

ule produce maps of harvested area (AllocHij l), yield

Earth Syst. Sci. Data, 12, 3545–3572, 2020 https://doi.org/10.5194/essd-12-3545-2020
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(AllocYij l), and production quantity (AllocPij l) for each grid

i by crop j and farming system l (Fig. 2). For harvested area,

we convert the allocated physical area (AllocAij l) to allo-

cated harvested area (AllocHij l) by multiplying by cropping

intensity (CropIntensityj lk):

AllocHij l = AllocAij l × CropIntensityj lk. (14)

For yield, we first calculate an average potential yield

(PotYieldj lkSRU ) within an SRU using the allocated harvested

area as weight, then the allocated yield (AllocYij l) is esti-

mated as

AllocYij l =
AdjPotYieldij l × AdjCropYj lkSRU

PotYieldj lkSRU

, (15)

where the average potential yield is calculated as

PotYieldj lkSRU =

∑

i∈SRU

(

AdjPotYieldij l × AllocHij l

)

∑

i∈kSRU
AllocHij l

. (16)

We finally estimate the production quantity (AllocPij l) as

AllocPij l = AllocHij l × AllocYij l . (17)

4 Data preparation for SPAM2010

The largest amount of effort to create a SPAM map is spent

on identifying, collecting, and harmonizing data. For the pro-

duction of SPAM2010, we collect raw data from two major

sources: we first collect nonspatial crop statistics for the data

disaggregation process; we then collect and/or create mul-

tiple spatially explicit constraint maps at a 5 arcmin resolu-

tion from both biophysical and socioeconomic aspects for the

spatial optimization and allocation processes. Afterwards, we

introduce how these multisourced data are harmonized and

how data adjustment is taking place.

4.1 Crop statistics

4.1.1 Crop statistics disaggregated by administrative

units

We start with the administrative units (k) for which we

have been able to obtain crop production statistics (Fig. 2).

We primarily used the FAO’s Global Administrative Unit

Layers (GAUL) at both the national and subnational levels

to relate the tabulated crop statistics to gridded data dur-

ing the allocation process. GAUL contains shapefiles for

three administrative-level units: ADM0 (national level 0),

ADM1 (subnational level 1), and ADM2 (subnational level

2). Shapefiles from the Database of Global Administrative

Areas (GADM) are used for ADM1 and ADM2 in China

since they proved to be easier to match to the statistics.

We collect crop statistics from FAOSTAT, EUROSTAT,

CountrySTAT, ReSAKSS, national statistical offices, min-

istries of agriculture or planning bureaus of individual coun-

tries, household surveys, and a variety of ad hoc reports re-

lated to a particular crop within a particular country (Fig. 2).

SPAM estimates are most dependent on the degree of dis-

aggregation of the underlying national and subnational pro-

duction statistics, so it is important to identify and collect as

many subnational statistics as possible (Joglekar et al., 2019).

Although we prefer to collect crop statistics for ADM1 and

ADM2 and run the model at the ADM1 level for all coun-

tries, crop statistics are unfortunately mostly available at the

ADM0 level, the subnational coverage being less complete.

Therefore, for most countries we run SPAM at an ADM0

level, except for some (geographically) large countries that

are modeled at an ADM1 level. We summarize the subna-

tional data coverage by region in Table 1. We present the

detailed procedure for collecting crop statistics in the Sup-

plement (Sect. S1), which further contains a table listing all

countries that are modeled at an ADM1 level (Table S1) and

a table listing the sources of crop statistics by country and

subnational coverage (Table S2) for all countries.

We collect data in all the ADM1 units in the United States,

Russia, and Canada and at least 80 % of the ADM1 units

for the remaining regions worldwide, while Europe, the Mid-

dle East, Oceania, Russia, and sub-Saharan Africa have data

collected on the full set of crops in below 80 % of their

ADM2 units. This coverage is substantially improved for

SPAM2010 in comparison to that for SPAM2005, which is

only 66.2 % and 43.2 % for ADM1 and ADM2, respectively

(Table 1).

Monfreda et al. (2008) reported that 81 % of the global

harvested-area data in their M3 in the year 2000 came from

subnational sources, but they do not distinguish coverage by

subnational levels 1 and 2. SPAM often has higher levels

of subnational coverage than M3, especially in Africa and

the former states of the Soviet Union. This can be seen in

SPAM2005; e.g., 93.4 % of global data came from ADM1

sources and 54.6 % from ADM2 sources (Wood-Sichra et

al., 2016). In SPAM2010, such coverage rates are further in-

creased to 96.1 % and 68.0 %, respectively (Table 1).

4.1.2 Crop statistics disaggregated by crop types

We simultaneously allocate 42 crops and crop aggregates

(j ) for SPAM2010 (Fig. 2). The crop categories are driven

by the definitions of the FAO’s Statistical Database (FAO-

STAT). Comprised of 33 individual crops (e.g., wheat, rice,

maize, barley, potato, bean, cotton) and nine crop aggregates

(e.g., other cereal, vegetables), the SPAM2010 crop list cov-

ers all crops reported by the FAO, except for explicit fod-

der crops (mostly grasses), which are not modeled. When

multiple FAO crops fall into a single SPAM2010 crop cat-

egory (e.g., vegetables), the FAO’s corresponding area and

production data were summed up, and yields were calculated

as a weighted average. We present the detailed procedure for

aligning the crop types in the Supplement (Sect. S2), which

further contains a full list of crops and their respective FAO

code (Table S3).
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Table 1. Subnational coverage of crop production statistics by region.

Full crop coverage National harvested-area coverage

Region Countries ADM1 ADM2 ADM1 ADM2 Harvested area ADM1 ADM2

SPAM2010 (Count) (Percent) (1000 ha) (Percent)

Asia 25 477 9513 90.9 86.4 535 759 99.0 84.3

Canada 1 13 202 100.0 81.3 25 841 100.0 85.0

Europe 47 581 3323 86.0 74.0 169 506 91.6 45.3

Central America 42 479 11 721 84.7 92.7 146 396 97.5 81.0

Middle East 14 167 949 81.1 53.6 23 220 79.2 3.4

Northern Africa 6 132 1685 80.6 85.1 21 345 84.0 58.2

Oceania 19 68 789 85.5 48.8 26 379 97.3 1.5

Russia 1 91 91 100.0 0.0 52 079 100.0 100.0

Sub-Saharan Africa 50 687 3928 79.0 68.6 215 896 91.5 30.9

United States 1 51 3106 100.0 87.0 98 991 99.8 94.0

Total 206 2746 35 307 85.1 85.2 1 315 412 96.1 68.0

SPAM2005 Total 201 2799 33 425 66.2 43.2 1 239 026 93.4 54.6

Source: assembled by authors. Note: full crop coverage refers to the percentage of crops at the administrative level with positive values or 0 in relation to all possible crops. Percent
of national harvested area covered by ADM1 or ADM2 is the share of national area harvested reported by ADM1 or ADM2 units. In Russia we had no data for ADM2 units. The
last row presents an overview of data coverage applied for SPAM2005 as a comparison.

We collect statistics on harvested area (H), production (P),

and yield (Y; CropHPY) by each crop j in each administra-

tive unit k for data disaggregation (Fig. 2). We prepare data

for the model based on the 2009–2011 average of the crop

production statistics (AvgCropHPYjk). If data are missing

from this time period, we use the average from the avail-

able data spanning the closest years between 2005 and 2015.

We make corrections for discrepancies in statistical report-

ing units, crop names, and units of measurement during the

initial cleaning phase of the data. For example, we adjust

all national and subnational statistics (AdjCropHPYjk) us-

ing the national 2009–2011 average from FAO. In order to

improve the comparability of the crop production statistics

across countries, we explicitly distinguish between crops not

grown in an area (coded as 0) and crop data that are not avail-

able for an area (coded as a missing value). Despite the possi-

ble uncertainties in FAO data, it has been chosen as the base-

line in the adjustment of country statistics mainly because

(1) FAO data are the most widely acknowledged global agri-

cultural statistics and are hence the most appropriate source

for the purpose, and (2) SPAM products have been used

by many global models such as IMPACT from the Interna-

tional Food Policy Research Institute (IFPRI; https://www.

ifpri.org/project/ifpri-impact-model, last access: 11 Decem-

ber 2020) and GLOBIOM from the International Institute

for Applied Systems Analysis; https://iiasa.ac.at/web/home/

research/GLOBIOM/GLOBIOM.html, last access: 11 De-

cember 2020). These models use FAO country data for cross-

country comparisons, and they need our maps to be con-

sistent with FAO data. In fact, the idea of conceptualizing

SPAM is to spatially allocate statistics from administrative

units to spatial grids, and the maps could be easily adjusted

to any other country data. We present the detailed procedure

for adjusting the crop statistics in the Supplement (Sect. S3).

4.1.3 Crop statistics disaggregated by farming systems

We elaborated the disaggregation module for obtaining the

farming system shares by crop j and administrative unit k

(Percentj lk) in Sect. 3.1. In some countries there are statis-

tics, in others experts may give their opinions, or assumptions

are made as to how some crops are grown in a similar way

as other crops. Supplementing Sect. 3.1, we present more

details on the procedure for obtaining the farming system

shares in the Supplement (Sect. S4), which further contains a

table listing the sources of subnational farming systems data

(Table S4) and a table listing the farming system shares by

crop groups and selected countries (Table S5). For example,

shares of the irrigated farming system were taken directly for

country statistics like Brazil, China, and the United States

at ADM1. For some countries these figures were found in

MIRCA, and yet for the rest of the countries, AQUASTAT

provides information on irrigated areas per crop at the na-

tional level. We are able to source data on farming system

shares at the ADM1 level for limited large countries (Ta-

ble S4). Based on this list we showcase the shares of pro-

duction under irrigated and rainfed systems for selected crop

groups and countries (Table S5). We choose Brazil, China,

Ethiopia, France, India, Indonesia, Nigeria, Turkey, and the

United States because they vary in agroecology, region, in-

come level, and geographical size. For cereal crops, the three

Asian countries (China, India, and Indonesia) have the high-

est shares of irrigated area, whereas the two sub-Saharan

countries (Ethiopia and Nigeria) have the lowest shares of ir-

rigated area. For root, tuber, and pulse production, the United
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States and both European countries have the highest shares of

irrigated areas, while the sub-Saharan countries again have

less than 1 % each. Aggregating across all crops, the three

Asian countries rank highest in terms of irrigated area shares,

while the two sub-Saharan countries rank lowest.

We disaggregate the adjusted statistics on harvested area

and yield (AdjCropHPYjk) for each of the four farm-

ing systems (Fig. 2). Harvested area by farming system

l (AdjCropHj lk) is directly calculated by multiplying the

farming system shares (Percentj lk), while the yields by farm-

ing system l (AdjCropYj lk) are more complicated to calcu-

late. Here we consider not only the farming system shares

but also the yield conversion factors (determined by expert

judgment) to distinguish the yield variations for irrigated

versus rainfed systems and rainfed–high versus rainfed–low

systems. We present the detailed procedure for disaggregat-

ing the crop statistics by farming systems in the Supplement

(Sect. S5), which further contains a list of the yield conver-

sion factors, i.e., both the factor of crop yield under irrigated

versus crop yield under rainfed (with an “I”) and that of yield

under rainfed high-input versus yield under rainfed low-input

(with an “R”), for selected crops and countries (Table S6).

4.1.4 Physical area

We create a new variable – physical area (AdjCropA, i.e.,

the area footprint of the crop irrespective of the number of

times per year the same area was planted and harvested) – for

the model, recognizing that crop production may take place

over several seasons within a year. SPAM does not have a

direct mechanism for modeling sequential or intercropping

processes, and thus we use harvested area and cropping in-

tensity (CropIntensity) per crop as a proxy for these pro-

cesses:

AdjCropAj lk =
AdjCropHj lk

CropIntensityj lk

, (18)

where AdjCropAj lk indicates the generated physical area by

crop j , farming system l, and administrative unit k.

Implementing the crop allocation calculations by farming

system enables more flexibility when accounting for vari-

ation in these cropping intensity practices. However, such

data are still scarce. Only some country statistics have such

figures, e.g., Bangladesh and India; thus we rely primarily

on expert judgment to seek information on the number of

cropping seasons by crop, farming system, and country. We

present the detailed procedure for generating physical area

in the Supplement (Sect. S6), which further contains a table

listing CropIntensityj lk by crop groups and selected coun-

tries (Table S7).

4.2 Spatial constraints

4.2.1 Cropland extent

We apply an already-classified land cover image – where

cropland has been identified (CropLand) – to determine the

places where production statistics can be allocated. Com-

paring to SPAM2000 and SPAM 2005, SPAM2010 updates

not only the statistics but also the cropland distribution: it

uses the global cropland synergy map with a spatial resolu-

tion of 500 m circa 2010, jointly produced by CAAS (Chi-

nese Academy of Agriculture Sciences) and IFPRI (Fig. 1).

The CAAS–IFPRI cropland dataset fuses national and subna-

tional statistics with multiple existing global land cover maps

including GlobeLand30, CCI-LC, GlobCover 2009, MODIS

C5, and Unified Cropland. It reports three major parameters

by grid around the year 2010: the median and maximum

cropland percentage (MedCropLandi and MaxCropLandi)

and a confidence score between 0 and 1 in the cropland

estimation (ProbCropLandi). Although the synergy dataset

does not delineate the geography of specific crops, it desig-

nates the total cropland extent with a higher accuracy than

the input datasets and tries to be consistent with admin-

istrative cropland statistics. The detailed description of the

CAAS–IFPRI cropland dataset is submitted as a parallel pa-

per (see Lu et al., 2020). Before using the cropland extent

in SPAM2010, we aggregate the cropland synergy map from

500 m grid cells to 5 arcmin grid cells for the three major

parameters. We present the cropland data preparation in the

Supplement (Sect. S7), which further contains the resam-

pled maps on median cropland (AggMedCropLandi), max-

imum cropland (AggMaxCropLandi), and cropland confi-

dence (AggProbCropLandi ; Fig. S1).

4.2.2 Crop potential suitability

We estimate the crop suitable area (SuitArea) from

GAEZv3.0 to consider the spatially varied potential suitabil-

ity for different crops in terms of different thermal, moisture,

and soil requirements as an allocating parameter. GAEZv3.0

produces a 5 arcmin gridded suitability index for 49 ma-

jor crops, four input levels (i.e., high, intermediate, low, or

mixed), and two main water regimes (i.e., irrigated or rain-

fed). The major crops surveyed by GAEZ include most of

the SPAM2010 crops; those not included are assigned values

from similar GAEZ crops. We present the detailed procedure

for estimating the suitable area (SuitAreaij l) for grid i, crop

j , and input l in the Supplement (Sect. S8), which further

contains a table illustrating the concordance between GAEZ

crops and SPAM2010 crops (Table S8) as well as maps of

suitable areas for maize irrigated rainfed–high and rainfed–

low farming systems (Fig. S2).
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4.2.3 Irrigated area

We adopt the irrigated area (IrrArea) from the Global Map

of Irrigation Areas (GMIA) to consider the share of irrigated

area within a grid as an allocation parameter. GMIAv5.0 is

the only irrigated area dataset with global coverage, which

estimates the amount of area equipped for irrigation at a

5 arcmin resolution for the period around 2005 (Siebert et

al., 2013). GIMAv5.0 does not include information on the

functionality or quality of irrigation equipment and makes

no distinctions between different types of irrigation, which

may introduce errors and inconsistencies into the allocation.

We present a map of area equipped for irrigation at the grid

level (IrrAreai) in Fig. S3 in the Supplement (Sect. S9).

4.2.4 Protected area

We select the protected area (Protect) from the World

Database on Protected Areas (WDPA), released by the In-

ternational Union for Conservation of Nature (Deguignet et

al., 2014), as an allocation parameter to indicate the loca-

tions where crop production is least likely to take place. No-

tionally, crop production does not occur within protected ar-

eas (such as national parks, wilderness areas, and nature re-

serves), but in reality it does. During the initial allocation

process SPAM allows for crop allocation in protected areas

to allow for this reality, but if the model does not solve, one

option is to increase the area designated as cropland, suitable

land, or irrigated land. That expansion is not allowed into

protected areas. The data are originally in a polygon format.

We convert them to 5 arcmin grids (Protecti) and map them

in Fig. S4 in the Supplement (Sect. S10).

4.2.5 Accessibility

We adopt the population count from the Gridded Popula-

tion of the World (GPWv4.0) as a proxy to consider the

influence of market accessibility (Access) on farmers’ crop

choices (Eq. 10). GPWv4.0 provides a gridded representa-

tion of human populations across the globe at a 30 arcsec

resolution (CIESIN, 2016). For SPAM 2010, we aggregate

the population count grid to a 5 arcmin resolution and recal-

culate the population density. Then we derive rural popula-

tion density (AggRurPopi) based on the assumption that if

there is cropland within the 5 arcmin grids, then the popu-

lation residing within the grids should be rural people. We

do not aim to distinguish rural area from urban area. In-

stead, the variable AggRurPopi is introduced to estimate the

market accessibility and to account for subsistence produc-

tion. Therefore, it does not mean the accessibility of getting

food. As crop-specific revenue is divided by the total revenue

within a pixel (Eqs. 11 and 12), the prior is not affected by

market accessibility if it is not crop-specific. In other words,

crop-specific market accessibility is preferable for the cur-

rent SPAM model. Such accessibility does not exist now. We

create a measure of market accessibility (Accessi) from the

grid-level estimates of rural population by considering the

relationship between AggRurPopi and maximum and mini-

mum rural population densities within a country. Population

in grids with no cropland is not used in further calculation.

We present the detailed procedure for measuring Accessi in

the Supplement (Sect. S11), which further contains a map of

AggRurPopi (Fig. S5) and a table of minimum and maximum

rural population densities in select countries (Table S9).

4.2.6 Crop revenue

We measure the crop potential revenue (Rev) – determined

by market accessibility (Access), crop prices (Price), and

crop potential yield (PotYield) – as an allocation parameter,

which fully considers the influence of farmers’ crop choices.

We adopt the crop-specific prices (Pricej ) from the FAO’s

gross production value. Prices for crop aggregates (e.g., trop-

ical fruit) are calculated as a weighted average from FAO

world totals. It is important to note that these are not spa-

tially specific prices, and they likely misrepresent the local

economic realities and associated cropping choices faced by

farmers. We list the crop prices in Table S10 in the Sup-

plement (Sect. S12). We estimate the crop-specific potential

yield (PotYieldij l) as a composite measure of potential har-

vested yield (PotHarvYieldij l) based on GAEZ. We present

the detailed procedure for estimating PotYieldij l in the Sup-

plement (Sect. S12), which further contains a table listing the

dry-matter yield conversion factors (Table S11). Finally, we

calculate the grid-level potential unit revenue of planting a

certain crop according to Eq. (1).

4.3 Data harmonization and adjustment

4.3.1 Adjusting input data

We list the main input variables for SPAM2010 in Ta-

ble 2. As we collect data from various sources, it might in-

evitably cause information inconsistencies. Therefore, we set

rules to harmonize all these data. At the beginning, we ad-

just all the area-related parameters (e.g., cropland area, ir-

rigated area, and suitable area) to satisfy the constraints at

the administrative-unit level before calculating the priors of

physical area. When the model runs, it might be unable to

find the optimal allocation solution for a particular coun-

try, administrative unit, or crop. Under these circumstances,

we set several options to “force” a solution, including ad-

justing the entropy conditions and adjusting the data harmo-

nization rules. We elaborate on the details for adjusting areas

(Sect. S13), entropy conditions (Sect. S14), and harmoniza-

tion rules (Sect. S15), respectively, in the Supplement.

4.3.2 Adjusting allocation results

The model produces the allocated harvested area (AllocHij l),

the allocated yield (AllocYij l), and the production quantity
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Table 2. The main input variables used in SPAM2010.

Variables Definition Sources

k Administrative-unit levels (k = 0,1,2) GAUL, GADM

j Crop type (Total = 42) FAOSTAT

l Farming system (l = I, H, L, S) FAO reports etc.

CropHPY Statistics on harvested area (H), production (P), and yield (Y) FAOSTAT etc.

AvgCropHPYjk CropHPY averaged to 2009–2011 FAOSTAT etc.

AdjCropHPYjk AvgCropHPYjkaveraged to 2009–2011 and scaled to FAO statistics Developed by authors

Percentj lk Shares of farming systems l by crop j and administrative unit k. Developed by authors

AdjCropHj lk Adjusted harvested area (H) by j , l, and k Developed by authors

AdjCropYj lk Adjusted yield (Y) by j , l, and k Developed by authors

AdjCropAj lk Physical area (A) by j , l, and k; AdjCropHj lk divided by CropIntensityj lk Developed by authors

CropIntensityj lk Harvesting frequency per year per unit cropland by j , l, and k Expert judgments etc.

i 5 arcmin grid cell Developed by authors

AggMedCropLandi Median cropland in each grid i CAAS–IFPRI cropland

AggMaxCropLandi Maximum cropland in each grid i CAAS–IFPRI cropland

AggProbCropLandi Probability that estimated cropland amount is correct in each grid i CAAS–IFPRI cropland

AdjCropLandi Total cropland in each grid i, after adjustments Developed by authors

SuitAreaij l Total suitable area in each grid i by crop j and farming system l GAEZv3.0

AdjSuitAreaij l Total suitable area in each grid i by crop j and farming system l, after adjustments Developed by authors

IrrAreai Area equipped for irrigation in each grid i GMIAv5.0

AdjIrrAreai Total irrigated area in each grid i by crop j and farming system l, after adjustments Developed by authors

Protecti Indicator of protected area in each grid i WDPA

Pricej Prices for j calculated as a weighted average from world totals FAO

AggRurPopi Population density in each grid i GPWv4.0

Accessi Market accessibility in each grid i Developed by authors

PotHarvYieldij l Potential harvested yield from GAEZ in grid i by crop j and farming system l GAEZv3.0

PotYieldij l Potential yield calculated from PotHarvYieldij l in grid i by crop j and farming system l Developed by authors

Revij l Potential revenue in each grid i by crop j and farming system l Developed by authors

CropAij l Prior allocation for physical area in each grid i by crop j and farming system l Developed by authors

πij l Informed prior of physical area by i, j , and l, calculated from CropAij l Developed by authors

sij l Allocated shares of physical area in each grid i by crop j and farming system l Developed by authors

AllocAij l Allocated physical area in each grid i by crop j and farming system l Developed by authors

Source: developed by authors.

(AllocPij l) for SPAM2010. As a final step, we need to ad-

just the allocation results in order to keep the grid-level re-

sults consistent with the statistics. In each step of estimation,

we scale the results to the national 2009–2011 FAO average

(AvgCropHPYjk0) by crop j and country k0 to even out po-

tential inaccuracies introduced by the allocation adjustments.

This means all the allocated results in this subsection could

be adjusted (if necessary) before being applied in the next

phase.

We first scale the allocated harvested area (AllocHij l) to

the national FAO average to even out potential inaccuracies

introduced by the allocation adjustments:

AdjAllocHij l =
AllocHij l

∑

i∈k0

∑

lAllocHij l

× AvgFAOCropHjk0
. (19)

Total harvested area of each crop in the grid was calculated

by summing estimates across the four farming systems:

djAllocHij =
∑

l
AdjAllocHij l ∀l. (20)

For yield, we begin with the potential harvested yields

(PotHarvYieldij l) developed earlier (see Sect. S12 in the

Supplement). Missing values were filled in sequentially us-

ing the following values in order of availability.

i. Potential yield from potential-suitability surfaces:

AdjPotYieldij l = PotHarvYieldij l; (21)

ii. Average potential yield in SRU:

AdjPotYieldij l =
∑

i∈kSRU

(

PotHarvYieldij l × AdjSuitAreaij l

)

∑

i∈kSRU
AdjSuitAreaij l

; (22)

iii. Subnational yield by crop j , input l, and ADM2 unit k2:

AdjPotYieldij l = AdjCropYj lk2
; (23)

iv. Subnational yield by crop j , input l, and ADM1 unit k1:

AdjPotYieldij l = AdjCropYj lk1
; (24)
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v. National yield by crop j , input l, and ADM0 unit k0:

AdjPotYieldij l = AdjCropYj lk0
. (25)

Then we modify the allocated yield (AllocYij l) according

to the minimum and maximum yields in the administrative

unit:

ModAllocYij l = MinYieldj lkSRU if AllocYij l < MinYieldj lkSRU

ModAllocYij l = MaxYieldj lkSRU if AllocYij l > MaxYieldj lkSRU

ModAllocYij l = AllocYij l if MinYieldj lkSRU ≤ AllocYij l

≤ MaxYieldj lkSRU .

(26)

For production quantity, we scale the AllocPij l to the national

FAO average:

AdjAllocPij l =
AllocPij l

∑

i∈k0

∑

l

AllocPij l

× AvgCropPjk0
. (27)

Then we calculate the total production in the grid by sum-

ming overall production levels:

AdjAllocPij =
∑

l
AdjAllocPij l, ∀l. (28)

Finally, we recalculate the allocated yield from the allocated

harvested area and allocated production to effectively scale

yields to the national FAO average:

AdjAllocYij l =
AdjAllocPij l

AdjAllocHij l

. (29)

To simplify, the grid-cell yield is calculated from the reported

yield at the statistical reporting unit, the allocated area from

model results, and the potential yield (at grid-cell level) from

GAEZ (Global Agroecological Zone). These are illustrated

in Eqs. (15) and (16): the spatial variation in yield within

a statistical reporting unit follows the same spatial variation

in the potential yield of that crop. In other words, the more

suitable (higher potential yield) cells would have a relatively

higher yield while the average yield of all the grid cells would

be equal to the statistically reported yield of the administra-

tive unit.

5 Results

In this section, we briefly showcase some of the main

SPAM2010 results, which mainly focus on the staple crops,

to illustrate how SPAM2010 has been produced.

5.1 Disaggregated crop statistics

Disaggregation of crop statistics is the first step for running

the SPAM model. Table 3 summarizes the disaggregated rice

harvested area and yield (area-weighted) for global rice pro-

duction by four farming systems in SPAM2010. At the global

level, the world has harvested about 160 × 106 ha of rice

around 2010. The majority of rice production area is irri-

gated, i.e., about 98 × 106ha, which accounts for 61.2 % of

the total rice harvested area. This share is followed by the

high-input rainfed farming system (17.3 %, approximately

27 million ha), subsistence farming system (16.0 %, approxi-

mately 26 million ha), and low-input rainfed farming system

(5.5 %, approximately 9 million ha). The global-average rice

yield is 4374 kg/ha, which stands at the average yield be-

tween the irrigated farming system (5528 kg/ha) and high-

input rainfed farming system (3663 kg/ha) and is much

higher than the average yield of low-input rainfed farming

system (1810 kg/ha) and the average yield of subsistence

farming system (1604 kg/ha). At the regional level, Asia

(South Asia, South East Asia, East Asia together) is the

largest rice-producing region, which has harvested approx-

imately 142 million ha of rice around 2010. The majority of

Asian rice production area is also irrigated, and the share, i.e.,

63.7 %, is close to the global share of irrigated rice farming

system. South Asia has more rice area harvested (approxi-

mately 60 million ha) than South East Asia (approximately

49 million ha) and East Asia (approximately 33 million ha).

However, the average rice yield in South Asia (3553 kg/ha)

is lower than South East Asia (4125 kg/ha) and East Asia

(6566 kg/ha). Consequently, the total rice production in these

regions is very close to each other. Rice production in North

America is completely irrigated, and the average yield is rel-

atively high in this region. Subsistence rice production is

mainly in sub-Saharan Africa (SSA) and South Asia, and

the rice yield under subsistence conditions is also the low-

est among the four farming systems.

5.2 Allocated harvested area and yield

After applying the optimization model in GAMS, the disag-

gregated crop statistics are spatially allocated to produce the

SPAM maps. Figures 3 and 4 present the maps of harvested

area and yield (after adjustment) for maize, respectively. For

all farming systems, as shown in Fig. 3e, maize area is highly

concentrated in northern China and North America. How-

ever, maize production in North America is mainly rainfed

with high input, while in China, the rainfed farming system

is mainly located in the northeastern part (Fig. 3e), and the

irrigated farming system is mainly found in the north-central

part (Fig. 3a). The rainfed low-input farming system (Fig. 3c)

and subsistence farming system (Fig. 3d) for maize produc-

tion are mainly located in South America and SSA, while

the rainfed high-input maize farming system is also widely

distributed outside China and northern America, including

Central America, Europe, and other regions (Fig. 3b). As

shown in Fig. 4e, the average maize yield is very high in

North America and Europe and is relatively high in South

America and Asia.
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Table 3. Regional values for area and yield of rice from SPAM2010. Unit: area (1000 ha); yield (kg/ha).

Region Irrigated Rainfed–high Rainfed–low Subsistence Total

Area Yield Area Yield Area Yield Area Yield Area Yield

North America 1259 7779 – – – – – – 1259 7779

Central America 624 4408 147 2582 150 2228 49 2492 969 3698

South America 2126 7510 536 3320 1261 2536 995 2691 4917 4803

Europe 540 6352 146 3315 122 7531 6 5340 814 5977

Middle East & North Africa 1034 6848 – – 114 4340 – – 1148 6599

SSA 2172 3844 415 3542 2513 1653 4413 1412 9514 2124

South Asia 32 156 4572 11 122 3536 3755 1405 12 746 1628 59 779 3553

South East Asia 25 620 5170 14 954 3774 850 1745 7500 1522 48 924 4125

East Asia 32 609 6610 561 4037 2 626 – – 33 173 6566

Russia 195 5173 – – – – – – 195 5173

Oceania 34 9620 – – 5 3242 0 1960 39 8665

World 98 369 5528 27 881 3663 8773 1810 25 709 1 604 160 732 4374

Source: developed from our own calculations.

Figure 3. Harvested-area maps for maize in irrigated (a), rainfed–high (b), rainfed–low (c), subsistence (d), and all (e) farming systems.
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Figure 4. Yield maps for maize in irrigated (a), rainfed–high (b), rainfed–low (c), subsistence (d), and all (e) farming systems.

6 Value of production

Finally, we use the average 2009–2010 base year price (in-

ternational dollar, I$) to compute value of production in each

grid and for each crop and farming system. Table 4 shows

value of production for all crops, food and nonfood crops in

all regions, and the percentage of each category value in re-

lation to the total value. Asia (South Asia, South East Asia,

East Asia together) accounts for nearly half (49.2 %) of the

total value of crop production in 2010, while the Middle East

and North Africa, Central America, Russia, and Oceania ac-

count for less than 5 % each. Globally, food crops account

for 86.2 % of the total crop production value, with minor re-

gional differences (the classification of crops into food and

nonfood is detailed in Table S3).

7 Data availability

The SPAM2010 provides four essential output indicators, in-

cluding the following.

a. PHYSICAL AREA: it is measured in hectares and rep-

resents the actual area where a crop is grown, not count-

ing how often production was harvested from it. Phys-

ical area is calculated for each production system and

crop, and the sum of all physical areas of the four pro-

duction systems constitutes the total physical area for

that crop. The sum of the physical areas of all crops in

a pixel may not be larger than the pixel size.

b. HARVESTED AREA: also measured in hectares, har-

vested area is at least as large as physical area but some-

times more since it also accounts for multiple harvests

of a crop on the same plot. Like for physical area, the
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Table 4. Value of production for all crops as well as food and nonfood crops in various regions.

Region All crops Food crops Nonfood crops

(million I$) (million I$) (percent) (million I$) (percent)

North America 139 173 125 655 0.90 13 518 0.10

Central America 33 174 26 340 0.79 6834 0.21

South America 135 222 99 950 0.74 35 272 0.26

Europe 202 180 165 761 0.82 36 419 0.18

Middle East & North Africa 60 643 51 358 0.85 9285 0.15

SSA 110 406 96 474 0.87 13 931 0.13

South Asia 201 196 171 814 0.85 29 382 0.15

South East Asia 129 189 105 878 0.82 23 311 0.18

East Asia 367 338 344 799 0.94 22 539 0.06

Russia 26 489 22 782 0.86 3707 0.14

Oceania 13 426 11 337 0.84 2089 0.16

World 1 418 435 1 222 147 0.86 196 288 0.14

Source: developed from our own calculations.

harvested area is calculated for each production system,

and the sum of all harvested areas of all production sys-

tems in a pixel amounts to the total harvested area of the

pixel. The sum of all the harvested areas of the crops in

a pixel can be larger than the pixel size.

c. PRODUCTION: for each production system and crop,

production is calculated by multiplying area harvested

by its corresponding yield. It is measured in metric tons.

The total production of a crop includes the production

of all production systems of that crop.

d. YIELD: it is a measure of productivity, the amount of

production per harvested area, and is measured in kilo-

grams per hectare. The total yield of a crop, when con-

sidering all production systems, is not the sum of the

individual yields but the weighted average of the four

yields.

The SPAM2010 can be downloaded from the Har-

vard Dataverse (https://doi.org/10.7910/DVN/PRFF8V; IF-

PRI, 2019), which includes all results of maps, tables,

and figures. Registered users can find more informa-

tion for the SPAM model and the previous versions of

SPAM datasets via the dedicated MapSPAM website (http:

//mapspam.info/, last access: 11 December 2020). The for-

mal SPAM products in 2000 and 2005 are also avail-

able on the MapSPAM website. Their Dataverse addresses

are https://doi.org/10.7910/DVN/A50I2T (SPAM, 2000) and

https://doi.org/10.7910/DVN/DHXBJX (SPAM, 2005). All

these three datasets are in the same place grouped un-

der IFPRI Harvest Choice Dataverse (https://dataverse.

harvard.edu/dataverse/harvestchoice, last access: 11 Decem-

ber 2020).

8 Discussion

8.1 Model uncertainty and validation

The first SPAM product was the regional-level agricultural-

production maps produced for Brazil circa 1994 (You et al.,

2006). Since then the model and products of SPAM have

been continuously improved and updated. Besides the evo-

lution of the method (see Sect. 3), the evaluation of SPAM

model performance is also improving. In one of our early

works, the uncertainty in the model, i.e., the variance ex-

plained by the cross-entropy approach, is evaluated by com-

paring it with the performance of simplified proportional ap-

proaches, which have been used by Monfreda et al. (2008)

for producing the M3 dataset. It was proven that the cross-

entropy approach was more successful in estimating crop

areas than the proportional approaches, no matter the pro-

portion to the total land area, to the cropland area, or to

the amount of (biophysically) suitable land for the produc-

tion of each crop (You et al., 2006). Moreover, many re-

searchers believed that the inclusion of economic factors,

i.e., market, would increase the performance of the crop dis-

aggregation model (see the discussion in You et al., 2014),

though it does not automatically guarantee that model’s out-

puts. This partly explained the considerable discrepancies be-

tween SPAM2000 and M3 (Anderson et al., 2015) and partly

confirmed that using more sophisticated approaches for pro-

duction allocation would reduce uncertainty (Donaldson and

Storeygard, 2016). In one of our recent works, the sensitivity

of the variant of the standard SPAM model output to a few

methodological-data choices had been evaluated. These in-

clude the spatial allocation method, the crop coverage, the

treatment of a “rest-of-crops” aggregate, the incorporation

of a “crop potential suitability” data layer, the inclusion of

rudimentary economic elements, and the administrative-unit

details of the primary source statistics. It showed that the

https://doi.org/10.5194/essd-12-3545-2020 Earth Syst. Sci. Data, 12, 3545–3572, 2020

https://doi.org/10.7910/DVN/PRFF8V
http://mapspam.info/
http://mapspam.info/
https://doi.org/10.7910/DVN/A50I2T
https://doi.org/10.7910/DVN/DHXBJX
https://dataverse.harvard.edu/dataverse/harvestchoice
https://dataverse.harvard.edu/dataverse/harvestchoice


3560 Q. Yu et al.: A cultivated planet in 2010 – Part 2

standard SPAM estimates are unsensitive to the inclusion of

crude economic elements, moderately sensitive to the set of

crops or crop aggregates being modeled, and mostly depen-

dent on the degree of disaggregation of the underlying na-

tional and subnational production statistics (Joglekar et al.,

2019). This implies that the improvements to the method-

ological aspect of SPAM have limited effect on reducing un-

certainty. By contrast, the quality and accuracy of the un-

derlying statistics used to prime the model are particularly

pertinent (Joglekar et al., 2019).

SPAM products are estimates with various uncertainty. In-

accuracy surely exists and varies from region to region and

even from crop to crop. Although there were efforts paid to

the evaluation of model conceptualization and performance,

those previous validations should not be taken for granted

for the latest updates. Therefore, we carried out extensive

validation work to assess the accuracy of the output maps

of SPAM2010. Firstly, we relied on a system through which

we are able to send the crop maps to collaborators and users

alike for comments or assessment. For example, the CGIAR

is a global partnership which unites 15 centers engaged in

agricultural research. Each center has its own mandate crops,

e.g., IRRI (International Rice Research Institute) for rice

and CIMMYT (International Maize and Wheat Improvement

Center) for maize and wheat. We took advantage of their vast

network of field offices and local expertise to help us to val-

idate the SPAM results. Many researchers from these insti-

tutes have been involved in the production of SPAM2010,

which increases the reliability of the results. The Chinese

Academy of Agricultural Sciences (CAAS) undertook the

regional-level validation for SPAM2010 following the ap-

proaches they have applied for the evaluations of previous

SPAM products (Liu et al., 2013; Li et al., 2016; Chen et al.,

2016). Moreover, field-level validating information has ei-

ther been collected by crowdsourcing tools such as Geo-Wiki

(Fritz et al., 2012) and eFarm (Yu et al., 2017a) or through

field trips and workshops on-site or online, where local ex-

perts were asked to confirm or validate the crop production

maps by providing handwritten comments or posting com-

ments online at the our MapSPAM website. Most of these

reports were collected crop by crop and country by country.

An example of the detailed validation process is provided

in the Supplement (see Sect. S16). The complete validation

process could take a great deal of effort and time, but these

users’ feedback is quite important and valuable. We took this

feedback and rerun SPAM model and further released the

updated versions of SPAM. The previous SPAM products

have been updated substantially with the help of those com-

ments. For example, SPAM2000 and SPAM2005 are at ver-

sion 3.07 and version 3.20, respectively. The current product,

i.e., SPAM2010v1.10, was already released after extensive

validations; it is still open and ready to receive more com-

ments. Such an iterative process would enable a continued

update to improve the product quality.

Secondly, we qualitatively evaluated the uncertainty in the

input data. Like any models, the results depend on the input

data and the modeling process. For SPAM, the most impor-

tant input data are the subnational crop data, which have a

large impact on the final product accuracy as mentioned be-

fore. We built our SPAM uncertainty rating mainly on the

availability and confidence of our subnational data. In addi-

tion, we added the parameters and constraints we have to ad-

just to solve the SPAM model. For example, we sometimes

have to abandon some crop-potential-suitability constraints

in order to solve a country. For some countries, we may have

to allow cropland per pixel to increase by 5 % or even 10 %

of the original input to make the model run. In addition, we

collected feedback and comments from users, local experts,

and collaborators as discussed above. They are sporadic but

very useful. We combine all the information together to give

a subjective rating on how confidence we, the SPAM team,

think of our final crop maps (both area and yield) based on

the judgment of the reliability of input data. Figure 5 shows

the country-level uncertainty rating with 5 categories (1 rep-

resents the lowest uncertainty, 5 the highest). The complete

rating list is presented in Sect. S17 in the Supplement. Not

surprisingly, the uncertainty in Africa and South East Asia

is higher than that in countries in Europe and America. Al-

though such a validation process is not vigorous, the result

is convincing, and such a rating is highly demanded and ex-

plicitly requested by users.

Thirdly, we quantitatively evaluated the results by cross-

comparing the results with statistics at another administrative

level that has not been used in running the model. We ran

SPAM with complete statistics (ADM0, ADM1, and ADM2)

and then ran them with only ADM0 and ADM1 statistics to

see how the aggregated results to ADM2 compare to the orig-

inal statistics at ADM2, or at least to the aggregated origi-

nal results at ADM2. The runs were all done at ADM1 and

then combined to give results for the whole country. We then

calculated the coefficient of determination (R2) between the

values allocated from model and obtained from statistics to

assess the model performance. In general, a higher R2 indi-

cates a better performance. This approach has already been

used for evaluating the performance of SPAM2000 (You et

al., 2014). The upper part of Fig. 6 shows the results of

such an approach applied to Brazil in SPAM2000 for its

main food crops, while the bottom part of Fig. 6 shows the

results of the same approach applied to the same country

for the same crops in SPAM2010. The figure clearly indi-

cates that the model performed better in allocating rice than

other crops. Moreover, the performance improved greatly

from SPAM2000 to SPAM2010, especially for soybean and

potato. We further selected a few smaller countries in Asia

and Africa to undertake the same assessment, which are be-

lieved to have a relatively higher uncertainty in terms of in-

put data (Fig. 5). Bangladesh, Benin, Senegal, and Tanza-

nia were selected as they have good statistical data cover-

age in SPAM2010. Figure 7 shows that the R2 for selected
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Figure 5. Subjective uncertainty rating for SPAM2010 input data by individual countries.

crops (i.e., maize, rice, and cotton) ranged between 0.66 and

0.94, suggesting that the overall performance of SPAM2010

is good in these selected countries for those selected crops.

Finally we did regional-level quantitative validations when

third-party independent crop maps were available, given that

it is impossible for us to collect the true spatial distribution

of crops (both area and yield) for the time of 2010 on a

global scale. Among the limited third-party independent spa-

tial crop distribution data, the Cropland Data Layer (CDL;

https://nassgeodata.gmu.edu/CropScape/, last access: 11 De-

cember 2020) is a crop-specific land cover dataset created

for the continental United States using moderate-resolution

satellite imagery and extensive agricultural ground truth,

which has been applied to validate our SPAM2010 product

at the regional scale by correlating the grid-level crop area.

We focus on the three most popular staple crops in the United

States, i.e., maize, wheat, and soybean, and obtain the crop

area maps of 2009, 2000, and 2011 from CDL. We calcu-

late the 2009–2011 average crop areas at a 5 arcmin reso-

lution for CDL according to the scheme of SPAM2010 and

further calculate the coefficient of determination (R2) and

the root mean square error (RMSE) between the grid-level

values derived from the two datasets (Fig. 8). The values

of R2 are between 0.71 and 0.91, and the values of RMSE

are between 231 and 307 ha, indicating a relatively high reli-

ability. In particular, the higher R2 and lower RMSE sug-

gest our maize and soybean maps are more reliable than

the wheat map. There are potentially many factors affecting

the different results if we treat CDL as the truth, for exam-

ple, the different accuracy or availability of input data, suit-

ability layers, and parameters for the area shares and yield

ratios. Another possible reason is that we did not distin-

guish spring wheat and winter wheat in SPAM, which partly

explains why the agreement for wheat is lower than that

for maize and soybean. Moreover, the National Land Cover

Dataset (NLCD) of China mapped paddy field distribution

as a special cropland cover at a 1 × 1 km grid level (http:

//www.resdc.cn/data.aspx?DATAID=99, last access: 11 De-

cember 2020). By assuming paddy fields will be mostly used

for growing rice, we evaluate the rice area map in China

by correlating SPAM2010_rice and NLCD2010_paddy ac-

cording to the same scheme described above. The value of

R2 is 0.49, and the value of RMSE is 1024 ha (Fig. 9). Al-

though this result does not seem as good as the results from

the United States by using CDL, it is fairly acceptable be-

cause NLCD measures land cover rather than land use and

is in a relatively coarse spatial resolution. Moreover, the R2

is substantially increased comparing to its predecessors. For

example, the R2 is assessed as 0.42 for SPAM2005 by using

the same approach according to Liu et al. (2013). In addition,

there are regional-level crop distribution maps produced by

independent efforts on interpreting remotely sensed images.

For example, Zhang et al. (2017) provided annual paddy area

time series from 2000 to 2010 based on satellite remote sens-

https://doi.org/10.5194/essd-12-3545-2020 Earth Syst. Sci. Data, 12, 3545–3572, 2020

https://nassgeodata.gmu.edu/CropScape/
http://www.resdc.cn/data.aspx?DATAID=99
http://www.resdc.cn/data.aspx?DATAID=99


3562 Q. Yu et al.: A cultivated planet in 2010 – Part 2

Figure 6. Comparison between the allocated crop area and statistics crop area at the ADM2 level in Brazil (log–log scale plot; unit: ha). The

upper part is for SPAM2000 and the bottom part is for SPAM2010.

ing for China and India. We compared these remote-sensing-

derived paddy maps with the rice area estimated by SPAM

for the year 2010. The R2 values are 0.36 and 0.34 for China

and India, respectively (Fig. 10). We could expand this quan-

titative evaluation when more third-party independent crop

maps are available. However, it should be noted that errors

might exist in the third-party independent crop maps as well;

hence this quantitative evaluation approach also might result

in uncertainty. Our results show that the uncertainty grad-

ually increases when applying CDL, NLCD, and Zhang et

al. (2017).

8.2 Data comparison

There are a few reports which compare SPAM with M3,

MIRCA, and GAEZ, especially their output maps circa 2000

(Anderson et al., 2015; Donaldson and Storeygard, 2016).

Although it is difficult to make statements about which one is

better, there are several features that distinguish SPAM prod-

ucts from the M3, MIRCA, and GAEZ data. First, the es-

timates from SPAM can be customized using user-provided

data for one or more of the input variables and return re-

sults to the provider in a short turnaround period. Second,

although SPAM runs mainly at a 5 arcmin resolution, it can

be run at higher resolutions provided that at least some of

the rasterized inputs also have higher-resolution data to sup-

port such an exercise. Third, considerable effort is made to

compile subnational crop statistics at administrative level 2

(e.g., district or county) for all possible countries. Fourth, if

there is knowledge of crop existence in any area for any crop,

this can be incorporated into the model to make a more accu-

rate crop allocation. Moreover, SPAM does not have a large

coverage of crops (compared to M3) and does not include

detailed biophysical parameters (compared to MIRCA and

GAEZ); instead it focuses more on agricultural production

by providing data on crop harvested area and yield disaggre-

gated by farming systems. Finally, SPAM results are readily

available on the internet in several formats (also tabular) for

all interested users. We are currently building a SPAM model

in the cloud, where we let any user supply his or her own in-

put data and run SPAM on his or her own under the GitHub

platform. This SPAM in the cloud will be published and com-

municated to the SPAM user community once it is ready.

Anderson et al. (2015) conclude that substantial discrepan-

cies exist across these four global spatially explicit crop pro-

duction datasets circa 2000, and the disagreement between

models serves as a reminder of the ongoing challenges to

the creation of spatially explicit estimates of harvested area

and yield based on crop statistics. However, it is more chal-

lenging to assess the disaggregated farming system results

such as irrigated rice vs. rainfed rice and subsistence maize

vs. high-input rainfed rice, which have not been systemati-

cally explored in Anderson et al. (2015). We collected ad-

ditional global datasets which are relevant to agricultural-

production mapping, e.g., the average irrigated and rainfed

yields (ca. 2000) from Siebert and Döll (2010) and the har-

vested area and yield for four crops (ca. 2005) from http:

//www.earthstat.org/ (last access: 11 December 2020). We

compared these datasets with our SPAM products for the

corresponding period. We found that the results are differed

from crop to crop and from farming system to farming sys-

tem. In general, the yield estimates on maize and wheat are

better than the other crops, and the irrigated yields are better

than the rainfed yields (Figs. 11 and 12).
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Figure 7. Comparison between the allocated crop area and statistics crop area at the ADM2 level in Bangladesh, Benin, Senegal, and

Tanzania for maize, rice, and cotton (log–log scale plot; unit: ha).

However, as M3, MIRCA, and GAEZ do not provide sub-

sequent global spatially explicit crop production ca. 2000,

it is impossible to compare the current SPAM2010 with

other data products. In order to illustrate the continuity of

SPAM products, we present a grid-by-grid comparison be-

tween SPAM2010 and SPAM2005. Figure 13 shows that

rice production in 2010 increased notably in eastern Eu-

rope, Africa, northeastern China, northwestern India, south-

ern Australia, etc., while it decreased notably in central Asia

and South America. Maize production displays an overall

increase across the globe between 2005 and 2010, except

for some places in central Asia, which have shown a de-
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Figure 8. Grid-by-grid comparison of crop area for maize (a), wheat (b), and soybean (c) between SPAM2010 and CDL2010 in the conti-

nental US.

Figure 9. Grid-by-grid comparison between SPAM2010 rice area

and NLCD2010 paddy field area in China.

creasing trend. It is also noticeable that maize production

in the US and Europe has kept relatively stable. This re-

sult is accordant with the “maize boom” which had taken

place around the globe (Herrmann, 2013), especially in the

developing countries (Cairns et al., 2013; Ornetsmüller et al.,

2019). It should be noted that the current type of comparison

may not be a perfect comparison (because differences exist

in methodologies and data input applied in SPAM2005 and

SPAM2010) and that the current comparison only shows the

rate of change; thus a higher value does not necessarily indi-

cate a huge change in absolute crop production.

In addition, we compared the changes in crop area between

SPAM products and the abovementioned regional-level inde-

pendent crop maps once they were available in time series.

We calculated the area changes in maize, wheat, and soy-

bean by overlaying CDL2005 and CDL2010 and undertook

the same procedure for SPAM. We then plot these changes

(i.e., 1CDL and 1SPAM) in Fig. 14. Likewise, we compared

the changes in SPAM rice area and the changes in paddy

rice area obtained from Zhang et al. (2017; Fig. 15). Fig-

ures 14 and 15 both show that the coefficient of determina-

tion is extremely low between changes yielded from different

data products, which further reminds us that it is inappropri-

ate to directly compare SPAM products over time, although

we are confident of the spatial accuracy of SPAM products

at each time stage. This is mainly because SPAM requires a

large number of input data, yet the sources of these multiple

data inputs cannot be guaranteed to be the same across differ-

ent time stages. Therefore, such changes reflected by SPAM

products over time not only mix real changes on the ground

but also largely depend on the input data. For example, the

cropland layers (one of the most important data inputs) are

accessed from different sources to make sure the cropland

data and the statistical data are adopted for the same year. We

did not evaluate the continuity of these input data, which is

almost impossible and is beyond the purpose of SPAM. Con-

sequently, it is suggested to use the SPAM products with, at

least, acknowledgement to the corresponding cropland layer,

e.g., Lu et al. (2020) for SPAM2010. Moreover, we do not

recommend users to cross-compare the SPAM products over

time because the differences may have more input data errors

or inaccuracies than detecting the real change on the ground.

8.3 Limitations

As stated previously, the SPAM estimates are dependent on

the extent and veracity of the primary input data like most

models (Joglekar et al., 2019). SPAM2010 requires data on

42 crops in over 200 countries for the production season. Ide-

ally, these data should be collected at an ADM2 level; how-

ever this is not always possible. It is particularly difficult to

a few countries such as Somali and Nigeria, where reliable

data are not available, or different input data just conflict with

each other. For example, only one crop area (i.e. millet) for
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Figure 10. Grid-by-grid comparison between SPAM2010 and Zhang et al. (2017) rice area in China and India.

a district is already larger than the total cropland area, yet

we know there are still five more crops growing in this dis-

trict. In these cases, we have to adjust the conflicting data

using expert judgment to make the model solvable. Since

most cropping statistics are not delineated by farming sys-

tem, estimates of the shares of production under each of the

four systems in question are required. To convert harvested-

area statistics to the physical-area statistics used in the model,

additional data on cropping intensities by crop and farming

systems must be collected. We have made every effort to col-

lect official or published data, and we reply on expert judg-

ments as the last resort when we simply could not find other

sources. For example, no country publishes official statistics

on crop yield ratio (yield conversion factor) between irrigated

vs. rainfed crops. We surveyed published papers, personal

communication with the FAO’s Agriculture to 2030 team,

and gray literature to collect such data. While indeed a se-

ries of expert judgments are used, the scope (e.g., crops and

regions) is quite limited in the overall input data. Once the

data on disaggregate cropping practices are compiled, several

variables at a gridded scale are needed to disaggregate these

cropping statistics into the desired spatial units. These data

include estimates of cropland, irrigated land, suitable area

and yield, population density, and protected areas. The vari-

ety and sheer volume required to run the SPAM (and related)

models raise questions of reliability and comprehensiveness

of estimates across different cropping statistics, geographic

areas, and countries.

In terms of reliability, different sources of information may

lead to inconsistent and even incompatible information. For

example, the data on the estimated cropland extent within

a grid are compiled from several sources, which in turn de-

ploy different methods to generate their estimates. The ex-

tent of cropland within a grid is crucial information for the

allocation model, but the confidence regarding its actual lo-

cation varies regionally (see Lu et al., 2020). Crop statistics

on area harvested and yield may not have been consistently

collected and processed across different countries, so these

major data may be unreliable to begin with. Additionally,

two of the major conversion factors used, farming system

shares and cropping intensities, are often not available for

each crop and farming system within a country. Lacking raw

data on these statistics for a particular crop–country combi-

nation, these data were simply assigned from a similar crop

or country or created using expert judgment. Neither data on

cropping intensities nor farming system shares have been val-

idated for reliability. In terms of comprehensiveness, notably

less subnational coverage exists in developing countries, and

only global-average commodity price data were used to ac-

count for the economic influences on crop production.

The wide range of data sources, coverage, and regional

nuances of crop production have methodological implica-

tions. First, there are possible trade-offs between data con-

sistency and data reliability. For example, there are require-

ments of the model (i.e., cropping intensities and farming

system shares) that are not consistently available within a

country at the administrative level needed. Often, these num-

bers are taken from national-level values, even though they

may not reflect the reality at the administrative level. Sec-

ondly, multi- and intercropping are not handled in a sophisti-

cated manner within SPAM. These types of cropping patterns

are only accounted for using a single cropping intensity value

per crop, farming system, and (possibly) subnational unit.

Finally, the market is important for both subsistence farm-

ers and commercial ones (Losch et al., 2012). In SPAM, we

rely on population density for an indirect representation of

market proximity. We use the rural population to calculate a

prior for the subsistence portion of a crop (i.e., subsistence
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Figure 11. Grid-by-grid comparison between SPAM2000 and Siebert and Doll (2010) in average irrigated and rainfed yields (log–log scale

plot; unit: kg/ha).
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Figure 12. Grid-by-grid comparison between SPAM2005 and EARTHSTAT2005 in crop yields. (log–log scale plot; unit: kg/ha).

among the four farming systems). For subsistence farmers,

by definition they mostly consume what they produce, and so

we indeed assume their production is closely correlated with

their rural population size. For all other farmers, we assume

they produce for the market (local, regional, or even inter-

national markets). The assumption of using rural population

as a proxy for market access was to break down the total

cropland into individual crop areas in the prior revenue cal-

culation. We did not, explicitly or implicitly, assume a rural

population (even subsistence farmers) is entirely fed by local

agriculture. Instead, we applied rural population density as a

proxy for market access, which allows crop-specific tuning

depending on how crops are distributed across the four farm-

ing systems. As this crop-specific revenue is divided by the

total revenue within a pixel in Eqs. (9) and (10), the prior is

not affected by market accessibility if it is not crop-specific.

In other words, crop-specific market accessibility is prefer-

able for the current SPAM model. Yet such accessibility data

at the global scale do not exist now. We would consider in-

cluding a more direct representation of market proximity by

actual travel times to markets or road networks as the global

roads and railways databases are becoming available (Koks

et al., 2019). Several trade-offs were made to ensure that the

complex allocation method was tractable, and it is important

to recognize that these trade-offs likely affect the plausibility

of results.

Last but not least, we admit that it is inappropriate to com-

pare SPAM products directly across time stages (Figs. 13–

15), although we have paid every effort to guarantee the

spatial accuracy of SPAM products at each time stage. It is

largely because the system errors exist across various data

products. In a latest publication, Iizumi and Sakai (2020) re-

leased a time series product of global gridded crop yields.

Although they applied a different approach (i.e., spatial ad-

justment) which is conceptually different from the spatial

disaggregation approach applied in SPAM, it provides great
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Figure 13. Comparison between SPAM2010 and SPAM2005: (a) relative difference in rice production, (b) relative difference in maize

production.

Figure 14. Comparison between SPAM crop area change and CDL crop area change (log–log scale plot; unit: ha).
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Figure 15. Comparison between SPAM rice area change and Zhang et al. (2017) paddy rice change (unit: ha).

implications to further integrate and standardize the SPAM

and the similar gridded earth system datasets for broader ap-

plications. There is an ongoing consortium called The Land

Use Change Knowledge Integration Network (LUCKiNet;

http://www.luckinet.org, last access: 11 December 2020).

The SPAM team is part of this consortium, which aims to

integrate tools and standardize approaches across various on-

going projects that develop gridded information on land use

dynamics for applications in food security, climate change,

biodiversity, and other related issue areas. Not only LUCK-

iNet aims to create crop maps comparable over time, but we

also want to have these maps consistent across land uses such

as cropland, grassland, and forest. The modeling techniques

would consider the spatiotemporal dynamics of different land

use forms in an integrative framework.

8.4 Concluding remarks

In this paper, we present SPAM2010, the latest global grid-

ded agricultural-production dataset in 2010. SPAM2010 uses

an updated cross-entropy approach to make plausible esti-

mates of crop distribution for 42 crops and four farming sys-

tems within disaggregated units, which shows great improve-

ment over its predecessors: SPAM2000 and SPAM2005. For

example, the expanded crop list enables the analysis for not

only staple food crops but also cash crops. A recent study has

analyzed the global beer supply by using SPAM2000 (Xie et

al., 2018). It will be very promising to analyze the global cof-

fee and tea supply by using the latest dataset as these crops

are newly included in SPAM2010 and are in increasing de-

mand with superior economic value but also highly sensitive

to climate change (Bunn et al., 2015).

SPAM2010 substantially extends the SPAM family and

fills the gap for the work of global agricultural-production

mapping by successfully creating a global gridscape at the

confluence between earth and farming systems. In partic-

ular, it helps to better understand land management prac-

tices characterized by concomitant data and knowledge gaps

(e.g., crop selection and element of crop harvest; Erb et al.,

2017). It not only allows analysts and policymakers to bet-

ter target agricultural and rural development policies and in-

vestments, increasing food security and growth with minimal

environmental impacts, but also enables scientists to better

address the global-change challenges within the anthropo-

sphere and beyond by providing the only possibility for up-

dating the global agricultural and environmental assessments

from 2000 (when M3, MIRCA, GAEZ, and SPAM2000

are available) to 2005 and 2010 (when SPAM2005 and

SPAM2010 are available as well). All the SPAM maps and

tabular data in multiple time stages are freely available on

the MapSPAM website (http://mapspam.info/ last access:

11 December 2020), which also acts as a platform for val-

idating and improving the performance of the SPAM maps

by collecting feedback from users.
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