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Abstract: - In this paper a cumulant-based method for identification of gait using accelerometer data is presented. 

Acceleration data of three different walking speeds (slow, normal and fast) for each subject was acquired by the 

accelerometer embedded in cell phone which was attached to the person's hip. Data analysis was based on gait cycles 

that were detected first. Cumulants of order from 1 to 4 with different number of lags were calculated. Feature vectors 

for classification were built using dimension reduction on calculated cumulants by principal component analysis 

(PCA). The classification was accomplished by support vector machines (SVM) with radial basis kernel. According to 

portion of variance covered in the calculated principal components, different lengths of feature vectors were tested. 

Six healthy young subjects participated in the experiment. The average person recognition rate based on gait 

classification was 90.3±3.2%. A similarity measure for discerning different walking types of the same subject was 
also introduced using dimension reduction on accelerometer data by PCA. 

 
Key-Words: - Gait Identification, Gait Recognition, Body Sensor, Accelerometer, Pattern Recognition, High-Order 
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1   Introduction 
 Rapid development of body sensors provides a 

number of innovations in the area of biomedicine. Such 

sensors are interconnected and form a special network, 

called Body Area Network (BAN). BANs collect data 

that can be observed as parameters providing the 

information about the user’s health state. Important 
components of today’s BANs are sensors of 
acceleration, i.e. accelerometers. Accelerometers have 

recently been introduced in more complex and advanced 

technological commercial products, mostly in cell 

phones. Cell phones today represent multipurpose 

devices and can directly be implemented as parts of 

BANs. 

 The purpose of our experiments was to determine 

whether and how accurate it is possible recognize 

identity of the user from the accelerometer data acquired 

by the cell-phone accelerometer. Our purpose was also 

to determine the efficiency of recognition of different 

types of walking with the same user and how similar is 

to the walking of other users. Every person has their 

own style of walking. This means that the identification 

of the observed person can be recognized according to 

their walking style, and, consequently, it is possible to 

determine the similarity of walking styles of several 

observed persons. 

 A sample of gait data is obtained by an 

accelerometer for each person and stored in a database. 

If, at some later time, the walking pattern of the same 

observed person changes, this is probably due to health 

problems. Therefore, our future research aims at 

upgrading the proposed method, so that we will be able 

to recognize personal movement disorders. 

 The problem of the gait analysis can be divided into 

two parts: biometric gait identification and gait 

identification for biomedical purposes. As we will see 

later, the majority of existing works is related to the gait 

identification in terms of biometry. Nevertheless, due to 

analogy of the problem, the gait analysis can be the 

same in both cases. 

 The existent gait identification methods can be 

grouped into three categories: machine vision (MV) 

based, floor sensor (FS) based and wearable sensor 

(WS) based [7]. By MV-based gait recognition, gait is 

captured using a video camera from the distance [10]. 

Video and image processing techniques are then 

employed to extract gait features for recognition 

purposes. By FS-based gait recognition, a set of force 

plates are installed on the floor [8]. Such force sensors 

measure gait related features, when a person walks over 

them. By WS-based gait recognition, including our 

proposed method, the information is collected using 

body worn motion recording sensors, mostly 

accelerometers [1-6]. Sensors can be located at different 

positions on the observed person, such as pocket [1, 6], 

leg [2, 3, 18], waist [4], belt [5], hip, etc. The acquired 

acceleration signal of the gait is then used for gait 
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identification. 

 Feature extraction from detected gait is crucial for 

the efficient gait identification. In the related works, 

many different features were used, such as absolute 

distance [1], correlation [1, 5], histogram similarity [1, 

2, 5], high-order moments [1], cycle length [2], 

estimated walking speed and distance [4], FFT 

coefficients [5], wavelet decomposition [6, 8], DTW 

[18], and other regular features, such as mean, median, 

standard deviation, RMS, maximum and minimum 

value and amplitude [3]. 

 This paper describes gait identification and 

similarity measurement using an accelerometer 

embedded in the cell phone, which was implemented 

attached to the hip. Signal cycles were detected from the 

accelerometer data and cumulants of orders from 1 to 4 

with lags 3, 5, 10, 20 and 30 were calculated for each 

order as features from those cycles. Classification was 

performed using support vector machines. A similarity 

measure of subjects’ gait was devised using principal 

component analysis (PCA). 

 Section 2 describes the experimental protocol. 

Section 3 explains the method for gait identification and 

similarity measurement. Results are presented in 

Section 4, while Section 5 concludes the paper. 

 

 

2   Experiment protocol 
 We prepared experimental protocol that induces 

collection of data containing the information on the 

individual characteristics of a person’s gait. The 
experiment was performed in a 50 m long corridor with 

the surface made of stone plates. Each subject was 

asked to walk across the corridor with their normal 

walking speed. After a few seconds of rest the subject 

walked back to the starting point with same walking 

speed. In the second part of the experiment, the same 

procedure was repeated, but now with a faster walking 

speed, while the last part of the experiment required 

slow walking speed. Thus, we collected 6 segments of 

acceleration signals, two for normal, two for fast and 

two for slow walking. 

 Six healthy male subjects were tested. Their average 

age was 30.2 years with standard deviation 4.02 years. 

The average height of the subjects was 179 cm with 

standard deviation 3.2 cm. 

 

 

3  Gait identification 
Our method for gait identification follows the signal 

processing flow, as shown in Figure 1. Subsection 3.1 

explains acquisition of accelerometer signal and its 

preprocessing. Subsection 3.2 explains the extraction of 

gait cycles from the acquired accelerometer signals. 

Subsection 3.3 describes our implementation of 

cumulants and Subsection 3.4 their role in feature 

extraction from the detected gait cycles. Subsection 3.5 

reveals the classification results.  

 

3.1   Accelerometer signal acquisition 
 Acceleration data was acquired using a cell phone 

with a built-in accelerometer. The accelerometers 

measure accelerations up to three different directions, 

regarding to the type of accelerometer (one-, two- or 

three-axis accelerometer). Acquired multichannel 

signals contain the magnitude and the direction of the 

acceleration. In our experiments, the cell phone Nokia 

N95 was used for data acquisition. This cell phone 

contains 3-axis accelerometer SM LIS302DL which 

measures accelerations between ±2g with a resolution of 
10 bits. Due to power saving function of the cell phone 

the sampling frequency is not constant. Therefore we 

had to interpolate the acquired signal using linear 

interpolation. The obtained average sampling frequency 

was 37 Hz.  

 

 
Fig. 1: Signal processing flow of the method for gait 

identification. 

 

 We paid particular attention to the position of the 

accelerometer. During our experiment the cell phone 

was attached to the right hip of the subject, as shown in 

Figure 2. This position turned out to be the most 

appropriate for the cell phone bearer. We also avoided 

the possibility of noise-generating oscillations or 

movements, for example unwanted bouncing during the 
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walk, if the cell phone were located in the subject’s 
pocket.  

 The most important task was to eliminate the 

influence of the position and orientation of the cell 

phone on the accelerometer data, which could later 

deteriorate the classification accuracy. Because the cell 

phone we used doesn’t have built-in gyroscopes, we had 

to calibrate the accelerometer data to the upright posture 

of each subject. Before carrying out the trial, we asked 

each subject to stand still in the upright position. The 

transformation matrix was calculated based on the 

gravity component of accelerometer’s signal and 
applied to each sample acquired during the subsequent 

walking. This ensures that the small difference in 

orientation and phone position, related to the person’s 
hip, does not influence the accelerometer signal 

significantly. However, it is very important that for each 

person we achieve more or less same placement and 

direction of the cell phone. Different placements of the 

device on the same subject would cause false 

recognition of subject's walk. 

 

 
Fig. 2: Mounting position of cell phone and coordinate 

system of the accelerometer. 

 

 Acquisition results in 3-component vectors of 

samples stored in the matrix 𝐀: 

 𝐀i =  𝐱 𝐲 𝐳 , (1) 

 

where 𝑖 represents an ID of the subject, while 𝐱, 𝒚, and 𝒛 represent vectors of acquired samples for each spatial 

direction. 

 Experimental protocol ends by labelling the 

acquired signals. The acquired raw accelerometer data 

stored in 𝐀 were then automatically segmented to the 

epochs of walking. The ID of the subject and type of 

walking were labelled for each of selected segments.  

 According to the experiment protocol, six 

segmented signal sets were collected per each trial–the 

first two represent accelerations during normal walk, the 

next two fast walk, and the last two slow walk 

accelerations. Each set contains 3 signals, one for each 

spatial direction. 

 

3.2   Gait analysis 
 To determine walking characteristics, a unified 

approach is necessary for all test cases. We decided to 

base our further recognition on individual gait cycles. 

We assume that we are dealing with periodic signals in 

which every gait cycle represents one period. In fact, the 

periodicity of gait signals is not strict, which 

necessitates processing of all gait cycles from each 

signal set. 

 Visual inspection of acceleration signals discovered 

the cycles are clearly visible and the bounds between 

them are seen as the prominent peaks showing the 

vertical and horizontal acceleration. We applied the 

extraction of gait cycles using a modified peak-

detection method based on combined dual-axial signal, 

as described in [9]. Block diagram of the method is 

shown in Figure 3. We neglected the side acceleration 

signals and used only vertical and horizontal 

accelerations. The gravity component was removed 

from the acceleration signals. Afterwards, the 

magnitude calculation followed for the two acceleration 

signals. We squared the signal magnitude in order to 

emphasise  larger values more than smaller values. The 

squared signals were smoothed by 5 samples long 

moving average window. Finally, gait cycles for each 

signal set were extracted by using peak detection on the 

processed signal. For each segment from 𝐀i a vector of 

cycles was extracted: 

 𝐀i  →  𝐂 =  𝐂1
 t … 𝐂n

 t  , (2) 

 

where 𝐂k

 t 
represents a gait cycle, 𝑛 represents the 

number of cycles for each segment, and 𝑡 ∈  1,2,3  
represents walking type. Gait cycles 

 𝐂k

(t)
=  𝐱 𝐲 𝐳 , (3) 

 

comprise 𝐱𝐤𝐲𝐤𝐳𝐤 vectors of samples for the extracted k-

th cycle, one for each spatial direction, 𝐱𝐤, 𝐲𝐤, and 𝐳𝐤. 
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Fig. 3: Block diagram of the method for detection of 

gait cycles. 

 

3.3   Cumulants as features 
 Higher-order statistics are very useful when we are 

dealing with non-Gaussian signals and many real-world 

applications are truly non-Gaussian, what is also true for 

the acceleration signals we are dealing with. If the 

random signal is Gaussian, the first and second order 

statistics are enough to describe its properties. The third 

and fourth-order statistics carry additional information 

about the observed non-Gaussian random signal. 

Actually, using the higher-order statistics we can 

identify processes beyond the random signal. 

 Moments are statistical measures that are used to 

characterize properties of the observed signal. Although 

the moments provide all of the needed information for 

higher-order statistical analysis, it is preferable to work 

with related quantities called cumulants. Several 

properties make cumulants mathematically more 

convenient than moments [11]. Cumulants also measure 

the departure of a random signal from a Gaussian 

random signal. 

 If x(n) is a non-Gaussian random process and x’(n) 

is a Gaussian random process with same mean and 

correlation as x(n), then the first two cumulants of x(n) 

are equal to the mean and covariance of x(n). Cumulants 

of order 3 and 4 are then defined as [12, 13]: 

 𝐶𝑢𝑚𝑥(𝑘) 𝑙1, … , 𝑙𝑘 = 𝑀𝑥(𝑘) 𝑙1 , … , 𝑙𝑘 −𝑀𝑥′(𝑘) 𝑙1 , … , 𝑙𝑘 , (4) 

 

where k represents the order of cumulant. ( )k
xM  stand 

for the k-order moments defined as in the following 

equations [12]: 

 𝑀𝑥(1)
= 𝐸 𝑥 𝑛  = 𝑚𝑒𝑎𝑛𝑥 , (5) 

 𝑀𝑥(2) 𝑙1 = 𝐸 𝑥𝑇 𝑛 𝑥 𝑛 + 𝑙1  = 𝑐𝑜𝑟𝑟𝑥 𝑙1 , (6) 

 𝑀𝑥(3) 𝑙1, 𝑙2 = 𝐸 𝑥𝑇 𝑛 𝑥 𝑛 + 𝑙1 𝑥 𝑛 + 𝑙2  , (7) 

 𝑀𝑥(4) 𝑙1, 𝑙2 , 𝑙3 = 𝐸 𝑥𝑇 𝑛 𝑥 𝑛 + 𝑙1 𝑥 𝑛 +𝑙2 𝑥 𝑛 + 𝑙3  , (8) 

 

where 𝑥 𝑛  represents a random signal, 𝑙𝑖  a lag in the i-

th dimension, and E mathematical expectation 𝐸 𝑥 = 𝑥𝑖𝑝𝑖𝑖 . 

If we look at cumulants as the functions of multiple 

variables, the first-order cumulant (mean) is a constant, 

the second-order cumulant is a function of one variable, 

the third cumulant is a function of two variables and the 

fourth cumulant is a function of three variables. 

 Considering the symmetry of cumulants, we focused 

only on one region from the codomain that carries the 

same information  as the remaining parts of the 

codomain. For the first order cumulant (mean) the 

symmetry property is trivial. For second order cumulant 

(covariance function) we take a half of the vector. The 

symmetry property for third-order cumulants is shown 

in Figure 4. The codomain is split in the six regions of 

symmetry [12]. We chose the first octant (shaded area in 

Figure 4. The symmetry property of fourth-order 

cumulant is an extension of the third-order cumulant 

symmetry property. Instead of triangle shaped area 

(shown shaded in Figure 4) in this case the regions are 

prismoids. 
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Fig. 4: Six regions of symmetry for third-order 

cumulant of a real random signal. 

 

3.4   Feature extraction 
 The crucial step in the proposed method for gait 

identification is to select features that  lead to the best 

classification results. We experimented with cumulants 

of orders from 1 to 4. We calculated cumulant 

coefficients from zero-lag to lag d (for second, third and 

fourth order) for each gait cycle.  

 

 
 

Fig. 5: Vectorization of third-order cumulants using zig-

zag procedure. 

 

 Cumulant coefficients were calculated for each gait 

cycle, in the selected  cumulant region [11, 12, 13]. 

Afterwards,  non-vector regions were vectorized (for 

third- and fourth-order cumulants) using a zig-zag 

procedure, as shown in Figure 5. The first d values were 

taken from each vector as features. We experimented 

with five different values of d as follows: 3, 5, 10, 20 

and 30. The dependence of recognition accuracy versus 

d is explained in Section 4. Thus, for each gait cycle we 

calculated feature vectors in x, y and z directions as 

follows: 

 𝐟k =  Cum𝐱𝐤(𝑟) 𝑙 Cum𝐲𝐤(𝑟) 𝑙 Cum𝐳𝐤(𝑟) 𝑙  T

, 
(9) 

 

where 𝑟 represents the cumulant order and 𝑙 represents 

lags. A feature vector matrix was generated from all 

feature vectors: 

 𝐅 =  𝐟1 … 𝐟m  T, (10) 

 

where 𝑚 is the number of all calculated feature vectors. 

 In order to reduce the length of feature vectors and 

preserve the recognition accuracy, a dimension 

reduction was introduced using principal component 

analysis (PCA) [17]. PCA implemented singular value 

decomposition (SVD) on the matrix F from Eq. (11) 

based on the Karhunen-Loéve transformation: 
 𝐅 = 𝐖𝚺𝐕T , (11) 

 

and the dimension reduction was done using projection 

of F into the reduced space defined by only first j 

singular vectors, called j-th principal components, 𝐖j : 

 𝐅j = 𝐖j
T𝐅 = 𝚺j𝐕j

T , (12) 

 

where 𝐖j
T =  𝐰1 … 𝐰m  .  

 The dimension j was defined implicitly according to 

the chosen number of lags d and the portion of  variance 

of data covered by the calculation of feature vectors 

(cumulants). We experimented with three different 

portions of the covered variance: 90%, 95% and 98%. 

The dimension j and portions for each selected value of 

d are shown in Figure 6.  

 

3.5   Classification 
 Block diagram of the classification task is shown in 

Figure 7. First, the identification of gait is done by 

support vector machine (SVM) [14, 16]. The 

classification is performed by a special tool suite for 

machine learning, called WEKA [15]. In the SVM 

classification we used a Gaussian radial basis kernel 

function: 

 𝐾 𝑢  , 𝑣  = 𝑒− 𝑢   −𝑣   2/ 2𝜎2 . (13) 

 

 The classification results of our experiments are 
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presented in Subsection 4.1. 

 

 
Fig. 6: Sum of the first j feature-vector components 

cover λ portion of data variance for different lags d. 

 

 
Fig. 7: Block diagram of the classification procedure 

using PCA and SVM. 

 

 In the second set of experiments we tried to find out 

how similar are walking patterns of different persons. 

We reused already calculated principal components (Eq. 

(12)). Only first three principal components were taken 

in to account, which can be represented as 3D points. 

Those points can be easily interpreted when they are 

plotted in 3D coordinate system as ellipsoids (results in 

Subsection 4.2).  

 The dimension reduction was done using a 

projection of F into the reduced space defined by only 

first 3 singular vectors, 𝐖3: 

 𝐅3 = 𝐖3
T𝐅 = 𝚺3𝐕3

T , (15) 

 

where 𝐖3
T =  𝐰1 … 𝐰m  .  

 As we mentioned, each feature vector is now 

represented as a point 𝒘𝑘  in a 3D space. In our 

experiments, the points that represent the same class of 

gait appeared grouped together. Therefore, only the 

mean of these points was considered for each class for 

better representation: 

 𝐩𝑖 𝑡 =
1

N𝑖 𝑡  𝐰k

 𝑡 m

k=1

,  
(16) 

 

where N𝑖(𝑡)
 represents the number of points belonging to 

the same class (subject i and walking type t). 

 Distances between the calculated class centroids 𝐩𝑖(𝑡)
 measure the similarity between the subjects’ 

walking patterns. The shorter the distance between two 

centroids, the higher is the similarity and vice versa. 

The standard deviation for each centroid is also 

calculated. Thus, each class is represented as an 

ellipsoid in 3D space. A class centroid defines the 

ellipsoid centre and each principal component standard 

deviation corresponds to one axis of the ellipsoid.  

 Using the first three principal components we cover 

up to 60% of the variance, as seen in Figure 6. 

The results of gait similarity measurement for our 

experiments are presented in Subsection 4.2. 

 

 

4   Results 
 

4.1   Gait identification using SVM 
 Each data set prepared for classification contained 

1641 feature vectors for all subjects and types of 

walking. A 10-fold cross-validation of the recognition 

accuracy was performed by WEKA for classification 

with SVM. The results of the classification for the 

cumulants calculated to lag d=10 are shown in Tables 1 

and 2. The six tested persons are labelled by capital 

letters A, B, C, D, E, and F, whereas their walking types 

are designated by attached lower-case letters n, f, and s 

for normal, fast, and slow, respectively. In Table 1, true 

positive (TP) and false positive (FP) rate of 

classification are presented. In Table 2, the obtained 

results are illustrated by the confusion matrix. The 

recognised classes are ordered vertically in comparison 

to the reference classes in the horizontal direction. The 

overall classification accuracy is 90.8±5.4%. 
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Class label Number of 

collected cycles 

TP Rate FP Rate 

An 98 0.969 0.005 

Af 80 0.963 0.001 

As 114 0.807 0.012 

Bn 97 0.897 0.005 

Bf 87 0.954 0.003 

Bs 107 0.907 0.005 

Cn 85 0.871 0.004 

Cf 75 0.893 0.001 

Cs 97 0.969 0.008 

Dn 89 0.966 0.002 

Df 75 0.933 0.002 

Ds 101 0.802 0.018 

En 81 0.951 0.004 

Ef 82 0.939 0.001 

Es 108 0.926 0.003 

Fn 86 0.930 0.010 

Ff 77 0.857 0.002 

Fs 102 0.853 0.011 

Table 1: Results of the classification using SVM for the 

cumulants calculated to lag d=10. Class labels are 

denoted by capital letters corresponding to subjects’ 
IDs, while low-case letters which correspond to the type 

of walking (n for normal, f for fast, and s for slow 

walking pace). 

 
 An Af As Bn Bf Bs Cn Cf Cs Dn Df Ds En Ef Es Fn Ff Fs 

An 95 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

Af 3 77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

As 0 0 92 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 

Bn 0 0 0 87 0 7 0 0 0 0 0 0 0 0 0 0 0 3 

Bf 0 0 0 3 83 0 0 0 0 0 0 0 0 1 0 0 0 0 

Bs 0 0 0 4 0 97 0 0 0 0 0 3 0 0 0 0 0 3 

Cn 2 0 0 1 0 0 74 1 5 0 0 0 0 0 0 0 0 2 

Cf 0 0 0 0 0 0 6 67 0 0 2 0 0 0 0 0 0 0 

Cs 0 0 0 0 0 0 0 0 94 0 0 2 0 0 0 0 0 1 

Dn 0 0 1 0 0 0 0 0 1 86 0 0 0 0 0 0 0 1 

Df 0 0 0 0 3 0 1 0 0 0 70 0 0 0 0 0 1 0 

Ds 0 0 18 0 0 0 0 0 2 0 0 81 0 0 0 0 0 0 

En 0 0 0 0 0 0 0 0 0 0 0 0 77 0 4 0 0 0 

Ef 0 0 0 0 1 0 0 0 0 0 0 0 4 77 0 0 0 0 

Es 1 0 0 0 0 0 0 0 0 0 0 0 3 0 100 3 0 1 

Fn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 2 4 

Ff 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 6 66 2 

Fs 2 0 0 0 0 1 0 0 3 1 0 1 0 0 0 7 0 87 

 

Table 2: Confusion matrix of the classification using 

SVM for the cumulants calculated to lag d=10: 

recognized classes are depicted vertically, reference 

classes horizontally. 

 

 Tables 3 and 4 summarize the classification results 

according to the different lags d and different number of 

principal components. As we foretold,  cumulants were 

calculated up to  the lags d equal to 3, 5, 10, 20 and 30 

and the portion of covered variance by PCA set at 90%, 

95% and 98%. In Table 3, classification with the first j 

principal components is shown versus lag d. It is 

obvious that the number of principal components grows 

when increasing d or the portion of covered variance. In 

Table 4, the average recognition accuracy and its 

standard deviations for all subjects and their walking 

styles are depicted. The accuracy and its standard 

deviation improve, when increasing d and the portion of 

covered variance, as seen in Table 4. The same results 

are also illustrated in Figure 8. 

 The proposed method yields 90.8% recognition 

accuracy with feature vectors containing only 30 

features. Compared to other related gait recognition 

methods, we can conclude that our method performs 

considerably well. The recognition rates of compared 

methods [1-6] are between 71% and 98%.  

 Our method was additionally tested by control gaits. 

A week after the first experiment we repeated the same 

trials with the same subjects in order to compare their 

gait cycles. Sets of features from the first experiment 

were used as training sets. Newly acquired cycles were 

used as test sets. The overall recognition rate was 

89.7%. This means that the recognition rate, on the 

subject’s identification basis, actually remained the 

same. The recognition rate of walking types for each 

subject was a bit lower, i.e. from 69% to 85%, due to 

inconsistencies in subjects’ walking styles, such as a 

different pacing during the same walking style. We are 

going to tackle this issue in further investigations. 

 
First j 

principal 

components 

Variance covered 

90% 95% 98% 

L
ag

s 
d
 (

n
u

m
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f 

ca
lc

u
la
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d

 c
u

m
u

la
n

t 

co
ef

fi
ci

en
ts

) 

3 

(31)  

10 13 15 

5 

(49) 

15 20 26 

10 

(94) 

21 30 41 

20 

(184) 

32 47 65 

30 

(274) 

43 63 90 

Table 3: The number of the first j principal components 

in classification using SVM versus lag d and the portion 

of covered variance. 
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Average 

accuracy rates 

Variance covered 

90% 95% 98% 

L
ag
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f 

ca
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u
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u
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u
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n

t 

co
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ts

s)
 

3 

(31)  

83.4±10.1% 86.4±9.8% 87.6±11.6%  

5 

(49) 

86.6±5.3%  89.9±6.3%  90.8±5.3%  

10 

(94) 

88.5±6.9%  90.8±5.4%  93.0±4.3%  

20 

(184) 

90.9±4.1%  93.6±3.5%  94.4±3.3%  

30 

(274) 

91.2±4.0%  93.0±3.9%  94.2±3.2%  

Table 4: Average accuracy rate and its standard 

deviations of classification using SVM versus lag d and 

the portion of covered variance. 

 

 
Fig 8: Recognition accuracy and its standard deviations 

versus the number of principal components used for 

classification. 

 

4.1   Gait similarity using PCA 
 As explained, the distances between the gait class 

centroids correspond to the similarity of gait patterns.  A 

similarity study of walking styles of all subjects is 

shown in Table 5. The table presents class centroids and 

their standard deviations of the first three principal 

components (designated by PC1, PC2, and PC3) in 

dependence of the tested subjects and their walking 

styles. The same results are also illustrated by class 

ellipsoids, as depicted in Figures 9 and 10. Both 

presentations confirm that similar walking patterns can 

be recognized when using PCA, and also the individuals 

can be identified referring to their gait patterns. 

Fig. 9: Class ellipsoids generated from the means and standard deviations of the fist 3 principal components for all 

walking types and for normal, fast and slow walking separately. 
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Class centroids of ellipsoids (means of the first 3 principal 

components) 

 A B C D E F 

n PC1 0.0757 0.0548 -0.0585 0.0423 0.0320 0.0119 

PC2 -0.0148 -0.0857 0.0185 -0.0338 0.1430 0.0358 

PC3 -0.0041 0.0085 -0.0351 -0.0292 -0.0134 -0.0087 

f PC1 -0.0485 -0.0787 -0.3229 -0.1490 -0.1907 -0.0792 

PC2 -0.0427 -0.1311 0.0015 -0.0468 0.1501 0.0208 

PC3 0.0508 0.0683 -0.0105 0.0223 0.0800 0.0201 

s PC1 0.1105 0.0839 0.0567 0.1036 0.0764 0.0678 

PC2 -0.0486 -0.0781 0.0176 -0.0356 0.1263 0.0293 

PC3 -0.0118 0.0155 -0.0453 -0.0322 -0.0240 -0.0206 

Axes of ellipsoids (standard deviations of the first 3 principal 

components) 

 A B C D E F 

n PC1 0.0601 0.0376 0.1199 0.0545 0.0411 0.1051 

PC2 0.0421 0.0403 0.0411 0.0300 0.0349 0.0555 

PC3 0.0477 0.0220 0.0431 0.0218 0.0253 0.0421 

f PC1 0.1537 0.1098 0.2284 0.1137 0.2160 0.1751 

PC2 0.0613 0.0308 0.0454 0.0406 0.0761 0.0520 

PC3 0.0641 0.0267 0.0402 0.0290 0.0537 0.0423 

s PC1 0.0131 0.0223 0.0489 0.0157 0.0287 0.0438 

PC2 0.0155 0.0442 0.0450 0.0164 0.0378 0.0334 

PC3 0.0157 0.0182 0.0207 0.0182 0.0258 0.0250 

Table 5: Means and standard deviations of the first 3 

principal components (PC1, PC2, PC3). 

 

 

5   Conclusion 
 A method for gait identification and similarity 

measurement based on cumulants calculated from the 

accelerometer data has been proposed. Classification 

results with 6 test subject show that the identification of 

people is possible with considerably high recognition 

rate. The obtained rate of 90.3±3.2% is high, but needs 

additional validation on a larger number of test subjects. 

We expect that the accuracy rate will slightly fall with a 

bigger number of test subjects. Further investigations 

are possible, for example, to find the correlation 

between subject’s characteristics and their walking 

styles (a possible influence of their height on the 

walking pattern). Our final objective, however, is to 

apply the proposed method to identify walking disorders 

of subjects, which could indicate their health problems. 
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