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Design storms are very useful inmany hydrological and hydraulic practices and are obtained from statistical analysis of precipitation
records. However considering design storms, which are o	en quite unlike the natural rainstorms, may result in designing oversized
or undersized drainage facilities. For these reasons, in this study, a two-parameter double exponential function is proposed to
parameterize historical storm events.�e proposed function has been assessed against the storms selected from 5-year rainfall time
series with a 1-minute resolution,measured by threemeteorological stations located in Calabria, Italy. In particular, a nonlinear least
square optimization has been used to identify parameters. In previous studies, several evaluationmethods to measure the goodness
of 
t have been used with excellent performances. One parameter is related to the centroid of the rain distribution; the second one
is related to high values of the standard deviation of the kurtosis for the selected events. Finally, considering the similarity between
the proposed function and the Gumbel function, the two parameters have been computed with the method of moments; in this
case, the correlation values were lower than those computed with nonlinear least squares optimization but su�ciently accurate for
designing purposes.

1. Introduction

In recent years, climate change and the growing waterproof-
ing land have favoured the occurrence, in urban areas, of
critical situations causing surface �ooding. Floods are the
most dangerous meteorological hazard in the Mediterranean
areas due to both the number of people involved and the
relatively high frequency by which human activities and
goods suer damage and losses [1]. Flooding in urban areas
can occur due to several factors that vary according to the
kind of drainage system used (separate or combined sewers)
and its design characteristics. In addition to these variables,
rainfall plays the main role for �ooding characterization
although this one is characterized by a substantial uncertainty
as much from the spatial point of view as from the temporal
point of view [2]. Also its triggering factors are very complex,
so it represents one of themost di�cult variables to predict [3,
4]. Several studies concluded that the factors of heavy rainfall
generation are various; in particular they are summarized as
(a) high moisture content of the air mass present over the

zone, (b) vertical movement on one or more scales, and (c)
static instability.

Heavy rainfall can be the result of persistent moderate
precipitation or very intense precipitation of short duration.
In this way critical rainfall events are represented by heavy
precipitation that occur in a very short time [5].

�e use of design storms is very popular among hydraulic
engineers. Several techniques to develop design storms have
been studied, including intensity-duration-frequency (IDF)
curve, stochastic models, and pro
les obtained directly from
rainfall records. A critical characteristic of IDF curves is
that intensities are averaged over the speci
ed duration and
do not represent the real distribution of rainfall. Usually,
design storms are developed by statistical analysis of rainfall
records, but, unfortunately, sometimes they are not tested
against long-term rainfall records. In addition, much of the
digitised rainfall data from numerous stations is viewed as
being unreliable, with important events missing and errors in
the digitised data. In an attempt to overcome these problems
and to improve reliability, a double exponential approach
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has been applied to estimate design storm for short duration
(<1 h) rainfalls.

�e aimof this research is to propose a cumulative rainfall
function (CRF) to assess subhourly rainfall distribution to
observed data taken from three sites from the Calabria region
in South Italy. Calabria region has a mean rainfall rate of
about 1170mm/years; several studies have classi
ed Calabria
Storm into four main groups: (a) storms that originate on
the lee of the Alps (including those over the Gulf of Genoa);
(b) storms that develop in the Western Mediterranean (Gulf
of Lyon, Rhone valley, and Iberia); (c) storms that develop
in Northern Africa or enter the Mediterranean from the
Strait of Gibraltar; (d) storms that move over the central
Mediterranean fromBalkans andEasternEurope [10]. Storms
of class (a) are the most frequent ones. �is research work
intends to propose a multiparameter function of double
exponential type applied to observed data from meteoro-
logical stations located in urban watersheds with the aim of
obtaining signi
cant input that helps in design problems of
urban drainage systems; however, for urban basins, subhourly
events were chosen. Several studies have been performed
using stochastic models to simulate observed data [2, 11–
16]. To separate a storm event from the other an appropriate
minimum interevent time (MIT) was chosen. Almost all of
the mathematical models used in the literature to describe
or simulate hydrological processes, also stochastic, require
techniques that allow the performance evaluation. In general,
to evaluate the performance of a model, it needs to compare
the calculated values and the corresponding measured or
referencemethods.�e description of the various indices and
the discussion on their suitability have been widely discussed
in the literature [17–24]. In addition, several studies identify
some common points to evaluate a mathematical model.
In particular (1) a standard procedure for mathematical
evaluation of a model is needed; (2) performance evaluation
of a model should include at least one absolute value error
indicator (in the variable units), one dimensionless index (or
indicator of the relative error) for quantifying the goodness of

t, and a graphical representation of the relationship between
model estimates and observations [21].

2. Materials and Methods

2.1. Data Collection and Analysis. Precipitation data, consist-
ing of rainfall depth recorded with minute frequency, were
collected from the Functional Meteorological Hydrographic
and Mareographic Center database of Calabria region, South
Italy. �is institution has the principle role of measuring and
collecting the information associated with the Earth’s climate
of the whole region. �ree stations equipped with tipping-
bucket rain gauges were selected for the data collection. �e
data, which covered a period of 5 years, was examined and
missing records were resampled. In Figure 1 are summarized
the geographical characteristics of the three stations chosen
for this work.

To separate a storm event from the other, Minimum
Interevent Time criterion was chosen. Minimum Interevent
Time is de
ned as the time between the end of a storm event
and the beginning of the next. O	en the choice of a particular
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Figure 1: Geographical individuation of rain stations.

value of MIT was related to physical parameters changes that
competed in the de
nition of independent rainfall events.
�is value therefore has never been unique but closely related
to the type of analysis or observation of a particular natural
phenomenon. For example, Bracken et al. [9] usedMIT = 12 h
in order that the ground could dry between runo events,
reducing the impact of antecedent soil moisture on runo
event. In Table 1 is summarized the typical range of rain MIT
in the literature.

In urban areas, rains that deserve special attention are
those of short duration such as subhourly. In this way critical
rainfall events are represented by heavy precipitation that
occur in a very short time [5]. As discussed by Carbone et
al. [25] an appropriate value of MIT to identify independent
rainfall events in urban catchment scale for subhourly rainfall
events is 15 minutes. Using this value of MIT and considering
a volume threshold of 8mm, a number of rainfall events
were selected from each location. Rainfall events separated by
less than 15min were merged and considered as single event.
Obviously, the choice of the volume threshold can condition
both the number of events resulting from the chosenMIT and
the events’ characteristics.

�e statistical analysis is crucial for the mathematical
characterization of rainfall events. In particular, skewness,
kurtosis, and variation are among the most important shape
parameters of a statistical distribution. Skewness, kurtosis,
and variation are computed as follows:

Skew = ∑��=1 (�� − �)3(� − 1) �3 ,
Kurt = ∑��=1 (�� − �)4(� − 1) �4 ,

variation = ��,
(1)

where �� represents the �th data points, � is the mean, � is
the number of data points, and � is the standard deviation of
data.
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Table 1: Review of typical MIT value present in the literature.

MIT Scope of the work Reference

3 h Forest interception processes Lloyd [6]

0.25 days (6 h) Dependence and internal structure of storm events Gyasi-Agyei and Melching [7]

8 h Depression storage recovered fully Aryal et al. [8]

12 h Dry ground between runo events Bracken et al. [9]

�e skewness is a measure of the asymmetry of the
probability distribution of a real-valued random variable.�e
skewness for a normal distribution is zero and any symmetric
data should have a skewness near zero. On the other hand,
the kurtosis is a measure of degree of the “peakedness” of the
probability distribution of a real-valued random variable.

For these reasons, in this research, a statistical analysis
of selected rainfall events has been performed in order to
characterize the statistical behaviour of samples. In Table 2,
the values of skewness, kurtosis, and variation are listed.

All selected events have positive skewness and are not
normally distributed. Kurtosis is almost always positive;
only four events exhibit negative kurtosis which indicates
a uniform rain distribution. �e station of Cortale exhibits
always positive values of kurtosis. �e mean coe�cient of
variation is 1.31 which indicates a high variance in the
distribution of rain data.

2.2. Cumulative Rainfall Function. In general, to reproduce
rainfall behaviour, stochastic processes are used in the litera-
ture [11–16]. Usually, when a statistical procedure is applied
on annual maximum values the probability of exceedance
might be converted into a “return period	 (years).” However
the critical values of the rain event refer not only to the rain
intensity (or rain depth) but to the “time distribution” of the
rain quantity as well. It is di�cult to assign a return period to
a sequence of discrete values of rainfall intensities throughout
certain design storm duration. In this study, to overcome
this problem, a parameterization of the cumulative historical
rainfall event curve is proposed.

Rainfall depths are o	en described by means of the expo-
nential distribution, sometimes by the generalized Pareto
distribution herea	er referred to as GPD, and more rarely
by the gamma distribution or the generalized extreme value
(GEV) distribution. Results showed that although all the
analysed distributions were able to satisfactorily reproduce
ordinary statistics, generalized Pareto distributionwas able to
better reproduce the observed behaviour [26]. �e selection
of a particular distribution is mainly in�uenced by the value
of the skewness of the samples considered.

In solving hydrologic problems, such as the design of
urban storm sewer systems, it is much important to know the
time distribution rainfall. In hydrological theory, theoretical
distribution functions are usually used to set rainfall charac-
teristics, and their parameters are calibrated using historical
rainfall events.

As shown by the analysis of selected rainfall events,
samples exhibit positive skewness and kurtosis, which, in
general, indicate that samples are not normally distributed.
In this case, considering the values of skewness and kurtosis,

the sample could be represented by double exponential
functions, such as Gumbel type.

If we refer to the cumulative rain depth, this function
o	en exhibits a sigmoidal behaviour. For this reason and for
what is stated above about skewness and kurtosis, the idea
to propose a Gumbel-type function that parameterizes the
cumulative rainfall time series has arisen.

In particular, a double exponential function is proposed:


 (�) = �−�−�(�−�) , (2)

where 
(�) represents the parametric function proposed and and � are the parameters of the function, which depend on
the characteristics of the sample considered.

In order to identify these parameters a nonlinear least
squares optimization has been performed. Nonlinear opti-
mization problems arise in numerous applications such as
economy, statistic, and engineering. An optimization prob-
lem begins with a set of independent variables and o	en
includes conditions or restrictions that de
ne acceptable val-
ues of the variables. Such restrictions are called restraints.�e
essential component is the objective function, which depends
in some way on the variables.�e solution of an optimization
problem is a set of allowed values of the variables for which
the objective function assumes an optimal value. In general, a
parameter of function 
 appears nonlinearly if the derivative
is a function of the parameter. For this reason, a function
(�, �) is nonlinear if at least one of the parameters appears
nonlinearly.

�e least squares (LS) method is a standard approach
in 
nding an approximation to an overdetermined system
of equations. It is also the most important application in
data 
tting. A standard example of using LS is the case of

tting a line to a given set of points, called linear regression.
In general, one can distinguish between linear least squares
(LLS) and nonlinear least squares (NLS).

LLS implies that the residuals are all linear. �ere is a
closed form for the solution and it occursmostly in regression
analysis, meaning that one has a set of data points and 
ts
function (usually a polynomial of degrees 1, 2, or 3) to best
approximate the given data set.

NLS implies that the residuals are not all linear. In general,
one does not have a closed form for the solution and needs
to apply an iterative procedure in order to obtain a solution.
Furthermore, there might exist several minimums and 
nd-
ing the global minimum might require high computational
costs.

For these reasons the nonlinear least squares optimization
has been used.
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Table 2: Statistical analysis of rainfall events.

ID Event Skewness Kurtosis Variation

Cortale

1 2008-10-02 22:20:00 1.85 2.73 1.57

2 2008-10-04 10:43:00 1.94 3.75 1.27

3 2009-03-20 19:05:00 1.17 0.83 0.92

4 2009-06-22 01:43:00 2.13 3.70 1.71

5 2009-09-24 12:31:00 1.17 0.30 1.01

6 2009-12-04 18:55:00 1.51 1.29 1.34

7 2010-05-20 16:09:00 2.12 3.60 1.73

8 2010-07-25 09:12:00 1.56 2.21 1.12

9 2010-09-03 10:51:00 3.02 8.82 2.14

10 2010-09-25 13:44:00 1.66 2.45 1.15

11 2010-10-14 22:37:00 2.20 4.34 1.22

12 2010-11-17 17:17:00 1.98 2.89 1.40

13 2010-11-24 17:34:00 1.60 2.75 1.03

14 2011-09-20 05:30:00 1.05 0.40 1.05

15 2012-05-27 06:17:00 1.32 1.06 1.22

16 2012-09-01 14:31:00 1.59 2.93 1.14

17 2012-09-01 15:47:00 2.74 7.57 1.88

18 2012-09-04 09:43:00 2.41 5.10 1.57

19 2012-10-13 17:07:00 2.06 2.86 1.91

20 2012-10-28 13:49:00 1.30 0.49 1.22

21 2012-12-10 19:45:00 1.24 0.93 0.88

22 2013-01-21 12:41:00 1.82 2.54 1.10

23 2013-06-01 23:35:00 1.55 1.70 1.11

24 2013-08-10 13:25:00 1.90 2.85 1.30

25 2013-09-01 13:12:00 2.46 5.45 1.75

26 2013-10-01 05:41:00 1.97 3.17 1.35

27 2013-12-01 12:43:00 2.92 11.04 1.27

28 2013-12-02 13:21:00 1.35 1.69 0.89

Mean 1.84 3.19 1.33

Standard deviation 0.53 2.53 0.33

Sant’Alessio

1 2008-10-04 12:59:00 3.24 11.71 1.16

2 2009-09-16 07:39:00 2.12 4.30 1.38

3 2009-10-02 15:42:00 1.36 0.85 0.93

4 2009-12-05 20:03:00 1.41 1.97 1.10

5 2010-09-03 23:10:00 1.90 3.30 1.03

6 2010-09-09 07:16:00 0.73 −1.01 1.30

7 2010-10-13 13:12:00 1.76 2.67 1.34

8 2010-10-13 16:15:00 2.72 8.52 1.55

9 2011-06-12 07:54:00 1.99 3.10 1.60

10 2011-09-19 10:28:00 1.80 2.11 1.10

11 2011-09-21 05:24:00 1.72 3.01 1.04

12 2011-12-07 07:21:00 1.06 0.07 1.75

13 2013-07-08 11:18:00 2.31 4.43 1.07

14 2013-08-10 19:12:00 1.57 1.78 0.99

15 2013-08-21 11:31:00 0.62 −1.05 1.53

16 2013-08-30 11:00:00 1.81 2.44 1.41

17 2013-11-06 03:07:00 1.91 2.77 2.04

Mean 1.76 2.99 1.29

Standard deviation 0.65 3.15 0.27

Table 2: Continued.

ID Event Skewness Kurtosis Variation

San Luca

1 2008-01-23 01:54:00 2.37 4.82 1.00

2 2008-05-21 11:04:00 1.30 1.15 1.58

3 2008-10-25 13:38:00 1.18 0.73 1.07

4 2008-11-15 09:57:00 1.58 0.86 1.32

5 2009-01-13 17:53:00 2.15 5.29 1.70

6 2009-04-12 17:03:00 1.58 1.61 1.38

7 2009-09-17 00:18:00 2.27 4.56 1.05

8 2009-09-23 09:49:00 2.14 4.69 1.85

9 2009-09-25 12:01:00 0.68 −1.04 0.95

10 2010-09-04 00:08:00 2.05 2.74 1.23

11 2010-09-09 13:56:00 0.70 −0.80 1.70

12 2010-09-14 14:00:00 1.94 2.72 0.97

13 2010-09-14 21:30:00 2.49 6.25 1.46

14 2010-10-03 12:10:00 1.53 2.34 0.88

15 2010-11-02 12:57:00 1.56 1.11 1.12

16 2012-11-17 03:36:00 1.46 2.31 1.03

17 2013-11-12 15:44:00 1.46 1.85 1.57

18 2013-12-03 14:37:00 2.16 7.50 1.27

Mean 1.69 2.70 1.34

Standard deviation 0.53 2.36 0.34

Mean 1.76 2.96 1.31

Standard deviation 0.57 2.68 0.31

Numerical methods for nonlinear optimization problems
are iterative. At the �th iteration, a current approximate solu-
tion �� is available. A new point ��+1 is computed by certain
techniques, and this process is repeated until a point can be
accepted as a solution.�e classical methods for optimization
are line search algorithms. Such an algorithmobtains a search
direction in each iteration and searches along this direction
to obtain a better point. �e search direction is a descent
direction, normally computed by solving a subproblem that
approximates the original optimization problem near the
current iterate.�erefore, unless a stationary point is reached,
there always exist better points along the search direction.
To set function parameter and solve nonlinear curve 
tting
(data 
tting) problems in least squares sense, “trust-region-
re�ective” algorithm was used.

Nonlinear least squares problem usuallymakes use of one
the following two algorithms:

(1) trust-region-re�ective (TRR);

(2) Levenberg-Marquardt method (LM).

Levenberg-Marquardt algorithms and trust region algo-
rithms are both Newton step-based methods (they are called
“restricted Newton step methods”). �us, they both exhibit
quadratic speed of convergence near optimal value. When
we are far from the solution, we can encounter a negative
curvature. If this happens, Levenberg-Marquardt algorithms
will slow down dramatically. In opposition, trust region
algorithm will thus exhibit better performances each time
a negative curvature is encountered and have thus better
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performances than all the Levenberg-Marquardt algorithms.
�e trust region re�ective algorithmhas been chosen because
(i) analytical 
rst and second order derivative information
can be included, (ii) upper and lower bounds on parameters
can be considered easily, and (iii) it is computationally faster
than LM [27].

2.3. Statistical Evaluation. In general, in order to verify the
accuracy of a model, it is necessary to perform a statisti-
cal evaluation to ensure the results validity. �e statistical
evaluation indices of a hydrological model are varied. �e
use of an index instead of another depends on the type
of hydrological model to validate. �e description of the
various indices and discussions on their suitability have been
widely discussed in the literature [17–24]. �e quantitative
statistics are generally divided into three categories: standard
regression, goodness of 
t (GOF), and error index. Standard
regression statistics determine the strength of the linear
relationship between simulated andmeasured data; goodness
of 
t of a statistical model describes how well it 
ts into a
set of observations. GOF indices summarize the discrepancy
between the observed values and the values expected under
a statistical model; error indices quantify the deviation in the
units of the data of interest.

For these reasons, in order to have a global assessment of
the proposed function, most widely used indices were used
for each of the categories described above.

2.3.1. Statistical Evaluation (Standard Regression: Coe
cient

of Determination �2). �e coe�cient of determination (�2)
describes the proportion of the variance in measured data
explained by the model. �2 ranges from 0 to 1, with higher
values indicating less error variance, and typically values
greater than 0.5 are considered acceptable [21]. Given two

cumulative functions 
exp and 
obs, �2 is given by

�2 = 1− SSres
SStot
, (3)

where

SStot = ∑(obs− obs)2 residual sum of squares,
SSres = ∑(obs− exp)2 total sum of squares,
obs = 1�

�∑
�=1
(obs�) mean of observed data.

(4)

2.3.2. Statistical Evaluation (Goodness of Fit: Kolmogorov-
Smirnov Test). �eKolmogorov-Smirnov (KS) statistics pro-
vides a means of testing whether a set of observations comes
from a speci
c continuous distribution.�e usual alternative
would be the chi-square test.�eKS test has at least twomajor
advantages over the chi-square test:

(1) It can be used with small sample sizes, where the
validity of the chi-square test would be questionable.

(2) O	en it appears to be a more powerful test than the
chi-square test for any sample size.

Considering the sizes of the samples selected in this study,
which are small, the KS test has been preferred.

�e “one-sample” Kolmogorov-Smirnov (KS) test is the
most used GOF test to decide if a sample comes from a
hypothesized continuous function. It is based on the largest
vertical dierence between the theoretical and empirical
functions. Given two cumulative functions 
exp and 
obs, the
Kolmogorov-Smirnov test statistics (�max) is given by

�max = max
�����
exp −
obs����� ; (5)

values less than critical value �crt are considered acceptable.�crt is reported in tables function of sample size �.
2.3.3. Statistical Evaluation (Error Index: Root Mean Square
Error, Percent Bias). Several error indices are commonly
used in model evaluation. �ese include mean absolute
error (MAE), mean square error (MSE), and root mean
square error (RMSE).�ese indices are valuable because they
indicate error in the units (or squared units) of the constituent
of interest, which aids in analysis of the results. Root mean
square error (RMSE) is one of the commonly used error index
statistics; it measures the dierences between value predicted
by a model or an estimator and the values actually observed.
RMSE values of 0 indicate a perfect 
t.

Given two cumulative functions 
exp and 
obs, RMSE [L]
is given by

RMSE = √∑��=1 (
obs − 
exp)2� . (6)

Percent bias (Pbias) measures the average tendency of the
expected data to be larger or smaller than their observed
data. �e optimal value of Pbias is 0. Low values indicate
a very good performance. Positive value of Pbias indicates
an underestimation bias while positive values indicate an
overestimation.

Given two cumulative functions 
exp and 
obs, Pbias is
given by

Pbias = ∑��=1 (
obs − 
exp)∑��=1 (
obs) × 100. (7)

Study step Methodology is described in Figure 2.

3. Results and Discussion

In this research, three rain gauge stations were selected
for the analysis. �e stations considered are installed in
South Italy. Rain gauge has a resolution of 0.2mm and rain
data are registered with a temporal resolution of 1min. �e
analysis has been carried on a period of 
ve consecutive
years, from 2008 to 2013. Pluviometric data come from the
Functional Meteorological Hydrographic and Mareographic
Center database of Calabria region. �is database contains
all rainfall records of all meteorological stations installed
throughout the region. Unfortunately, stations withmeasure-
ment per minute were relatively few and many of them have
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Rainfall events
identi�cation
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squares optimization
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Simpli�ed parameters
estimation

Statistical evaluation

End

Figure 2: Study steps.

interruptions in measurements resulting in missing data. In
addition, the weather stations chosen for this work measure
per minute only since 2008 and it has not been possible to
obtain more data in previous years. Most recent records were
not available because they are still under processing.

However, 
ve years of pluviometric data are considered
to be su�cient to identify a signi
cative sample of short
duration rainfall events, which are of interest in this paper.

�e rainfall series have been processed using a Python
code. In speci
c, subhourly rainfall events were identi
ed
by setting a Minimum Interevent Time (MIT) of 15 minutes
and discarding events with a volume lower than 8mm.
Under these conditions, a total of 63 subhourly rain events
for the three stations were identi
ed and then used in the
analysis. �e characteristics of selected events are listed in
Table 3.

�e two parameters of the proposed function,  and�, for each event were determined by using a nonlinear
optimization procedure. �e proposed parametric function
has been 
tted on the cumulative rainfall distribution of each
event. In order to assess the quality of the 
tting error indices
and standard regression index were computed. Results of the
curve 
tting are listed in Table 4.

Results con
rm the optimal 
tting of the proposed func-

tion. Low values of RMSE and high values of �2 indicate very
good performance. In particular, �2 is always above 0.5 and
RMSE exhibits always values near zero. In addition, the Pbias
values are considerably low indicating a good agreement
between the 
tted function and the observations. A graphical

Table 3: Characteristics of selected rainfall events.

ID Event
Duration Volume �max

(min) (mm) (mm/h)

Cortale

1 2008-10-02 22:20:00 20 9.2 156

2 2008-10-04 10:43:00 53 12.4 84

3 2009-03-20 19:05:00 50 14 60

4 2009-06-22 01:43:00 50 9 72

5 2009-09-24 12:31:00 43 17.4 84

6 2009-12-04 18:55:00 55 10.6 60

7 2010-05-20 16:09:00 60 10.6 72

8 2010-07-25 09:12:00 60 18.4 84

9 2010-09-03 10:51:00 50 13.6 168

10 2010-09-25 13:44:00 58 9.8 48

11 2010-10-14 22:37:00 47 10.8 72

12 2010-11-17 17:17:00 54 9.6 60

13 2010-11-24 17:34:00 39 8.6 60

14 2011-09-20 05:30:00 33 15 108

15 2012-05-27 06:17:00 53 16.8 96

16 2012-09-01 14:31:00 51 13.4 84

17 2012-09-01 15:47:00 51 11.4 120

18 2012-09-04 09:43:00 48 9.2 72

19 2012-10-13 17:07:00 59 19.8 132

20 2012-10-28 13:49:00 42 12.8 84

21 2012-12-10 19:45:00 61 15.2 48

22 2013-01-21 12:41:00 47 8.6 48

23 2013-06-01 23:35:00 43 8.2 48

24 2013-08-10 13:25:00 56 13.2 72

25 2013-09-01 13:12:00 49 14.4 132

26 2013-10-01 05:41:00 46 8.8 60

27 2013-12-01 12:43:00 36 15 168

28 2013-12-02 13:21:00 43 9.6 48

Mean 48.46 12.33 85.71

Standard deviation 9.13 3.27 36.47

Sant’Alessio

1 2008-10-04 12:59:00 51 10.2 108

2 2009-09-16 07:39:00 59 8.6 48

3 2009-10-02 15:42:00 40 17 120

4 2009-12-05 20:03:00 59 8.2 36

5 2010-09-03 23:10:00 41 16 108

6 2010-09-09 07:16:00 58 20.8 72

7 2010-10-13 13:12:00 38 11.2 96

8 2010-10-13 16:15:00 54 18.4 144

9 2011-06-12 07:54:00 54 8.4 60

10 2011-09-19 10:28:00 22 13.4 204

11 2011-09-21 05:24:00 43 10.6 72

12 2011-12-07 07:21:00 52 14.4 60

13 2013-07-08 11:18:00 39 9.2 96

14 2013-08-10 19:12:00 30 8.6 72

15 2013-08-21 11:31:00 50 28 108

16 2013-08-30 11:00:00 47 19.2 144

17 2013-11-06 03:07:00 42 9.6 72

Mean 45.82 13.63 95.29

Standard deviation 10.36 5.58 41.88
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Table 3: Continued.

ID Event
Duration Volume �max

(min) (mm) (mm/h)

San Luca

1 2008-01-23 01:54:00 50 10.2 108

2 2008-05-21 11:04:00 46 15.8 96

3 2008-10-25 13:38:00 47 9.2 48

4 2008-11-15 09:57:00 38 8 60

5 2009-01-13 17:53:00 37 9.6 72

6 2009-04-12 17:03:00 54 20 108

7 2009-09-17 00:18:00 36 9.2 108

8 2009-09-23 09:49:00 49 12.4 96

9 2009-09-25 12:01:00 25 14.4 108

10 2010-09-04 00:08:00 53 8.4 60

11 2010-09-09 13:56:00 26 10 72

12 2010-09-14 14:00:00 51 8 48

13 2010-09-14 21:30:00 57 8.2 72

14 2010-10-03 12:10:00 54 24.2 120

15 2010-11-02 12:57:00 42 13 96

16 2012-11-17 03:36:00 58 16.8 72

17 2013-11-12 15:44:00 50 16.6 84

18 2013-12-03 14:37:00 53 11 72

Mean 45.88 12.5 83.33

Standard deviation 9.88 4.62 22.34

Mean 46.72 12.73 87.61

Standard deviation 9.79 4.34 34.52

Table 4: Statistical evaluation.

Station RMSE (mm) �2 Pbias (%)

Cortale 0.045 ± 0.019 0.983 ± 0.023 2.601 ± 5.161
Sant’Alessio 0.046 ± 0.021 0.980 ± 0.021 2.154 ± 2.566
San Luca 0.048 ± 0.022 0.980 ± 0.027 3.656 ± 4.673

representation to describe statistics of the computed parame-
ters  and � by indices of dispersion and position is described
in Figure 3.

Considering that  is directly related to 
rst derivative of
the cumulative rainfall distribution, which indicates peaked-
ness of the sample, the large value of the standard deviation of could be related to high value of the standard deviation of
the kurtosis for the selected events. Also�, which is a location
parameter, exhibits large values of standard deviation. �e
meaning of � has been further investigated. In particular, the
analysis has revealed that � is directly related to �-coordinate
of the centroid�� of the rain distribution.

As shown in Figure 4, the relationship between � and�� can be explained by two types of regression: a linear
regression and a bisector regression. �e linear regression
achieves slightly better results than the bisector, which also
gives a su�ciently accurate description of the relation.

In order to assess the suitability of the proposed expo-
nential function, the Kolmogorov-Smirnov one-sample test
(KS test) has been used. �e KS test is used to test whether a
sample comes from a speci
c distribution. �e test has been

performed on all 63 selected events by comparing the value of
the Kolmogorov-Smirnov test statistic �max with the critical
value�crit obtained by tables already present in the literature
by assuming a 5% of level of signi
cance.�eKS test has been
carried out by using the parameters and� already calculated
with theNLS optimization described in the previous sections.
Results of the KS test are reported in Figure 5.

As it can be seen from Figure 5, results of the KS test con-

rm that selected rainfall events come from the exponential
distribution function proposed in this study. Only for two
rain events�max > �crit.

In general, the de
nition of parameters by using the
NLS optimization guarantees good results in terms of 
tting.
�is is con
rmed by the statistical criterion described above.
Although, especially for practical applications, the NLS opti-
mization could be complex and time consuming, in such
practical cases parameters could be computed by using other
statistical procedures, which are easy to implement.

It is possible to observe that function (2) closely resembles
the Gumbel distribution function, where 
(�) represents the
exceedance probability. In statistics parameters  and � may
be computed by using several methods; the most common
are maximum likelihood estimation (MLE) and method of
moments.�eMLE could bemore accurate in the estimation
of parameters, although the mathematical computation is
very complex. On the other hand, the method of moments
is fairly simple and allows calculating easily the parameters.
For these reasons, in this study, the method of moments has
been used. and � could be calculated by using the method of
moments as follows:

 = 1.28255� ,
� = �− 0.450 ⋅ �, (8)

where � and � are, respectively, the mean value and the
standard deviation of � distribution.

Consider the assumptions:


 = � (�)�tot ,� = �, (9)

where �(�) is the rainfall depth at time �, �tot is the total
rainfall depth of the event, and � is the casual variable �; for
every event in each station the parameters  and � have been
calculated by using (8). A graphical representation to describe
the statistics of the computed parameters and� by indices of
dispersion and position is described in Figure 6 while results
of the curve 
tting are listed in Table 5.

Values of RMSE and �2 indicate a deterioration in terms
of quality of 
tting when using  and � computed by using

(8). In particular, �2 exhibits a mean value of 0.771 which is
still acceptable. �e RMSE values are three times the values
computed with NLS. However, results are still acceptable for
practical applications where the degree of precision may be
less accurate.
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Figure 3: Statistics of the computed parameters  and �.
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Figure 4: Relation between � and��.
Table 5: Statistical evaluation.

Station RMSE (mm) �2 Pbias (%)

Cortale 0.151 ± 0.082 0.778 ± 0.269 −9.911 ± 29.412
Sant’Alessio 0.144 ± 0.070 0.811 ± 0.241 −6.941 ± 25.683
San Luca 0.180 ± 0.075 0.724 ± 0.214 −17.282 ± 30.184

In addition, theKS test has been performed. Results of the
KS test are shown in Figure 7.

Results of the KS test con
rm the nonoptimal perfor-
mance of the proposed function when using parameters 
and � computed by using (8).

4. Conclusion

�is paper intends to provide a contribution on de
ning a
“design storm” for urban drainage system. �e main idea is

D
m

ax
(—

)

Dcrit (—)

Eligible

Not eligible

Figure 5: KS test for 
tted exponential function.

based on the de
nition of a parametric cumulative function
validated with an exhaustive evaluation of both model scien-
ti
c basis andperformance.�eproposedCRFhas been 
tted
on the cumulative rainfall distribution of each event. In order
to assess the quality of the 
tting RMSE, �2 and Pbias were
computed.�e results highlight very good performanceswith
low values of RMSE ranging from 0.045 ÷ 0.048 and high

values of �2 ranging from 0.980 ÷ 0.983. Finally, considering
the similarity of the proposedCRFwith theGumbel function,
a practical and expeditious method to assess the parameters
of the CRF has been proposed. In this case, the values of
RMSE and �2 indicate a deterioration in terms of quality of

tting; however, results are still acceptable for the practical
application. Further studies will go in the direction of a
better de
nition of the parameters to allow a direct practical
application of the CRF. In particular, the approach will be
strengthened with the analysis of more pluviometric stations,
in dierent countries and under dierent climate conditions.
In addition to this, a more detailed study on the physical
meaning of parameters  and � will be conducted.
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Figure 6: Statistics of the computed parameters  and �.
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