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Abstract

Background: Clostridium difficile is the leading cause of hospital-borne infections occurring when the natural intestinal
flora is depleted following antibiotic treatment. Current treatments for Clostridium difficile infections present high relapse
rates and new hyper-virulent and multi-resistant strains are emerging, making the study of this nosocomial pathogen
necessary to find novel therapeutic targets.

Results: We present iMLTC806cdf, an extensively curated reconstructed metabolic network for the C. difficile pathogenic
strain 630. iMLTC806cdf contains 806 genes, 703 metabolites and 769 metabolic, 117 exchange and 145 transport
reactions. iMLTC806cdf is the most complete and accurate metabolic reconstruction of a gram-positive anaerobic
bacteria to date. We validate the model with simulated growth assays in different media and carbon sources and use it
to predict essential genes. We obtain 89.2% accuracy in the prediction of gene essentiality when compared to
experimental data for B. subtilis homologs (the closest organism for which such data exists). We predict the existence of
76 essential genes and 39 essential gene pairs, a number of which are unique to C. difficile and have non-existing or
predicted non-essential human homologs. For 29 of these potential therapeutic targets, we find 125 inhibitors of
homologous proteins including approved drugs with the potential for drug repositioning, that when validated
experimentally could serve as starting points in the development of new antibiotics.

Conclusions: We created a highly curated metabolic network model of C. difficile strain 630 and used it to predict
essential genes as potential new therapeutic targets in the fight against Clostridium difficile infections.

Keywords: Essential genes, Flux balance analysis, Manual curation, Reconstructed metabolic network, Synthetic
accessibility, Inhibitors, Cross-reactivity targets

Background
Clostridium difficile is an opportunistic, gram-positive

anaerobic spore-forming pathogen found in the environ-

ment and in the intestinal flora in up to 3% of healthy

adults. Toxigenic strains of C. difficile are resistant to a

wide variety of antibiotics and produce the enterotoxin

TcdA and the cytotoxin TcdB. These toxins are respon-

sible for the clinical symptoms of C. difficile infection

(CDI) [1,2]. CDI is the leading cause of hospital-borne

infections occurring when the natural intestinal flora is

depleted following antibiotic treatment. CDI is the

major cause of antibiotic-associated diarrhea and is re-

sponsible for pseudomembranous colitis, a form of se-

vere intestinal inflammation. For the most part, CDI

can still be treated with metronidazole or vancomycin

for which resistance levels remain low or the recently

approved fidaxomicin. Single or multiple relapses after

initial treatment are common and bring about more se-

vere symptoms. A recent clinical study reports a relapse

rate of 24% and 13% with vancomycin or fidaxomicin

treatment respectively [3]. Between 50% and 80% of re-

currences are due to spore-mediated re-infection [2].

Unfortunately, patient-to-patient transmission and re-

lapses are difficult to prevent due to the production of

C. difficile spores that are resistant to antibiotics, heat,

radiation and various chemicals.

CDI is directly responsible for an average 4.6 per 1000

patients admitted in hospitals with a 5.7% mortality rate

after 30 days directly attributed to CDI [4]. In the US, over

250,000 cases are registered per year in hospitals alone

and many more cases in outpatient settings [5], costing

around USD$4,000 to USD$8,000 per case of primary

infection and USD$8,000 to USD$15,000 per relapsing

* Correspondence: rafael.najmanovich@usherbrooke.ca
Department of Biochemistry, Faculty of Medicine and Health Sciences,
Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada

© 2014 Larocque et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

Larocque et al. BMC Systems Biology 2014, 8:117

http://www.biomedcentral.com/1752-0509/8/117

mailto:rafael.najmanovich@usherbrooke.ca
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


infection [6] leading to a burden of over USD$500 mil-

lion [7]. More important than economic costs, CDI in

older patients, those with concurrent debilitating condi-

tions, and severely relapsing or fulminant cases may

result in death.

In recent years there has been an increase in the rate

of infections as well as the emergence of community-

associated, virulent and antibiotic-resistant strains [8,9].

Treatments of CDI that offer alternatives to the use of

small-molecules [10] involving phages [11] or intestinal

microbial flora transplants [12] are likely to meet resist-

ance from patients. Others involving antibodies [13] or

vaccines [14] are still under development.

The complexity inherent to preventing and treating CDI

requires the continuous search for new ways to target C.

difficile. In recent year, the growth of biological databases

led to the development of the field of systems biology

making it possible to build and analyze genomic-scale re-

constructed metabolic networks [15]. There is a large

number of highly curated reconstructed metabolic net-

works for a number of organisms, from E. coli [16] to hu-

man [17]. The prediction of essential genes is often used

to detect potential drug targets [18-20]. Two techniques,

Flux Balance Analysis (FBA) [21] and Synthetic Accessibil-

ity (SA) [22] are among those available to predict essential

genes at a genomic scale through in silico gene deletion

studies. The comparison of results obtained with either

FBA or SA and experimentally determined essential genes

shows equivalent levels of accuracy with either technique

around 94% for B. subtilis [23], 83% for S. cerevisiae and

60-70% for E. coli [22]. The success rates are likely reflect-

ing the quality of the metabolic network reconstructions.

The combination of systems pharmacology and meta-

bolic network analyses can help predict off-target effects

of drugs as well as open new opportunities with the repo-

sitioning of existing drugs [24]. In the present study we

create and validate a highly curated metabolic network re-

construction for the pathogenic C. difficile strain 630. We

then utilize it to predict essential genes or gene pairs. We

employ a combination of systems biology, bioinformatics

and structural computational biology methods to detect

potential human cross-reactivity targets for and detect

small-molecules, including existing approved drugs that

may bind a number of the predicted C. difficile targets.

Results
Creation of the network

The genome of C. difficile strain 630 is composed of a

circular chromosome of 4,290,252 bp coding for 3968

open reading frames (ORFs) as well as a plasmid of

7881 bp coding for 11 ORFs [25]. The C. difficile strain

630 draft reconstructed metabolic network presented

here covers 20.3% of the ORFs present in the chromo-

somal genome of the bacteria with 806 ORFs. These 806

genes code for proteins catalyzing 769 metabolic, 145

transport and 117 exchange reactions. A total of 592

unique metabolites (703 in total not considering extra-

cellular or intracellular state) are involved in the 1031

reactions in the network. The coverage of the genome is

similar to those of previously published reconstructed

metabolic networks such as B. subtilis with 20% [23] and

higher than the most recent network of C. acetobutyli-

cum with 13.0% [26]. Most reactions have at least one

gene association (77.9%). Reactions without any gene as-

sociation were added based on the existence of evidence

from the literature such as in the case of Stickland reac-

tions [27-30], presence in databases such as xanthine

amido hydrase or to fill functional gaps to obtain a func-

tional network as in the case of putative transporters for

end-products of fermentation.

The final version of the network is available in 3 differ-

ent formats: 1. An excel file that shows on different

spreadsheets the reactions, metabolites, genes, and com-

partments that comprise the network and the definitions

of the network based on the standard described in the

RAVEN toolbox [31]. This file is meant to be easily read-

able by humans; 2. A tab-separated format of the network

amenable to analysis in the R Statistical Computing envir-

onment (www.r-project.org) using Sybil [32]; and lastly, 3.

A SBML Level 2 formatted network [33] that can be used

with tools such as Matlab or other SBML compliant soft-

ware. While a naming convention has been suggested re-

cently for metabolic reconstructions [16], we feel that a

naming convention that does not allude to the name of

the organism is insufficient. Therefore, in the present

work, the C. difficile strain 630 metabolic network recon-

struction is called iMLTC806cdf as per the suggested con-

vention with the added cdf suffix denoting the KEGG [34]

three-letter organism ID representing C. difficile strain

630. The SBML version of the model has been deposited

to the BioModels database [35] and assigned the identifier

MODEL1409240004 .

Validation

Four types of growth media were simulated in silico via

modulation of the exchange reactions for the import of

metabolites present in the simulated growth media. All

four tested media (Table 1) produced biomass based on

FBA and SA analysis [22]. For SA, 4 proteins (oxidized

ferredoxin, oxidized thioredoxin, acyl and sulfur carrier

proteins) that cannot be produced due to the absence of

protein biosynthesis reactions in the network but at equi-

librium in FBA had to be supplemented to the media to

make all reactions possible in FBA also accessible in SA.

ATP and nicotinate were supplemented to the minimal

medium to allow biomass production in SA while ATP

was added to the complex medium.
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Essential metabolites

In order to validate the network, experiments involving

the removal or addition of certain metabolites from the

media were reproduced in silico. Each essential amino

acid (cysteine, leucine, Isoleucine, proline, tryptophan

and valine) was confirmed essential in the network as

their removal prevented the production of biomass in

any medium. None of the three essential vitamins are es-

sential in the network (Additional file 1: Table S1). The es-

sentiality of two of these, biotin and pyridoxine, is due to

their implication in the regulation of processes which could

not be simulated in the metabolic network. Panthothenate

(which is important in lipid metabolism) was in the past

determined to be essential for a number of C. difficile

strains tested [37]. More recently, a new ketopantoate re-

ductase (KPR) gene panG was discovered in a number of

pathogenic bacteria and found to have a homolog in C. dif-

ficile strain 630 [40]. Therefore, whereas panthothenate is

commonly thought to be essential, this essentiality is strain

specific and absent in C. difficile strain 630. A ΔpanG mu-

tant in Francisella tularensis did not have any differences

compared to wild type infections in a mouse model for

pneumonic tularemia [40]. This is likely due to the fact that

panthothenate (vitamin B5) is widely available in food and

most bacteria are able to import panthothenate through a

sodium co-transport mechanism [40].

Non-essential metabolites

Removal of non-essential metabolites did not have an im-

portant effect on growth. The non-essential amino acid me-

thionine is known to enhance growth of the bacteria and is

used in the minimal medium to increase growth rate. Inter-

estingly, the removal of methionine from the minimal

medium leads to a slight reduction in biomass production

(less than 1%), a small but qualitatively correct effect. We

simulated the removal of arginine and histidine (both non-

essential amino acids) from the rich medium and in both

cases this lead to the qualitatively correct result of a de-

crease in biomass production in agreement with the experi-

mental evidence [36]. Most (8 out of 11) non-essential

amino acids that when removed from a complete media do

not affect growth rate experimentally also have no effect in

silico when removed from the complex medium. Further-

more, the addition of certain non-essential amino acids

(8 out of 13) or any nucleosides to the minimal medium

leads to an augmentation of biomass production in agree-

ment with experimental data (Additional file 1: Table S1).

Carbon sources

The utilisation of different carbon sources in the absence

of glucose in the network was simulated and compared

to experimental data. Such data is not always specific to

C. difficile strain 630 and small differences among strains

do exist [36] (Additional file 1: Table S2). The removal of

glucose produced the largest decrease in biomass pro-

duction (~33%) but had a smaller effect in the complex

medium (~6%). For 15 experimentally tested carbon

sources (out of 20 carbon sources tested in silico) we ob-

tain 100% agreement between the predicted utilization of

alternative carbon sources by C. difficile, including the im-

possibility to use lactose as a carbon source. Furthermore,

we predict that C. difficile strain 630 should not be able to

use rhamnose or myo-inositol (for which there is some

evidence of usage in other strains but no experimental in-

formation for strain 630) while malate, glycerol and chor-

ismate would lead to increased growth rates.

Comparison with existing metabolic network reconstructions

We compared iMLTC806cdf to the recently created

automatically-generated non-curated reconstructed meta-

bolic network of C. difficile [41]. The automated network

contains 3211 reactions, 1548 unique metabolites and

1337 genes resulting in over 2762 genes/reactions associa-

tions. One fundamental requirement for a reconstructed

metabolic network is its ability to produce biomass. As

noted by its creators, the automatic network cannot pro-

duce biomass. This is likely due to the numerous flaws

present in the automated network that are absent or

present in a lesser number in the curated iMLTC806cdf

reconstruction presented here. Among these: generic

Table 1 Definition of the different media used in this study

Medium name Componentse

Minimala Tryptophan, cysteine, isoleucine, leucine, methionine, proline, valine, R-pantothenate, Pyridoxine, biotin, glucose

BDMb Minimal plus thiamine, nicotinamide, Riboflavin, 4-aminobenzoate, folic acid, vitamin B12

CADMc BDM plus the 13 standard amino acids not listed in the minimal medium

Complexd All the components of the minimal medium, the remaining 13 standard amino acids, riboflavin,
folic acid, inosine, vitamin B12, chorismate, glucose, glycerol-3-phosphate, ribose, hypoxanthine,
deoxycytidine, uracil, uridine, dexoyadenosine, adenosine, thymidine

a[36].
b[37].
c[38,39].
d[23].
eThe following metabolites or proteins are added in SA analysis to permit the production of biomass: ATP, nicotinate, oxidized ferredoxin, oxidized thioredoxin,

acyl and sulfur carrier proteins and are present in unchanging equilibrium concentrations in FBA.
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metabolites, incorrect reaction stoichiometry, repetitions,

unclear reactions, dead-end metabolites and non-metabolic

genes and reactions. For example, the automated network

contains 485 generic metabolites representing 31.3% of the

metabolome opposed to 23 in iMLTC806cdf (representing

3.9% of the metabolome). Curiously the automated network

reconstruction contains 29 reactions involving oxygen,

which should not be present in an anaerobic organism.

Other important flaws in the automatically generated

C. difficile network include the presence of 1562 export re-

actions and 648 dead-end metabolites. Overall, 532 reac-

tions (58.2% of the reactions in iMLTC806cdf) are common

to both reconstructions out of 3211 present in the automat-

ically generated network. A detailed comparison is pre-

sented in Table 2 (or in the form of a Venn diagram in

Additional file 1: Figure S1) and clearly shows the vast dif-

ferences between the two models and that a large number

of problems associated to the automatically generated net-

work are absent in iMLTC806cdf.

We also compared iMLTC806cdf to a curated metabolic

network reconstruction of the closely related bacterium

Clostridium acetobutylicum. Three curated metabolic net-

works exist for this organism [26,42,43] all focusing on

metabolic engineering of the bacteria to maximize the

production of butanol. The latest network [26], called

iCAC490, was chosen for the comparative analysis as it

was the largest, the most recent and the only one available

in a commonly accepted usable format (SBML). The ana-

lysis of reactions shared between the two reconstructions

was possible due to the extensive use of KEGG identifiers

Table 2 Comparison between the automatic C. difficile, iMLTC806cdf and C. acetobutylicum networks

Characteristic Automatic network iMLTC806cdf C. acetobutylicum iCAC490

Reactions 3211 914 740

With genes 1311 (40.8%) 706 (77.9%) 490 (66.2%)

With an EC number 1435 (44.7%) 750 (82.1%) 649 (87.7%)

With KEGG ID 1038 (32.3%) 703 (76.9%) 652 (88.4%)

Identified as unclear reaction 4 (0.4%) 0 2 (0.2%)

Associated with multiple reactions 84 (8.1.6%) 6 (0.7%) 0

Involving polymers 26 (0.8%) 0 0

Involving generic metabolites 548 (29.8%) 31 (3.4%) 44 (5.9%)

Non-metabolic reactions 138 (4.3%) 2 (0.2%) 15 (2.0%)

Involving oxygen 29 (0.9%) 0 -b

Transport reactions 1576 (49.1%) 145 (15.9%) 66 (8.9%)

Export 1562 (99.1%) 16 (11.0%) 3 (4.5%)

Passive 14 (0.9%) 15 (10.3%) 11 (16.7%)

with genes 0 95 (65.5%) 43 (65.15%)

Unique reactions in common 530 416

Metabolites 3133 705 709

Unique 1551 592 654

With KEGG ID 1092 (70.4%) 563 (94.9%) 613 (93.7%)

Generic 485 (31.3%) 23 (3.9%) 50 (7.6%)

Duplicated 15 (1.0%) 0 0

Dead-end 648 (41.8%) 8 (1.2%) 186 (28.4%)

Unique metabolites in common 533 389

Genes 1336 806 490

Unique loci 788 806 490

With a homologa 788 (100%) 658 (81.8%) 417 (85.1%)

Non-metabolic loci 66 (8.4%) 3 (0.4%) 11 (2.2%)

Loci linked to multiple entries 382 (48.5%) 0 0

Unique loci in common 534 350
aThe values in the first and last columns represent the number of homologs with respect to iMLTC806cdf. The values in the middle column represent the number

of homologs with respect to C. acetobutylicum.
bReactions involving oxygen are allowed in C. acetobutylicum thus were not quantified.
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in both networks. In the case of transport reactions, two

transporters were considered similar if they transported

the same molecule with one transporter from one network

potentially matching multiple transporters in the other

network. We did not differentiate between phosphoenol-

pyruvate (PEP):carbohydrate phosphotransferase system

(PTS) [44], ion channels [45] or ATP driven transporters

[46] as long as the transported molecules were the same

in the two networks. iMLTC806cdf contains 174 more re-

actions than the reconstructed network of C. acetobutyli-

cum and 416 in common with it (representing 45.5% of

our reactions). iMLTC806cdf has 62 less unique metabo-

lites and 389 metabolites in common (representing 66% of

our unique metabolites). The presence of 186 (28% of the

metabolome) dead-end metabolites (a complete list can be

found in Additional file 1: Table S3) suggests that the

C. acetobutylicum network still has incomplete pathways

and gaps that could affect biomass production. A detailed

comparison is presented in Table 2 or in the form of a

Venn diagram in Additional file 1: Figure S2.

Single gene deletions

We performed an in silico gene deletion study using

both Synthetic Accessibility (SA) and Flux Balance Ana-

lysis (FBA) on iMLTC806cdf in order to identify poten-

tial essential genes that may lead to the discovery of

novel therapeutic targets. This analysis removed reac-

tions that were catalyzed by each gene alone (or in pairs,

next section) or by a complex that involved that gene

product and then measured the capacity of the network

to produce biomass (either a flux in biomass production

for FBA or Snet for SA, see Methods). The complex

medium (as describe in Table 1) was the one used for

the gene deletion studies since it reproduces the high

concentration and diversity of nutriments found in the

intestinal tract. Furthermore, the medium used is the

same as the simulation of the Bacillus subtilis metabolic

network [23], which in turn is an approximation of the

one used to perform the experimental validation of le-

thality of single gene deletions in that organism [47].

A total of 66 out of 806 genes deletions were identified

via FBA analysis as deleterious based on a 5% variation

threshold [48]. An additional 10 genes were found by SA

to increase the number of reactions necessary to pro-

duce biomass and deemed essential based on this criter-

ion. Overall, 50 of the 76 predicted essentials genes are

essential according to both FBA and SA (see Table 3).

We observe an agreement rate of 96.8% between the two

techniques in terms of the prediction of both lethal and

non-lethal genes, which is similar to what was found

when comparing both techniques on E. coli and S. cere-

visiae [22]. Since the two techniques provide different

insights on the metabolism and characteristics of the

network (see Discussion), we consider genes identified

as essential by either of these techniques as relevant as

those identified by both.

Essential genes were compared to experimental results

for the gram-positive bacteria Bacillus subtilis [47],

which is the closest relative of Clostridium difficile with

experimental essentiality data for all of its genes. Since

the simulation involved the deletion of genes via deletion

of metabolic reactions, functional homologs (genes re-

sponsible for reactions that share the same EC number

and catalyze similar reactions) were used for the com-

parison. Among the 76 genes with a predicted effect on

biomass production in C. difficile, 46 have homologs that

are essential in B. subtilis, 8 did not have any functional

homolog and 22 had a homolog that was not essential in

B. subtilis (Table 3). We were able to compare 618 C.

difficile genes (76.8% of the genes in iMLTC806cdf) for

which we could detect a B. subtilis functional homolog

with an overall prediction accuracy of 89.2% (Additional

file 1: Table S4). A similar rate of 89.0% was obtained based

on the comparison of 525 genes using sequence homology

(E value <1e−5, sequence identity above 30% and align-

ment overlap over 80% of the C. difficile sequence,

Additional file 1: Table S4). While an accuracy of around

89% is extremely high, it is important to keep in mind that

despite being closely related, differences are expected be-

tween the B. subtilis and C. difficile.

We utilized iCAC490 to perform the prediction of es-

sential genes in C. acetobutylicum and compared the re-

sults to those above for C. difficile. Essential genes in the

C. acetobutylicum network were identified in a similar

manner than in iMLTC806cdf, using Sybil [32] within

the R environment for statistical computing. Of the 658

C. difficile proteins with C. acetobutylicum sequence ho-

mologs, 368 are present in iCAC490. Based on these

368 proteins, we obtain an agreement of 72.3% between

iMLTC806cdf iCAC490 (Additional file 1: Table S5). It

is interesting to note that we obtain a higher agreement

between our computational results for C. difficile and

experimental results for B. subtilis than with computa-

tional results for iCAC490 representing a more closely

related species.

The difficulty of performing genetic manipulations in

C. difficile is notorious and severely restricts our ability to

compare our results with experimental information. Des-

pite the lack of extensive information on experimentally

verified essential genes, the little evidence that exists, sup-

ports our predicted essential roles for a number of genes:

metK [49], guaA [50] and ntpA-B-C-D-E-F-K [51]. Other

known essential genes such as secA1-A2 [52], metG and

gyrA-B [53], trpS [49] and gldA [54] are not present in the

network and are involved in non-metabolic processes.

Lastly, the gene prdF has been mutated and was shown to

be non-essential [55], in agreement with its predicted

non-essential role in iMLTC806cdf.
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We compared the list of 76 genes predicted to be essen-

tial in C. difficile using iMLTC806cdf to the genes in the

Database of Essential Genes (DEG) [56]. Interestingly, and

serving as further validation of iMLTC806cdf, a total of 61

of these genes are present in DEG, i.e., these genes have

homologs known to be essential in other species. The

remaining 15 predicted essential genes that are not

present in DEG (Table 3) include ntpA,D,E,F,K (all sub-

units V-type ATP synthase) as well as metF (involved in

amino acid synthesis) and xpt (guanine synthesis) among

others (Additional file 1: Table S6).

The inhibition of the product of essential genes that

are upregulated during CDI may require a smaller drug

dose to generate an effective response, thus decreasing

side effects. We utilized transcriptomics data associated

to the differential expression of genes during infection

[57] to annotate predicted essential genes in view of

their potential use as therapeutic targets. Eight predicted

essential genes are downregulated in vivo while 6 are up-

regulated during infection. Some of the genes that are up-

regulated during infection and predicted to be essential

such as fabD, serA or CD2549, are of additional interest as

they could not only affect growth, but also colonisation

and pathogenesis processes [57] (Table 3).

Detection of potential human cross-reactivity targets

Sequence and functional similarities

One of the main goals in detecting essential genes is to as-

sess their potential as therapeutic targets. One factor

weighting in favour of a potential therapeutic target is the

lack of a human homolog, as this decreases the chances of

side effects of a potential drug off-targeting the gene prod-

uct of the human homolog. We again utilize here two defi-

nitions of homology, the standard sequence homology

that relates two genes through evolution and functional

homology, which relates two genes via common function

of their gene products, specifically the same E.C. number.

Functional homology is stricter than sequence homology

as it is not based on any level of similarity between the

two proteins, only based on the fact that the two enzymes

catalyze the same reaction. Fifty-four genes have no se-

quence homologs in H. sapiens. Thirty of these have func-

tional homologs, while 24 genes identified as potential

targets do not have any human functional or sequence

homolog (Additional file 1: Table S6).

Local structural similarities

There is a possibility that potential cross-reactivity tar-

gets may perform different functions (EC numbers) and

have little sequence similarity yet still have sufficient 3D

atomic binding-site similarities to be inhibited by a drug

developed against a C. difficile target. We proceeded to

analyse binding-site similarities to detect potential cross-

reactivity targets for the 24 C. difficile proteins where se-

quence or functional similarity search did not detect

any human homolog. Binding-site similarities are mea-

sured in terms of detected geometrically and chemically

equivalent atoms in common between two binding-sites

[58,59]. We found an average of 36 atoms in common

between binding-sites (average p-value 0.038 and z-

score 3.05) for 21 out of 24 models with members of

Pfam families [60] that include human proteins. In three

cases, ispF, CD2549 and dapH, no significant level of

binding-site similarity was found to a Pfam family that

contains human homologs (Additional file 1: Table S7).

It is hard to judge if the found matches are significant or

not considering that no threshold for binding-site similar-

ity can be uniquely defined above which cross-reactivity is

certain [59]. However, in 17 cases out of 24 cases, the top-

scoring detected binding-site similarities for each case rep-

resent binding-sites in proteins that bind ligands that are

similar to at least one of the substrates of the reaction

Table 3 List of 76 predicted C. difficile essential gene and essentiality of their B. subtilis homologs

Essentiality of B. subtilis homolog Predicted C. difficile essential genesa

Essential (46)

accA3, accB3, accC3, accD3, acpS2↓, adk2↓, asd3, cdsA3, cmk2, coaE3↓, dapF3, dapH3, ddl3, dxr3, dxs3, fabD3↑,
fabF3↑, glmU3, gmk3, guaB2, ispD3, ispE3, ispF3, ispG3, ispH3, metK2, mnaA3, murA3↓, murB3, murC3, murD3,
murE3↓, murF3, murG3, nadD3, nadE3, pgsA3↓, plsX3, prs3, CD01193, CD02443*, CD10493, CD24393, CD35432,
CD35503*, pgk1 (15.48%)

Non-essential (22)
coaBC3, coaD3, crt13↓, fabH3, fabZ3, guaA3, ispA3, metF1*, pdp3*, ribC3↓, CD05572↓, CD19663*, CD22562*,
CD25412*, CD25492*↑, CD35553, CD35961, pykF1 (15.51%), CD09941*↑ (15.08%), serA1↑ (15.08%),
ackA1 (14.74%), asnA1↑ (5.76%)

No B. subtilis homolog (8)
cat11*, ntpA1* (10.31%), ntpB1 (10.31%), ntpC1 (10.31%), ntpD1* (10.31%), ntpE1* (10.31%),
ntpF1* (10.31%), ntpK1* (10.31%)

Number in parenthesis represent the loss of biomass according to FBA. Those without number prevent the production of biomass or were identified only by SA.

Genes in bold (25 in total) do not have a human functional homolog. The 4 genes in italics have a human homolog shown to be essential when their associated

reactions are removed from RECON2.
1Genes predicted as essential exclusively by FBA analysis (16 in total).
2Genes predicted as essentials by the SA analysis (10 in total).
3Genes predicted as essentials by both FBA and SA (50 in total).
↓Genes shown to be down-regulated in vivo (9 in total) [57].
↑Genes shown to be up-regulated in vivo (6 in total) [57].
*Genes not present in the Database of Essential Genes (DEG) (15 in total) [56].
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catalyzed by the modelled C. difficile protein. In seven of

those cases, the top matching Pfam family that contains

human homologs binds a similar ligand (Additional file 1:

Table S6). Taking as an example the case of the enzyme

encoded by the asd gene, we detect 39 atoms (Z-score 3.92,

p-value 0.012) in common to a glyceraldehyde-phosphate

dehydrogenase from spinach (PDB ID 2PKQ) bound to

NADPH, a member of Pfam family PF00044 that has hu-

man homologs (Figure 1). Five out of the top 7 most simi-

lar binding-sites also bind NADPH or NADP, all from

different Pfam families. The superimposition of these di-

verse binding-sites based on their similarities to the asd

gene product binding-site leads to an extremely good

superposition of their respective bound-ligands (Inset

Figure 1). This suggests that the detected similarities

are biologically significant. The quality of the resulting

superimpositions together with the detection of similar-

ities across families that bind similar ligands to those

that bind the C. difficile targets reinforces the confi-

dence in the biological significance of our predictions.

The quality of the alignment of the NADP molecules

across different families via the detected similarities

suggests that these capture the molecular determinants

responsible for binding. As such determinants are con-

served across protein families, there is a possibility that

these are also conserved within families and thus

present in the human homolog. In most cases, the simi-

larities that were detected actually represent commonly

used cofactors or other ubiquitously used ligands, such

as NADP above or ATP. These results do not necessar-

ily mean that a drug targeting the C. difficile protein will

bind the human homolog belonging to the detected

Pfam families, but these should be used as potential

cross-reactivity targets in the rational design of inhibi-

tors against the C. difficile protein in question. Further-

more, given that the detected similarities focus on

common cofactors and ubiquitous molecules such as

ATP, the results also suggest that targeting the sub-

pockets of less ubiquitously used substrates may reduce

the chance of cross-reactivity.

Metabolic essentiality

The inhibition of potential human cross-reactivity targets

detected by sequence, functional or 3D binding-site simi-

larities may not necessarily lead to any serious side effects.

As a result of the differences between human and C. diffi-

cile metabolism, a protein may be essential in the former

but non-essential in the later. We sought to use FBA to

determine if inhibition of human homologs of predicted

essential C. difficile proteins could have any effect on the

Figure 1 Example of biding site similarities between the modelled asd gene product and the photosynthetic a2b2-glyceraldehyde-

phosphate dehydrogenase bound to NADP. The two binding-sites share 39 atoms of equivalent atom types in corresponding positions in
space (Z-score 3.92, p-value 0.012). This protein from spinach (PDB ID 2PKQ) belongs to Pfam family PF00044 that contain human homologs. The
inset shows the superimposition of the bound NADP molecules found among 5 of the top 7 most similar binding-sites belonging to different
protein families.
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human cell. To do so, we performed a gene deletion FBA

analysis on the latest draft of the human reconstructed

metabolic network RECON2 [17]. In the case of functional

homologs all reactions associated to the human homolog

of the C. difficile target were removed for the FBA analysis

from the human network. Likewise, in the case of the 21

C. difficile potential targets without human functional ho-

mologs but with detected binding-site similarities, we

identified all human proteins from the Pfam families

where similarities were detected and deleted all RECON2

reactions associated (from 1 to 121 reactions at once de-

pending on the C. difficile protein). We opted for this con-

servative approach to simulate a situation in which a

potential drug would inhibit all potential cross-reactivity

targets. Only 4 predicted essential C. difficile genes have

predicted essential human cross-reactivity targets (under-

lined in Table 3). For all others, the presence of a human

potential cross-reactivity target may not be sufficient to

discard it as a potential target.

Double gene deletions

We performed double gene deletions to identify potential

polypharmacological targets and to target reactions that

are catalyzed by isoenzymes. Based on FBA analysis, 203

gene pairs involving 69 unique genes that had small or no

effect in single gene deletion were deleterious when re-

moved in pairs. An additional 3 essential gene pairs in-

volving 6 new unique genes were found using SA. Eight

gene pairs were considered essential in both SA and FBA

(Additional file 1: Table S8).

Some double mutants show a synergistic effect, de-

fined as an effect greater that an additional 1% reduction

in biomass production in the double mutant than the

sum of effects of each single mutant. The 39 synergistic

double mutants were analysed in more detail (Additional

file 1: Table S9). Thirteen of these synergistic gene com-

binations resulted in total abolition of biomass produc-

tion in FBA or prevented the biosynthesis of at least one

element of the biomass in SA, 11 had an effect between

10% and 20% and the remaining 15 had a small effect on

biomass production (between 5 and 10%). Twelve of the

essential pairs of genes are isoenzymes that catalyze the

same reactions. Sixteen gene pairs represent enzymes in-

volved in pathways with the same functional category

while the remaining 11 gene pairs affect different path-

ways (Figure 2). All essential pairs identified by both SA

and FBA are isoenzymes whose removal results in a total

arrest of biomass production.

Isoenzymes usually result in a higher biomass loss than

relatively distant pairs (Figure 2). For the 12 isoenzymes,

the deletion of the two genes in a pair is required to remove

a reaction that is catalysed by both. For the remaining es-

sential gene pairs, the reactions associated with both genes

are used in parallel in the wild type, a case of metabolic

plasticity [61], or the reactions from only one of the genes

is used while the reaction from the other member of the

pair can act as a backup, a case of metabolic redundancy

[61]. Depending on the category in which an essential gene

pair falls, different strategies may be required in order to

target the pair [61]. From the 39 essential genes pairs, 23

represent cases of plasticity of the network and 4 cases of

redundancy in the network (Additional file 1: Table S9).

Distribution of predicted essential genes across pathways

In order to see which parts of metabolism are more

enriched with essential genes, we classified reactions into

8 functional pathway classifications (Additional file 1:

Table S10). A hypergeometric test [62] for over and

under-representation was performed to identify pathways

enrichment in essential genes. This analysis confirmed

that linear pathways, like lipid synthesis, tend to have

more essential genes (25 out of 71 single gene deletions,

overrepresentation p-value 1.81e−10) due to the lack of al-

ternative ways leading to the production of biomass me-

tabolites (Figure 3, Additional file 1: Table S11).

Potential compounds binding predicted essential targets

Molecules potentially binding the proteins encoded by

the 123 genes identified as potential targets on their own

Figure 2 Effect of the deletion of essential genes and deletion

of essential pairs of genes in term of biomass lost. Essential
genes removal identified by SA were considered to give a null biomass
if one of the component of the biomass was impossible to produce
otherwise they were arbitrary attributed an effect of 5-10% since the
number of reaction required to produce biomass augmented by less
than 10% in every cases. The number of cases in the unlabelled
sections of the pie chart is in clockwise order 1, 1, 3 and 1.
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(76 genes) or as part of pairs (47 unique genes, forming

39 different pairs with synergetic deleterious effect when

both genes are removed) were identified based on se-

quence homology (E-value < 1.0e−5, sequence identity

above 30%, and overlap over 80%) between predicted es-

sential proteins and entries in the DrugBank database

Version 4 beta [63] (Table 4). A total of 125 molecules

bind 41 protein entries from DrugBank with homologs

among 29 predicted essential C. difficile targets. While the

list includes cofactors, binders, inhibitors and activators,

all such molecules bind the homologs of the predicted es-

sential C. difficile targets. Most of these molecules are still

experimental. Interestingly, 22 molecules are approved

drugs based on DrugBank annotation. Among these we

have Celurelin predicted to bind to the product of two dis-

tinct predicted essential genes in the same pathway: fabF

and fabH (with the potential for polypharmacology). My-

cophenolic acid and Ribavirin are predicted to bind the

predicted essential product of guaB and, TCL a potential

inhibitor of the product of CD2577 which is essential only

as part of double mutant with fabG. The double inhibition

could be achieved with the use of the experimental mole-

cules linked with fabG such as EMO, MAX or TDB.

Lastly, pyridoxal phosphate is a potential binder of two

proteins that are part of a pair whose double mutation is

predicted to be lethal (glyA and CD2834). The identifica-

tion of any potential binding small-molecules (based on

target homology) is useful since there is a chance that

these molecules may also bind the predicted essential C.

difficile homolog protein and this information could be

used as a basis for the development of more potent and

selective inhibitors. This analysis also helps elucidate the

role of pyridoxine, an essential vitamin that has no direct

effect on biomass, since pyridoxal phosphate is a cofactor

that binds two genes (glyA and CD2834) part of the same

essential pair. In a similar way, we can elucidate one of the

reasons for biotin essentiality via its identification as a co-

factor for accC, a predicted essential gene as single mu-

tant. This list remains to be experimentally validated but

is meant as a starting point in targeting any one of the

genes predicted as being essential in the network.

Discussion
In this work we present iMLTC806cdf, a highly curated

metabolic network of the nosocomial pathogen Clostridium

difficile strain 630. This metabolic network is functional in

the sense of being amenable to simulations using Flux Bal-

ance Analysis to measure biomass production in diverse

types of media. iMLTC806cdf is available in SBML, TSV

and Excel formats. The network is based on the aggregation

of metabolic data present in databases, augmented with in-

formation from various sources of experimental data from

the literature and manually curated in order to ensure a

high quality of the resulting network.

Metabolic networks bring together information from

various databases. Due to inaccuracies, contradictions and

Figure 3 Distribution of genes (A), deleterious genes (B) and genes involved in deleterious pair (C) in the different metabolic

pathways. If one gene was present in more than one reaction that did not share the same metabolic function the most relevant function was
manually chosen based on gene description.
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missing information in each database [64-66], the non-

curated network resulting from the simple aggregation of

all these sources of information is often incomplete and

includes a large number of errors, missing data and repeti-

tions, which make the generated networks unusable [41].

Different databases will often have multiple identifiers for

highly similar entries, which cause duplications. Surpris-

ingly, this is true not only for reactions and metabolites

where curation is more difficult but also for genes. Manual

curation is essential to correct inaccuracies present in

metabolic databases and particularly to fill gaps (missing

reactions) necessary to remove dead-end metabolites to

create a functional network. Manual curation is a time

consuming, expensive and non-scalable process. Unfortu-

nately, it is also indispensable at this time as can be

attested by the 14 predicted essential genes (alone or as

Table 4 List of 29 potential targets associated with 125 potential binders based on sequence identity

Target (pair)a Sequence identityb DrugBank potential inhibitorsc

E.coli Human

accC P24182 [53%] Q96RQ3 [48%] LZJ, LZK, LZL, OA1, OA2, OA3, OA4, OA5, L21, L22, L23 (P24182 [53%]);
BTI (Q99UY8 [48%]); BTN (P11498 [45%]); D1L, H1L (O00763 [32%])

adk P69441 [52%] P54819-2 [45%] IPE (P30085 [32%])

crt1 M9BEQ1 [37%] P30084 [44%] QUE (Q6NVY1 [30%])

fabF P0A6Q6 [49%] Q9NWU1 [45%] CER, P9A, PMN (P0AAI5 [50%]); TL5, TL6, P4T (P0A953 [38%]); TLM (P63454 [37%])

fabH P0ACC7 [42%] - CER, 669, OCS (P0A6R0 [45%]); B82 (820 T1 [43%]); DCC, UDT,
VZZ, D1T, DFD, MDX (P0A574 [37%])

fabZ P0ADG7 [36%] P20839 [35%] QUE, 2BC, 2BE, 2RB, 3BE, 4BB, 4BE, AGI, EMO, SAK (Q5G940 [41%]);
BDE (O25928 [41%])

glmU P62617 [55%] - P21 (P43889 [42%])

guaB P14900 [32%] P20839 [35%] MOA, RBV, CPR, VX-148 (P20839 [35%])

ispA B1J028 [42%] Q5T2R2 [31%] IPR (Q83M58 [41%])

ispH M8X9N5 [30%] - DMA, IPE (P62624 [30%])

ispF P0AD61 [51%] P14618-2 [44%] FPP (Q8EBR3 [62%]); GPP (P62617 [55%]); IPP (A0R559 [34%])

murD P0A858 [44%] P60174-1 [44%] LK1, LK2, LK3, LK4, LKM (P14900 [32%]);

ntpA - P38606 [51%] ADH, 911, Tiludronate, BafilomycinA1, Bafilomycin B1
(P38606, [51%]); QUE, APP, AUR, PIT, TLX (P06576 [30%])

ntpB - P21281 [53%] Gallium nitrate, AES (P21281 [53%]); QUE, APP, AUR, PIT, TLX (P06576 [30%])

pykF A0A029KL96 [52%] P14618-2 [44%] D8G, DYY, DZG, PGA (P14618 [44%])

deoD (deoB, deoC) L3ICZ2 [46%] P00491 [48%] IMH, 2DI, AZG, 9PP, IMG, GU7, BC3, 9DI (P00491 [48%])

fabG (CD2577) P33898 [61%] P04406 [44%] EMO (P16544 [37%]); TAQ, CB3, DVP, FE1 (P0CG22 [34%]);
MAX (Q6PKH6 [33%]); TDB (Q16698 [31%])

CD2577 (fabG) N3Z8L0 [36%] Q92506 [33%] TCL, IDN, AYM, BGC, 654, ZAM, 826, NDT, (P0AEK4 [39%]); NAP, TDB (Q16698 [30%])

gapA (gapB) P0A9B2 [52%] O14556 [47%] BRZ, NMD, TND (O14556 [44%]); AES (P04406 [49%])

gapB (gapA) P25526 [35%] P00352 [35%] APR, SND, AES (P04406 [49%]); BRZ, NMD, TND (O14556 [47%])

uppS (CD2762) P0A825 [56%] P34897-3 [45%] B08, B28, B29, B76, FPP, FPS, IPE (P60472 [44%]); GPP (P60379 [43%])

glyA (CD2834) P0A825 [48%] P34897-3 [41%] PLP, THL (P34897 [45%]); Mimosine (P34896 [44%])

CD2834 (glyA) - B7ZLW7 [31%] PLP, THL (P34897 [41%]); Mimosine (Pr4896 [40%])

CD0727 (folD | fhs | fchA)d P24182 [53%] Q96RQ3 [48%] CNC, THL, I2A (Q99707 [31%])

scoB (folD | fhs | fchA)d E9YQ86 [56%] B7Z609 [51%] SIN, EMT (P55809 [52%])

scoA (folD | fhs | fchA)d G1YD51 [53%] Q6IAV5 [42%] SIN, EMT (P55809 [42%])

CD3231 (hpt) W1H7G6 [47%] Q9NRG1 [33%] DX4, PPO, PM6, PRP, XMP, 9DG (P00492 [34%])

hpt (CD3231) W1H7G6 [55%] P00492 [34%] DX4, PPO, PM6, PRP, XMP, 9DG (P00492 [34%])

aldh (CD2733) - P51648 [43%] RLT, 1O8, DTT (P00352 [30%]);
aGenes that are essential as part of a double mutant pair have the name of the partner gene identified in parenthesis.
bUniprot ID of the closest sequence homolog.
c3-letter PDB code of ligand that is a known inhibitor or binder of a sequence homolog with the Uniprot ID and the level of sequence identity given in parenthesis.

Approved drugs are in italics.
dThe target gene is part of more than one essential pairs, one with each of the proteins in parenthesis.
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part of a double mutant) that do not even appear in the

automatically generated C. difficile network. It is clear that

the automated generation of functional metabolic net-

works is a worthwhile goal. However, at present automat-

ically generated networks are not functional. At this time,

such networks can only be used at best as a starting point

prior to intensive manual curation. Their use as starting

points however subtracts very little to the manual work re-

quired to produce a functional network.

In some sense, metabolic networks serve as a tool to ag-

gregate all existing knowledge about the metabolism of an

organism. Clearly, the more well studied an organism is,

the more information exists to build and validate such a

network. C. difficile is an organism that is not well studied

due to a number of factors. First, being a pathogen severely

restricts the number of active researchers studying it given

the experimental requirements in terms of biosafety. Sec-

ond, C. difficile presents particular challenges that make

genetic manipulations notoriously difficult. Until recently,

genetic studies in C. difficile were restrained by the lack of

efficient tools to inactivate specific genes. The recent devel-

opment of a universal gene knockout system in clostridia

has opened new possibilities and it is now somewhat easier

to disrupt genes in a very specific and directed manner

[67,68]. This system called ClosTron is based on retarget-

ing of the Lactococcus lactis Ll.LTRB group II intron so

that upon transfer into C. difficile by conjugation, the in-

tron integrates at a specific user-defined chromosomal site.

With the advent of ClosTron our knowledge of the biology

of C. difficile and the identification of essential genes is

bound to increase but at the moment, there is a lack of C.

difficile specific literature and that limits the completeness

and validation of the network. Some information such as

biomass constituents and protein-protein interactions had

to be extrapolated from other closely related species. The

metabolic pathways involved in linking dead-end metabo-

lites to the rest of the network also sometimes had to be

extrapolated due to lack of experimental data. No in-depth

studies exist of the directionality of reactions as it was done

in E. coli [69], or association between biomass production

and predicted growth rate as it was done in B. subtilis [23],

due to the absence of metabolomics data and precise

growth rate experiments for C. difficile. While informa-

tion can be extrapolated from closely related organisms,

fundamental differences still exist and may be a source of

potential errors. Notwithstanding the existing limitations

in creating and validating a C. difficile specific network,

iMLTC806cdf is as complete or more than existing cu-

rated networks and accounts for all existing relevant ex-

perimental information. We hope that in addition to being

a tool to aggregate existing knowledge, iMLTC806cdf will

prove to be valuable as a nucleation point in developing

our understanding of this important human pathogen

driving the generation of new experimental hypotheses.

The analysis of a metabolic network in isolation in the

absence of other relevant processes present in the organism

poses its own problems. For example, the effect of metabo-

lites (such as pyridoxine and biotin) [37] involved in non-

metabolic processes could not be simulated. Likewise, me-

thionine added to minimal media greatly increases growth

in vitro [36] but the addition of methionine to the minimal

media in iMLTC806cdf increases biomass by less than 1%.

Methionine is mostly used in the bacteria as S-adenosyl me-

thionine involved in the biosynthesis of cofactors and vita-

mins which are not directly involved in biomass synthesis

and have an effect that cannot be simulated in the metabolic

network [70]. While the removal of methionine produced a

qualitatively correct outcome, the loss of biomass in the net-

work when removing methionine from the minimal medium

is only due to the additional reactions required to produce

enough methionine as required for biomass production.

The case of pantothenate, the only essential vitamin

with a clear metabolic effect is unique, as its essentiality is

strain-dependant. A biosynthesis pathway for panthothe-

nate was recently identified in C. difficile strain 630 [40]

and is present in some other strains based on MetaCyc.

As a result, this vitamin is a non-essential component of

the growth medium based on our in silico analysis. This

vitamin is however essential in a number of strains previ-

ously tested [37], which did not include either strain 630

or the others containing this pathway in MetaCyc.

The comparison with C. acetobutylicum network [26]

indicates that both bacteria share the same metabolic core.

Existing differences in reactions and associated genes may

explain the differences obtained while comparing the ef-

fects of deleted genes and reactions. The different media

utilized for both bacteria may also cause some differences.

The comparison with experimental results for B. subtil-

lis [47] was used as validation due to the absence of ex-

perimental results for the gene essentiality in C. difficile.

While essential differences exist between the two organ-

isms, a large degree of conservation is also present. There-

fore one should expect that a large number of genes

conserve their essentiality across these two species. The

high level of accuracy (according to functional or sequence

homology) between the experimental results and our pre-

dictions serves as a validation of iMLTC806cdf as a ma-

ture draft metabolic network and increases our confidence

in the list of predicted essential genes. One important dif-

ference between the metabolism of C. difficile and B. sub-

tilis is that the later can use oxygen to produce energy

while the former cannot. Therefore, predicted essential

C. difficile genes involved in fermentation such as pykF or

ackA are not essential in B. subtilis. Other genes such as

fabH, CD1966 and ribC are only present in one copy in

C. difficile while more than one gene catalyses the same

reactions in B. subtilis [71], explaining why such genes are

non-essential in the latter.
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Some genes whose inactivation is deleterious in vitro are

not identified in silico due to their implication in non-

metabolic processes. Both iMLTC806cdf and the network

of Bacillus subtilis [23] fail to identify the essentiality of

CD1536 (yumC in B. subtilis) due to its implication in

regulatory processes. In addition, the toxicity of a mol-

ecule cannot be simulated in silico either. Therefore, the

essentiality of genes involved in detoxification or whose

deletion leads to the accumulation of toxic molecules can-

not be simulated. For example, the removal of CD3543

would lead to an accumulation of nicotinate that could be

toxic. This effect cannot be simulated in the network,

therefore CD3543 is not considered essential in the net-

work but is essential in vivo in B. subtilis [47].

The combined use of FBA and SA allowed us to detect

more essential genes than using either technique alone.

Their joint use increases our confidence on the predic-

tions for those genes where the two techniques agree. At

the same time, the two techniques complement each

other. For example, the gene acpS catalyses the only re-

action that leads to the production of a holo-acyl-carrier

protein from the apo version of the protein. This reac-

tion is essential since the holo form of the protein is re-

quired to perform the elongation of lipids. The presence

of a cycle that allows for the reutilisation of the released

holo-acyl-carrier protein at the end of lipid elongation

prevents FBA to identify the deletion of acpS as deleteri-

ous. The analysis by SA uses the apo version of the acyl-

carrier protein and predicts acpS as essential since without

it, the holo form cannot be produced. New targets were

also found when using SA for double mutants. Targets

identified by SA are mostly isoenzymes that lead to dele-

tion of new reactions in the shortest possible pathway

leading to the production of essential biomass metabolites.

The gene deletion analysis identified interesting poten-

tial therapeutic targets. Targets such as the aspartate-

semialdehyde dehydrogenase (E.C. 1.2.1.11) asd (UniProt

ID Q17ZW9) or the diaminopimelate epimerase (E.C.

5.1.1.7) dapF (UniProt ID Q182T1, also known to be

essential in B. subtilis) that do not have human func-

tional homologs, decrease the chance of side effects

due to cross-reactivity. Another predicted essential

gene, the aspartate-ammonia ligase (E.C. 6.3.1.1) asnA

(UniProt ID Q183C9) is up-regulated in vivo and could

be important for the pathogenesis of the bacteria [57].

Most targets like CD2549, dxr and ispF have more than

one of these characteristics and would be interesting for

more than one reason.

As a result of the conservation of local binding site envi-

ronments [58,59,72], drugs often targets proteins in a way

that might not be sequence-dependent. To account for

that effect, we used functional homologs to identify poten-

tial human cross-reactivity targets for predicted essential

C. difficile proteins. This made for a more stringent

analysis since the number of potential human functional

homologs is almost twice as large as those based on se-

quence similarity alone. The absence of a human homolog

is often used as a criteria for identification of potential

drug target [73]. If no homolog is present, there is a

smaller probability that a drug targeting this specific pro-

tein have an effect in humans.

For those cases where sequence or functional hom-

ology did not detect potential human cross-reactivity tar-

gets, we utilized the detection of local binding site

similarities. This analysis identified protein families with

human representatives that harbour large binding-site

similarities to the C. difficile targets in the absence of se-

quence or functional similarities. The detected similarities

are primarily localized to binding-sites of cofactors and

ubiquitously used ligands such as NADP or ATP. It is im-

portant to keep in mind that it is not possible to deter-

mine a minimum similarity threshold other than 100%

above which one can be certain that the detected human

proteins will act as cross-reactivity targets as small differ-

ences can bring about drastic effects [59].

The presence of a human potential cross-reactivity tar-

get (a homolog or a protein with sufficient binding-site

similarities) is not sufficient to evaluate whether or not

targeting a particular target might have important side ef-

fects since the human protein might not be essential. The

use of predicted essentiality of human functional homo-

logs or those with detected binding-site similarities in

RECON2 [17] in conjunction with their essentiality in C.

difficile represents a more consistent analysis of targets

across hosts and pathogens. To our knowledge this use

metabolic networks across species to determine the poten-

tial of a target to have cross-reactivity targets leading to

side effects is novel.

A “perfect” predicted essential target would be one with-

out (or with non-essential) potential cross-reactivity tar-

gets in human and E. coli (as a proxy for gram-negative

and gut flora in general), with essential homologs in B.

subtilis and up-regulated in vivo. Although no C. difficile

target could be found fulfilling all properties at once, the

123 potentially essential targets identified (as single or

double mutants) fulfil several of these properties and

could, once validated experimentally serve as a target for

the development of new antibiotics.

The list of active molecules that potentially bind pre-

dicted essential targets includes many molecules that

could help in the validation of the targets in C. difficile

and the development of novel drugs [74]. Experimental

validation is required to determine if the identified small-

molecules do bind the C. difficile homologs. Some of these

small-molecules, such as the approved anti-viral Ribavirin,

could speed the approval of C. difficile specific inhibitors

through drug repositioning. In the case of Ribavirin, the

molecule is a rapidly absorbed guanosine analog currently
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used in the treatment of Influenza [75] and hepatitis C [76].

Cerulenin has anti-fungal and anti-bacterial activity target-

ing FabF in B. subtilis [77], thus very likely targeting the

same protein in C. difficile as we predicted. In all cases, the

multiple small molecules predicted to bind the predicted

essential C. difficile proteins could be used to bias library

selection for the rational development of new inhibitors.

Conclusions
In the current work we present the first extensively cu-

rated metabolic network reconstruction for C. difficile

(strain 630) iMLTC806cdf and validate it with experi-

mental data on essential metabolites and carbon sources.

We compare iMLTC806cdf to existing networks show-

ing the importance of manual curation and use the net-

work to predict essential genes. The predictions agree

with experimental data for B. subtilis (the closest organ-

ism for which such data is available). We detect potential

cross-reactivity targets for each of these genes using a

variety of methods combining systems and structural

computational biology and determine that for only 4 out

of 76 predicted essential genes, if exiting, the potential hu-

man cross-reactivity targets are themselves essential in the

human metabolic network reconstruction RECON2. For a

number of essential genes we find potential binding small

molecules, including approved drugs such as Ribavirin,

which may inhibit the respective gene products. We hope

that iMLTC806cdf will find further use in the community

and the results here lead to the development of novel anti-

biotics against C. difficile infections.

Methods
Creation and curation of the draft metabolic network

We created a collection of metabolic and transport reac-

tions associated with C. difficile strain 630 from the KEGG

[34], MetaCyc [78] and TransportDB [79] databases. Reac-

tions involving polymers (glycogen, peptides and others)

were ignored to avoid the spontaneous creation of matter

due to the presence of molecules of undefined length.

Also, some of these polymers, like glycogen, are only used

for energy storage [80] and would not have any impact in

simulations that optimize biomass production. Reactions

involved in spore formation, the conjugation process,

RNA, peptide or DNA modification, cell repair, and other

non-metabolic enzymatic reactions were not added to the

network since these reactions are not directly contributing

to the production of biomass constituents. Finally, the re-

constructed network concentrates solely on metabolism

without including signalling, gene regulation and post-

translational modification of proteins even if these can

clearly affect metabolism.

The initial draft network is little more than a collec-

tion of reactions. In that state it cannot be used for any

sensible application such as the simulation of biomass

production. This is due to the numerous inaccuracies

present in the databases. These inaccuracies consist of, but

are not limited to, the presence of generic and dead-end

metabolites, missing or erroneous pathways, missing genes

and unbalanced reactions (Additional file 1: Table S12).

Two cases exemplify some of these inaccuracies. First, not-

ing that aerobic pathways should not be present at all in

the C. difficile, the inclusion of incomplete versions of both

aerobic and anaerobic pathways for the biosynthesis of vita-

min B12 is problematic (Additional file 1: Figure S3). Sec-

ond, the omission of most reactions in the Stickland and

amino acid fermentation pathways (Additional file 1: Figure

S4), important sources of energy for the bacteria, which

had to be completed based on literature. Both of these cor-

rections a numerous others in of the same nature were ne-

cessary to create a functional network (Figure 4).

Most transport reactions were based on TransportDB

[79] although putative transporters not present in the data-

bases had to be added for molecules known to be exported

or imported by the bacteria. An exchange reaction (reaction

that simulates interaction with the media via the appear-

ance or disappearance of the given metabolites in the net-

work) was created for each metabolite with an extracellular

version. These exchange reactions are set to allow the ex-

port of a metabolite unless it is part of the tested growth

medium in which case import is also possible.

The curation not only involved the addition and sup-

pression of reactions from the initial draft, many charac-

teristics of each reaction such as the directionality, the

presence of complexes or the assignment of gene-reaction

associations and their inclusion as part of a pathway had

to be analyzed manually. The directionality of reactions

was based on information obtained from the MetaCyc

database when available. Reactions found exclusively in

KEGG were kept bidirectional unless leafing to the pro-

duction of a highly energetic compounds (ATP, NAD+,

NADP+, etc.) that were not known to be produced in such

a manner. Examples of reactions producing highly ener-

getic compounds are ATP synthases, amino acid fermen-

tation and glycolysis.

Protein-protein interactions are highly important in the

network since they can modify the essentiality of a gene

based on knowledge of the involvement of its protein prod-

uct as part of a protein complex. The possibility that a pro-

tein complex is responsible for catalysis was investigated for

every reaction that had more than one gene associated to

the reaction and for any gene whose protein is identified as

a subunit of a complex. We used information from Trans-

portDB, UniProt, Brenda and literature data (either for the

C. difficile protein of interests or a homolog of same func-

tion that could indicate a similar interaction between genes

products). In every case the STRING version 9.1 [81] score

was calculated to evaluate the confidence score attributed

to each complex (Additional file 1: Table S13).
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We used KEGG pathway identifiers since they are gen-

eric and allow maintaining a small number of pathways

in the network. Pathways containing less than five reac-

tions were manually merged to the closest relevant path-

way. Reactions that were not associated to any pathway

in KEGG (32% of the reactions in KEGG) were linked to

existing pathways. The pathway assigned to the reaction

was the one in which the less linked metabolite of the re-

action was most often present in the network (Additional

file 1: Table S10).

Lipid biosynthesis and cell membrane composition

A problem with lipid biosynthesis in metabolic networks

is the fact that a variety of different fatty acids exist in

cells with different lengths and saturation states and can

be used in numerous cellular processes, both metabolic

and non-metabolic. Also, the lipid composition of the

cellular membrane is a mix of various phospholipids and

glycerolipids of varying lengths and composition and this

composition varies depending on the growth conditions

[82]. A complete definition of lipid metabolism is likely

impossible to define at this moment given the lack of ex-

perimental information specific to C. difficile membranes.

Furthermore, the resulting network would be dominated

by lipid reactions with the same few genes repeated for

every possible length and saturation state for every lipid

type. Therefore, having an exhaustive definition of lipid

metabolism would not bring any additional relevant infor-

mation on metabolism. In most reconstructed metabolic

networks, lipids are used almost exclusively in membrane

formation. Following [42], in order to reduce the complex-

ity of lipid metabolism while keeping it as close to the real

bacteria as possible, the fatty acid composition of all lipids

is held at a constant 16:0 (carbon chain length: number of

double bonds), which is the most abundant fatty acid ob-

served in C. acetobutylicum [83]. The last step in simplify-

ing lipid biosynthesis was to combine the elongation of

fatty acids from acetyl (2:0) to palmitate (16:0) into a single

reaction and beta-oxidation of the palmitate back into

acetyl as another single reaction.

Biomass

In order to simulate bacterial growth, the biomass (en-

semble of macromolecules necessary for cellular growth

and division) composed of DNA, RNA, cell wall, pro-

teins, solute pool and lipids was defined based on the

following elements. Nucleic acid composition of DNA

used in the network was calculated based on the nucleo-

tide content of the genome and plasmid of Clostridium

difficile strain 630, RNA composition is based on the

content of the transcriptome using the UCSD genome

browser [84] and protein composition using the proteome.

Lipid, cell wall and solute pool composition as well as the

overall biomass composition were taken from the C. aceto-

butylicum network [42] due to a lack of literature specific

to C. difficile. A detailed composition of the biomass is

available in supplementary Additional file 1: Table S14.

Simulation of growth and gene essentiality

Two methods were used to simulate bacterial growth

and determine gene essentiality: flux balance analysis

(FBA) [21] and synthetic availability (SA) [22].

Flux Balance Analysis (FBA)

Flux balance analysis [21] is a constraint-based modeling

method commonly used in the study of genome-scale

Figure 4 Flow chart representing the main steps of reconstruction of a metabolic network. The creation of the network begins by the
building of a draft by extracting data from various databases. The draft will then enter an iterative cycle between curation and validation, each
steps of validation bringing a new step of curation if it fails. The final version of the network can then be used to perform various analyses
(growth tests, in silico gene deletion, etc.).
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metabolic networks. FBA firsts creates a stoichiometry

matrix (S) from the network where each row represents a

metabolite and each column a reaction. The values in this

matrix correspond to the stoichiometry of the metabolite in

the reaction with a negative number representing con-

sumption and a positive number representing production

of the metabolite. A system of linear equations is produced

by multiplying S with a column vector v representing the

fluxes through each reaction. FBA creates a steady-state

distribution of fluxes where the product of the previous

multiplication must equal zero S ⋅ v = 0. Since the resulting

system of linear equations is undetermined, FBA uses linear

programming to maximize a particular objective function

Z, in our case biomass as the representation of growth, by

maximizing the multiplication of a row vector c containing

the weight of each reaction on Z with the column vector v

used previously (maximize Z = c ⋅ v). Values in v are con-

strained by lower and upper bounds representing various

factors like enzyme directionality of the reaction, capacity,

uptake, secretion rates, etc. FBA finds a distribution of fluxes

in the network respecting the constraints on v and maximiz-

ing Z at the same time. In our studies, the Sybil package ver-

sion 1.1.11 [32] available for the free R environment for

statistical computing (version 2.15.2) was used in order to

run FBA simulations. Other tools also exist that can use FBA

with different interfaces like the COBRA package [85] that

runs on the proprietary Matlab computing environment.

Synthetic Accessibility (SA)

Synthetic accessibility [22] is a parameter-free method to

predict the essentiality of genes through their deletions in

metabolic networks. SA uses network topology to calculate

the number of reaction steps needed to produce the out-

puts (biomass) of the network from the inputs metabolites

available in the growth medium. SA works by examining all

reactions that use only input metabolites and marks those

reactions and their products as ‘accessible’. In an iterative

manner, successive iterations search for new reactions that

have all required substrates marked as accessible until no

new reaction can be added. Each metabolite j have a syn-

thetic accessibility value Sj representing the number of iter-

ations before this metabolite became accessible and the

Synthetic Accessibility of the network as a whole, Snet, is

the sum of Sj of each of the output metabolites. Increases

in Snet resulting from gene deletions are predicted as being

deleterious. Synthetic accessibility is a simpler method than

FBA and gives comparable results on the prediction of es-

sential genes demonstrating that the topology of the net-

work is the principal factor influencing essentiality. We use

our own implementation of the algorithm.

Local structure similarity

The identification of local structure similarities is sepa-

rated into three steps: the creation of a three dimensional

model of the protein, the identification of the probable

binding site, the comparison of the binding site to a data-

set of known binding sites. The models used where cre-

ated using I-Tasser [86], a tool which builds 3D models

based on multiple-threading alignment and iterative frag-

ment based simulations. Detailed methodology for I-

Tasser can be found elsewhere [86]. We used the Isocleft

Finder (Kurbatova et al., [58]) web-interface to compare

the largest cavity of each of the models (representing the

binding site in 83% of cases [87]), identified using their

own implementation of the SURFNET algorithm [88], to a

non-redundant dataset of 7339 binding-sites of unique

combinations of protein families bound to distinct ligands

[58] using Isocleft [58,59]. IsoCleft is a graph-matching

based method for the detection of structural and chemical

similarities between pairs of protein cavities. In each case,

we selected the most similar match found to a protein in

the IsoCleft Finder non-redundant dataset that contains

human homologs. It is important to note however that

the representative of such family in the non-redundant

dataset may itself not be necessarily a human protein.

Additional file

Additional file 1: Figure S1. Comparison of the metabolites (A) and
genes (B) from iMLTC806cdf to those in the automatic network. Figure S2.

Comparison of the metabolites (A), genes (B) and reaction (C) from the
Clostridium difficile metabolic network to those from the network of
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were added to the network based on Clostridium difficile specific
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