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A Curved-Beam Bistable Mechanism

Jin Qiu, Jeffrey H. Lang, Fellow, IEEE, and Alexander H. Slocum, Member, IEEE

Abstract—This paper presents a monolithic mechani-
cally-bistable mechanism that does not rely on residual stress for
its bistability. The typical implementation of this mechanism is
two curved centrally-clamped parallel beams, hereafter referred
to as “double curved beams”. Modal analysis and finite element
analysis (FEA) simulation of the curved beam are used to predict,
explain, and design its bistable behavior. Microscale double
curved beams are fabricated by deep-reactive ion etching (DRIE)
and their test results agree well with the analytic predictions.
Approaches to tailor the bistable behavior of the curved beams
are also presented. [1079]

Index Terms—Beam analysis, bistable structure, compliant
structure, deep-reactive ion etching (DRIE), microelectromechan-
ical systems (MEMS), structure optimization.

I. INTRODUCTION

ECHANICALLY BISTABLE mechanisms are useful in
MEMS devices such as relays, valves, clips, threshold
switches and memory cells, etc. One advantage of such
mechanisms is that they can apply a contact force without the
need for continued actuation power. Three main categories
of bistable mechanisms have been reported in the MEMS
literature: latch-lock mechanisms [1], [2], hinged multisegment
mechanisms [3]-[5], and residual-compressive-stress buckled
beam or membrane mechanisms [6]—[8]. The latch-lock mech-
anisms require complex actuation to lock and unlock. Hinges
having zero friction, zero clearance, and zero stiffness are
hard to realize in general with MEMS fabrication processes,
and especially with deep-reactive ion etching (DRIE). Finally,
residual stress is hard to realize or control in bulk-fabricated
structures. A monolithic bistable mechanism is presented in
this paper that uses no latches, no hinges, and no residual stress
to achieve its bistability. This mechanism can be effectively
fabricated using DRIE [9], and is used in a MEMS relay [10].
Anyone holding a business card between thumb and fore-
finger to provide an axial force that bows the card can expe-
rience the principle of a bistable system. A normal force on the
card can cause it to snap through to its second stable position.
Constructing such a prestressed bistable system using MEMS
technologies, however, can be a difficult task. If one were to
make a structure with initial curved shape, without prestress as

Manuscript received June 26, 2003; revised October 31, 2003. This work was
supported by ABB corporate research, Baden-Dattwil, Switzerland. Fabrication
was performed in the Microsystems Technology Laboratories of MIT. Subject
Editor C.-J. Kim.

J. Qiu is with the Tyco Electronics, Menlo Park, CA 94025 USA (e-mail:
jqiu@alum.mit.edu).

J. H. Lang is with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.

A. H. Slocum is with the Department of Mechanical Engineering, Massachu-
setts Institute of Technology, Cambridge, MA 02139 USA.

Digital Object Identifier 10.1109/JMEMS.2004.825308

would be obtained by merely etching a bow-shape, the system
may buckle and snap with external force applied but will not
stay at the snapped shape when the external force is released
due to the occurrence of a twisting buckling mode. This will
be proven mathematically in detail below. However, using the
principle of reciprocity, the twisting buckling mode in fwo single
curved beams can be used to mutually cancel each other yielding
a bistable double-beam without prestress. This is achieved by
rigidly coupling the two curved beams together at their mid-
points.

The clamped double beams structure has been reported before
by others, such as in [11] and [12]. Attempts are made to show
with a lowest-mode analysis in [11] that a single beam can be
made bistable, although it will be shown below that this analysis
does not reveal key design requirements. In [12], a comb drive
is used to actuate a bar that connects the two beams and also
holds optical switch components. The ends of the bar appear to
be guided by trenches, and no mention is made of the conditions
placed on the beam geometries that are required for bistability.
Indeed, the clamped double beams structure is not bistable if
the geometries are not carefully selected. Furthermore, it will
be shown that a varying cross-section single beam without pre-
stress can be made bistable by thickness modulation; however,
the stress state in the modulated beam is several times higher
than that in a uniform cross-section beam. In what follows, bista-
bility analysis will be presented in detail, as will a discussion of
the fabrication and testing of the bistable structure.

II. MODELING OF CURVED BEAM

The design of the curved-beam bistable mechanism is in-
spired from bistable buckled straight-beam mechanisms, where
a straight beam is axially compressed to buckle to stable posi-
tions at either side. Modeling buckling modes of the latter mech-
anism is critical to modeling the curved-beam mechanism. The
beam equation describing a straight beam subjected to an axial
load p is

d*w d>w

el ey

=0 (1

where w is the lateral beam displacement, F is the Young’s
modulus of the beam material and I the moment of inertia of the
beam. With clamped-clamped conditions, the boundary condi-
tions to (1) are

dw dw
0) =w(l) =0, — =|— =0. 2
wo=wo=o (z) (&), @
Normalize the axial force by

12
N =2 3
ol (3)
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p=p: Mode 1
p=p2 Mode 2

p=p3 Mode 3

Fig. 1. The first three buckling modes for a clamped-clamped beam.

In order to have nonzero solutions, N must satisfy

S

which allows two kinds of solution, namely

w;(z) = C [1 — cos (N; %

1
N;=@G+Dr i=13,5... (5

and

w;(z)=C|1-2% —cos(N; %) —I—%
N;=2.86m, 4.927 ...

(6)
The analysis above gives a mathematical foundation for a buck-
ling analysis. The first three modes found from this analysis
are shown in Fig. 1. A common bistable mechanism involves a
prestressed straight beam buckled into its first mode [6]. Since
buckling can take either an up or down direction, this creates
two stable positions for the mechanism. The residual stress that
gives rise to the axial load is not easy to obtain and control in
MEMS devices especially in bulk micro machining. An alter-
native design that eliminates the need for prestress is to have an
as-fabricated stress-free curved beam with an initial first-buck-
ling-mode shape. The analysis below models such a structure to
determine the parameter requirements for bistability.

Consider the single beam shown in Fig. 2. It has thickness £,
depth b, span [/, Young’s modulus £ and moment of inertia I.
Let w(x) denote the distance of the beam from the straight line
connecting its two boundaries. The as-fabricated shape of the
beam is

w(z) = h [1 — cos (ZWE)] @)
2 l
where h is the initial apex height of the beam. It will be ex-
plained later that having such an initial shape is one of several
requirements for a curved beam to be bistable. Also as can be
seen later in the modeling, the geometry constant () is critical
to the behavior of this mechanism, and it is defined as

h
=—. 8
Q p ®)
As the lateral force f is applied to the center of the beam at
x = 1/2, the center of the beam deflects by

ORI

)
N; j=2,4,6....

Original shape

Fig. 2. Geometry and notation for curved beam deflection analysis.

The total length of the beam s changes to

l l
dw\ 2 1 (dw\?
s:./ﬂl—i-(%) dxz/ 1+§<E>]da: (10)
0

0
where a small deflection assumption is used. The change of s
gives rise to the axial force p by Hooke’s law such that

p=Ebt <1 - (—z)wzu) .

During deflection, define wu; as the beam bending energy, u
as the beam compression energy, and u ¢ as the actuation energy.
The variation of the bending energy inside the beam is

l
EI 2o 2w\’
Ouwy) =9 7/(7‘%) da
0

The variation of the compression energy inside the beam is

(11)

(12)

d(us) = —pd(s). (13)
The variation of the actuation energy is
Iuy) = —fO(d). (14)

A mode superposition method is used in this paper to solve
the beam deflection. The buckling modes for the straight
clamped-clamped beam given in (5) and (6) form an orthogonal
set, so they can be used as the superposition basis for deflec-
tion shape of the initially curved beam, which has the same
boundary condition with the initially straight beam. While it
is possible to solve the problem by using other orthogonal
mode shapes having the same boundary condition, using the
buckling modes as the superposition basis would best capture
the buckling physics of the curved beam during deflection. It
could be seen later that the first three buckling modes, as shown
in Fig. 1, play significantly roles in determining the deflection
of the initially curved beam. To simplify the superposition, first
normalize the parameters according to

Xl
X=2 wX)= w(XD) (15)
l h
Then the superposition of the beam shape is
W(X)=> A;W;(X) (16)
j=1
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where
W;(X)=1—cos(N,;X) .
. =1,3,5... 17
Nj=(j+ ) =L 4
and
_ 2sin(N; X)
W) =1-2X —cos(N; X)+ === } J=2,4.6....
N;=2.86m, 4.927 ...
(18)
The normalized beam shape as fabricated is
- 1
W(X) = 5Wi(X). (19)

Next, normalize the applied force f and parameters in
(9)—-(14) according to

_ fr _ _ sl 2 _ pl?
F=gm 2=% “=mw= N =%
upl® ugl® uf13
Uy=—2" U, = 7 - . 20
YT EIR2 EIh? F = EIn? (20)

With the normalizations in (15) and (20), and the mode su-
perposition in (16)—(19), the relations in (9)—(14) can now be
expressed as

A=1-2 Z A; 1)
j=1,5,9,13...
> A2N?
- it
S_1+Z . (22)
7j=1
N? N &N AIN?
207 =(S)w=w —S= 6 ; 1 (23)
1 2 74 0o A2 774
(A-4)°N A2N:
2 1 J7'J
o(U,) =0 . +Z 1 (24)
j=2
> AZN?2
L) = _N2 _ N2 J"J 2
o(U,) d(S) 0 ; . (25)
oUp) = —Fo(A)=2F > A (26)
j=1,5,9,13

Note that all variables can be expressed in terms of the mode
amplitudes without any cross-terms. The variation of the total
energy within the mechanism U, is the sum of (24)—(26), and is
given by

Ni — N2N? Ni
8(Ut):<%141 - Tl + 2F> d(Ay)
N# — N2N?
J 2
+ Z ( : 4 : ) 0 (Aj)
j=2,3,4,6,7...

N4 _ N2N2
4 Z (QAJ.+2F> 0(4;). 27)
3

L 2
7=5,9,13...
The mode amplitudes should minimize Uy, thus

o(U;y) > 0. (28)

139

In order to satisfy (28), the coefficients of the O(A4;),
7=1,5,9,13... terms in (27) should be zero, which yields

1 N? AF
A= — - 1 29
! SNT- N2 T NZ(NZ_ NP 29)
AF
A, i=5,9,13.... (30)

NNy

The 9(A%), j = 2,3,4,6,7... terms in (27) must also satisfy
(28), which leads to the following conclusions. First, if its co-
efficient is positive, A? must be zero to satisfy (28), in which
case any variation of AJZ» is positive. Second, if its coefficient is
negative, A? must have been constrained to satisfy (28), since
any positive variation of AJZ- can invalidate (28). In summary,

=0, N? < N7?

A; < must have been constrained, N 2> N ]-2

can take any value as longas  N* = N7

1=2,3,4,6,7.... 3D

For practical reasons, only the second mode can be easily con-

strained mechanically without affecting the first mode, so the

second condition of (31) dictates that j can only take the value

of 2 when the second mode is not constrained, or 3 when the

second mode is constrained. Equation (31) permits three kinds
of solution. The first kind is

F=F
9 N2, with second mode constrained
N- < 9 . . (32)
N5, with second mode not constrained
A;=0, j#1,5,9,13...
the second kind is
F=F
N? = N3 (33)
A; =0, j5#1,2,5,9,13...
and the third kind is
F=F;
N? = N} (34)
A;j=0, j#1,3,59,13...

Equations (21), (23), (29), (30), (32), (33) and (34) define the
F — A relation of the curved beam. Neglecting the higher modes
in (30), closed form solutions can be obtained. Keeping the
higher order modes, however, gives a better result. Both solu-
tions are discussed and compared hereafter.

The denominator of (30) is orders of magnitude larger than in
(29), so for simplicity, all the higher order terms are temporarily
neglected

A; =0,

i=5,9,13.... (35)

From (21), (29), (32), and (35), the first kind of solution is

_3nt@? 3 /1 4 3 1 4
(

36)
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Fig. 3. Several solutions of curved beam normalized force-displacement
relation.

From (23), (29), and (32), the normalized axial force with the
curved beam at either stable position is

(N2)pmo = 0, or N? [1+ 3% <1 A E)} |

] 3Q2
(37
From (21), (23), (29), and (33)
N} (N - N}) N3
Fy= — A ) =4.187* —2.187%*A
5 3 (N22 = N12 ) 87 81
(38)

which exists if both the second mode is not constrained and, by
(23), (29), and (33), Q > 2N2/\/§N1 = 1.67. From (21), (23),
(29), and (34)

NP (NF-NP) (N3

Fy= 2 —A) =81t —6r'A
! 8 (Ng—zv% ) T
(39)

which exists if both the second mode is constrained and, by (23),
(29), and (34), Q > 2N3//3Ny = 2.31.

The Fy, F», and F3 — A relations are shown in Fig. 3, all
of which are extrapolated to the whole range of A = 0 to 2.
F5 and F3 are straight lines with a negative slope that do not
depend on ). F3 can exist only if mode 2 is constrained. F}
depends on Q, but its values at A = 0, 1, 2 are constants. More-
over, at A = 1, Fy, F and F33 pass through the same point. The
higher the (), the higher the curving of F;. With Q = 1.67, F}
becomes tangential to F at A = 1. With Q = 2.31, F; be-
comes tangential to F3 at A = 1. When @ is larger than those
tangential values, curve F; has two more intersections with ei-
ther F5 or F5 besides A = 1. These two additional intersections
are where the axial force equals that of the second mode or the
third mode. Between these two intersections, either F5 or F3 ex-
ists, while outside this interior range of A, only F} exists. The
actual F'— A curve is therefore a hybrid curve that switches be-
tween the F curve and either the F5 or F3 curve at these two
intersections. The F5 curve is always above zero force except
for its small negative value before A = 2, which means that
with the second mode free, even with a very high @, the curved
beam can be at most marginally bistable. On the other hand, the
F5 curve has a large portion below zero force. With the second
mode constrained, the curved beam is bistable with ¢ > 2.31.
With high @, the I’ — A curve takes the shape of three straight

Af

ftop T

dbot d
1 L } / >

T
dtop dN dend

Fig.4. The f-d curve for a second-mode-constrained curved beam when Q >>
1.

-fbot 4=

lines. Dimensionalizing the curves shown in Fig. 3 according to
(20), the force-displacement curve of a curved beam with the
second mode constrained is as shown in Fig. 4. For Q > 6, the
approximate values in Fig. 4 are

EIh EIh
frop z87r4l—37 fbotz47r4l—37 dimia = 1.33h (40)
8t 8t 4t
diop % —, dpot ®2h — —, dena=2h— — (41
top M350 ot 30 d 30 41)

where (40) is derived from (39), and (41) is derived from (36)
and (40). Due to the absence of higher mode terms in (30), both
(40) and (41) are only approximate. Moreover, (41) does not
give the correct scaling due to this simplification. The next anal-
ysis describes the solution with higher modes included, which
gives exact expressions for the values shown in Fig. 4.

Keeping all higher order terms in (30), or at least the first two
or three terms, would give a more accurate stiffness prediction.
From (21), (23), (29), (30), and (32), the first kind of solution
should satisfy

4 (N2 = N2)?
(—1)2F12 —N12F1
j=1,5,9,13... sz (N2 - NJ2)
N2 (N2—N12)2 NZN? (N? — 2N%)

=0
12Q? 16

(42)

and (42) can be used to determine F; from N2. Following this,
(21), (29) and (30) can be used to determine the beam shape and
hence A from F. From (21), (23), (29), (30), (33), and (34),
both the second kind of solution and the third kind of solution
could be obtained, whose forces are still linearly dependent on
displacements. Similar curves to those shown in Fig. 3 can be
obtained. With high @, the F'— A curve again takes the shape of
three straight lines. The resulting force-displacement curve of a
curved beam with its second mode constrained and with Q > 6
can still be described by Fig. 4, but with parameters different
from those given by (40) and (41). The new parameters are

Elh Elh
ftop ~ 740—/ fbot ~ 370——

13 B
dyop ~0.16h,  dpor & 1.92h,  dena ~ 1.99h

4
dmid = gh (43)
(44)

Nonlinear finite element analysis (FEA) was performed using
Algor. The force-displacement curve from (40) and (41) which
neglect the higher modes, the force-displacement curve from
(43) and (44) which includes the higher modes, and the FEA
results are shown in Fig. 5(a) for a second-mode-constrained
curved beam having 3 mm length, 6 pm thickness, 60 pm apex
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Fig.5. Comparison of modeled and measured double curved beams f-d curves.
(a) Comparison of theoretical models and FEA and (b) comparison of FEA and
measurement.

height, 490 pm depth, and a Young’s modulus of 169 Pa. As
can be seen, the solution neglecting the higher modes predicts
a stiffer curve near both stable positions, while the solution in-
cluding higher modes agrees very well with FEA.

III. DESIGN OF A CURVED-BEAM BISTABLE MECHANISM

The structural energy inside the curved beam during deflec-
tion comprises both bending energy and compression energy.
Qualitatively from an energy viewpoint, the bending energy in
the beam increases monotonically whenever the beam is moving
downward; while the compression energy increases to a max-
imum at approximately the centerline, but then decreases after
crossing the line. If the beam is designed so that the decrease of
compression energy after crossing the centerline is faster than
the increase of the bending energy, then a negative force results,
which is an indication of bistability.

Based on the last section, a curved beam is bistable if two
conditions hold: 1) @ must be large enough and 2) the second
mode must be constrained. The first condition is easy to satisfy
with DRIE etching since the shape of the beam is only defined
by the etching mask. One method to satisfy the second condition
is to have a center plunger attached to a single curved beam, and
this plunger is guided in an open slot to prevent it from twisting.
Another more effective method is to clamp two curved beams
together at their centers [6] to provide a double curved-beam
structure. The center clamp transfers the rotational motion of

141
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Fig. 6. Bistable double curved beams versus monostable single curved beam.
(a) Double curved beams and (b) single curve beam.

(b)

either beam center to axial motion of the other beam. Since the
beams are stiff in the axial direction, the rotational motion of
both beams can be greatly reduced (quenched). The longer the
center clamp or the gap between the two beams, the more the
second mode can be overcome. With a gap five times larger
than the beam thickness, both FEA and microfabricated beams
show a visible second mode during the transition, while the f-d
curve is still very close to the behavior of a curved beam with
the second mode completely constrained. Note that the twisting
is only present during the negative stiffness region; at the re-
gion close to the two stable positions, the beams move straight
even if the center clamp is not long. The bistable double curved
beams are shown in Fig. 6(a), while the monostable single beam
mechanism is shown in Fig. 6(b). The force-displacement curve
of a double curved-beam would just look like what is shown
in Fig. 4, with the displacement values equal to, but the force
values doubled from, what are given in (43) and (44). Thus,

EIh
fdbtop ~ 14801—37

EIh
fabbot = 7401—3-

(45
In designing a curved-beam bistable mechanism to provide a
desired force, the maximum strain during deflection should be
held within the yield strain of the DRIE etched silicon structure.
The maximum strain during deflection can be estimated as

th t? th 4 th
Emax = 27r2—L +4nt— = 7T2—L <2 + —> R 27r2—L

12 312 [2 3Q 12°
(46)
From (45) and (46)
- 1 anoot
_ 6.31Q favbor @7

ez Eb

max
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which shows that with a certain force requirement, the length
is inversely proportional to the strain squared. A smaller design
requires higher fracture strength.

IV. OPTIMIZATION OF THE CURVED-BEAM MECHANISM

The basic double curved-beam design has an asymmetric
force-displacement curve, as shown in Fig. 4. In some applica-
tions, a more symmetric f-d curve is desired. To examine the
asymmetry, define the asymmetry factor r as

.ftop

B fbottom '

(48)

Then, (40) gives » = 2. Note that if we define the asymmetric
factor as the ratio of the length of the positive force region
and the negative force region, it gives almost the same numer-
ical value. Two approaches have been explored to optimize the
double curved-beam mechanism so that r in (48) could be closer
to unity. The first approach is to optimize the initial shape of
the mechanism. The second approach is to modulate the beam
thickness profile along the length of the beams.

Both direct analysis and FEA have been used to try to find an
initial shape that includes higher buckling modes that can yield
an r closer to unity. However, no improvement has been found.
The initial shape involving only the first mode gives the best
symmetry. A brief insight into why the inclusion of modes 5,
9, 13. .. does not help reduce r can be given by examining the
role of those modes in the beam behavior. Equation (30) shows
that the expressions of A5 9 13... have a large denominator factor
NZg13.. > Ni,so Asg1s.. remain neglectable during the
beam deflection. But, if there are higher modes with amplitude
Z579,13___ presented in the initial shape, then instead of (30), the
expression for As 9 13... will be similar to (29) and take the form

N52.,9,13...
N2 — N§,9,13...
. 4F
N52,9,13... (N2 - N52,9,13...) .

As5913.. = —As9,13...

(49)

With nonzero first term in (49), A5 9,13... would be larger during
the beam deflection than it would be in the absence of initial
mode amplitude. This enhancement of the mode 5, 9, 13. . ., ac-
cording to (23), would lower the increase rate of N 2 or com-
pression energy, during the initial beam deflection. The com-
pression energy thus would reach a lower maximum level be-
fore decreasing, and its decrease rate afterward would be less
significant too. From previous analysis, we know that the faster
decrease rate of compression energy than the increase rate of
bending energy is the key factor to make the structure bistable.
Thus, the bistability is lost or reduced with higher modes in-
cluded in the initial shape. FEA studies support the conclusion.

Another approach to reduce 7 involves the modulation of
beam thickness. Initial insight into this approach comes again
from the model analysis. For the curved beam, the bending en-
ergy increases monotonically during the beam deflection, while
the compression energy first increases and then decreases during
snap-through. It is the dominance of the change of the compres-
sion energy over the bending energy that gives bistability. Thus,

m
Hinge Hinge

(@

—

(b)

Fig. 7. Concept of curved beam with thickness modulation for better
bistability. (a) Three-hinge bistable structure and (b) thickness-modulated
curved beam bistable structure.

a beam shape that minimizes the change in bending energy rel-
ative to the change in compression energy during beam deflec-
tion can help enhance the bistability. The predominant mode in
the double-beam deflection is the first mode, which has max-
imum bending stress near the two boundary clamp sites and the
center clamp site. Thus if the thickness at these three locations
is decreased, the impact of bending is significantly lowered.
Another view of this argument is to consider the three-hinge
bistable structure shown in Fig. 7(a). Due to the perfect sym-
metry of the structure at the up and down positions, the asym-
metry factor r is unity. However, it is not easy to implement
a perfect hinge with MEMS fabrication, especially when using
bulk micro machining. An approximation of the hinged struc-
ture is to use thin sections of the beam, which again leads to a
design with thin-thick-thin-thick-thin thickness. To avoid dra-
matic thickness change, a cosine modulation of the thickness is
adopted as shown in Fig. 7(b). Thus

H(z) = ta {1 - g:r 1 cos (47%)}

where ¢, is the average thickness of the modulated beam, and (3
is the ratio of the largest thickness and to the smallest thickness.
The thin-thick-thin-thick-thin thickness modulation method
was discussed and further explored analytically by variation
analysis [13].

An FEA study was performed on the thickness modulated
single beam. As shown in Fig. 8(a), eight independent curved
beams, numbered from top down, with different shapes and con-
straints are subjected to the center displacement load indicated
by arrows. They are all clamped, as indicated by triangles, on
both ends. Beams 1, 2, 3, 4 also have their center rotation con-
strained, as indicated by circles, so their second modes are con-
strained. All beams have 3 mm length and 60 pm initial apex
height. Beams 4 and 8 have a uniform thickness of 10 pm. The
thicknesses of beams 1, 2, 3, 5, 6, 7 are modulated by a cosine
function as in (50) so they all have thin-think-thin-think-thin
thickness variations. The average beam thicknesses are still ¢, =
10 pm, while the amplitude of the thickness variation is § =
3(tmin = 5 pm, tymax = 15 pm). Though beams 1, 2, 3, 5,
6, 7 have the same thickness profile, they are modulated dif-
ferently: Beams 3 and 7 only have the bottom edge modulated;
Beams 1 and 5 only have the top edge modulated; Beams 2 and 6
have both the top and the bottom edges equally modulated. The
FEA force-displacement curves for the mechanisms shown in
Fig. 8(a) are shown in Fig. 8(b) for the second-mode-constrained

(50)
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Fig. 8. FEA study for the cosine thickness modulated curved beams. (a) Beam

configurations in FEA study, (b) f-d curved of second-mode-constrained beams,
and (c) f-d curve of second-mode-free beams.

beams, and in Fig. 8(c) for the second-mode-free beams, where
the x-axis is center displacement divided by 120 pm and the
y-axis is force in units of N. It was found that this design does
move the asymmetric factor closer to unity. Moreover, it makes
the single second-mode-free curved beam bistable. Among the
three beam thickness modulations, with both the top and bottom
edge modulated, the best optimization result is shown by curves
2 and 6 in Fig. 8. The FEA study also shows that such mod-
ulated beams have more stress than the basic double curved
beams, with the maximum stress occurring at the thin beam
sections. The maximum stress is usually two or three times
higher than in a uniform-thickness double curved beams. With
[ = 3, the center-constrained curved beam has r = 1.25, and
the center-free curved beam has r = 2.1. To lower the value of
r, higher values of 3 can be used.

The curved-beam bistable mechanism has an f-d curve in
which the maximum force occurs very close to the initial posi-
tion, and then decreases. This property is not good for some ac-
tuators especially electrostatic actuators, whose actuation force
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Fig. 9. Double curved beams with softspring. (a) Softspring concept and (b)
effect of a linear softspring on the f-d curve of double curved beams.

starts low and then increases, as the two electrodes get closer.
A bistable f-d curve with a gentler ramping up of force may
be needed for other reasons too. One way to modify this is to
include a soft spring with the curved beam structure as shown
in Fig. 9(a). A cantilever attached to the double beam center
can realize such a softspring. The spring can be linear or non-
linear, and correspondingly, the f-d curve could be modified in
various ways. It should be noted that such softspring does not
change the maximum actuation force and the maximum stroke
required to snap the bistable structure. Fig. 9(b) shows f-d re-
lations of double curved beams before and after being coupled
with a linear softspring. It could be seen that for the actuator to
overcome to snap the bistable structure, the energy barrier cal-
culated as the area under the positive force segment will be the
same with or without the softspring structure.

V. FABRICATION AND TESTING

Microscale double curved beams designed by the previous
section have been fabricated and successfully tested. The beams
described below were designed with a span of [ = 3 mm, a
thickness of ¢ = 10 pm, a depth of b = 490 pm and an initial
apex height of h = 60 pm. The estimated maximum strain
within the mechanism during snap through is 0.16%.

The experimental mechanism was etched from a (100),
double side polished silicon wafer. The orientation of the
bistable beams was parallel to the primary flat. In this direction
the beams had a Young’s modulus of 168.9 Gpa [14]. Fillets
were added in the etch mask at the sharp corners to lower the
stress concentration. Further, halos were included in the mask,
so that the etch space had the same 20-pum-width throughout the
mask. This arrangement helped to ensure that etching occurred
at the same rate at all locations. The etch mask itself comprised
a 0.75-pm-oxide hard mask, and a 15-pm-photo resist soft
mask. The etch recipe “MIT69A” was used as developed in the
Microsystems Technology Laboratories of MIT. The total time
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Fig. 10. The bistable mechanism as pushed manually by probe. (a) Double
curved beams at its initial stable position, (b) double curved beams deflect, (c)
double curved beams deflect more, and (d) beams at second stable position after
snap-through.

taken to etch through the entire wafer thickness of 490 pm was
about 4.5 h. To help smooth out the sidewall surface roughness
created during DRIE, a dry isotropic etch using SF6 for 15
seconds followed the through-etch.

The characteristic parameters of the bistability curves were
determined only by the etched beam geometry and the Young’s
modulus of the wafer. Therefore they could be significantly af-
fected by fabrication variations especially by variation of the
beam thickness. The actual beam thickness after fabrication was
significantly less than the designed 10 pm, as shown in the
scanning electron microscope (SEM) picture in Fig. 12. As can
be seen in the figure, the cross-sectional thickness varied be-
tween 2.3 and 7.7 pum. Note also the eroded structure at the
bottom of the beam. The reduction of the fabricated beam thick-
ness from its designed value resulted mainly from the loss of
mask coverage during the etch process. Due to the long time
for the through-etch, a relatively thick mask resist layer was re-
quired. Such a thick resist layer showed slanted sidewalls after
exposure and development. During DRIE, the resist was con-
tinuously etched away not only from the top surface but also
from the sidewalls, which exposed regions on the wafer that are
supposed to be protected, hence the reduction in beam thick-
ness. The thickness variation along the wafer depth was con-
sistent with the fact that the DRIE process produces nonideally
etched sidewalls. Careful tuning of the etch parameters can re-
sult in almost straight sidewalls for a particular process, but after
days or weeks during which the condition of the etch changes,
the etched sidewall became nonideal again even with the same
recipe.

A micro probe was used to push the experimental mechanism
down and up at its center. The two stable positions of the mech-
anism, together with two middle positions while being pushed
down are shown in Fig. 10; only the center portion of the mecha-
nism is shown. Several single curved beams, and several double
curved beams with low Q value, were also fabricated on the
wafer, but probing of such structures showed that none of them
are bistable.

To measure the force-deflection characteristics of the exper-
imental bistable mechanisms, a specialized MEMS force-dis-
placement tester [15], as shown in Fig. 11 was developed. The
method used is based on physical contact between the MEMS

Fig. 11. The specialized MEMS force-displacement tester.
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Fig. 12. SEM cross section of a curved beam fabricated with DRIE.

mechanism and a needle probe. The force and displacement of
the MEMS mechanism are detected by the deflection and move-
ment of a calibrated reference flexure holding the needle probe.
The parasitic compliance of the needle probe does not affect
the measurement accuracy of the force and displacement due
to a specialized calibration procedure. The tester featured a res-
olution of 10 nm for displacement, and 100 uN for force. A
total of 20 force-displacement measurements were performed
on ten bistable mechanisms with the same design geometry at
different locations on the same wafer. For each measurement,
the bistable mechanism was pushed from both sides, since at
the snap through point, it moves away from the probe tip. The
overall force-displacement curve was found by “stitching” the
two measurement sets together.

The behavior of the bistable mechanism was measured and
predicted by two-dimensional (2-D) FEA, as shown in Fig. 5(b).
The solid curve is one of the measurement results, while the
dotted and dashed curves are FEA results for beam thickness of
6.7 pm and 6 pm, which are the top thickness and average cubic
thickness of the fabricated beam shown in Fig. 12, respectively.
Cubic average thickness gives good prediction of the stiffness
of a nonuniform cross-section beam, because the beam stiffness
is proportional to the moment of inertia I, which has a cubic
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dependence on beam thickness. Note that the top thickness of
the beam could be measured by a microscope with a scale, but
a detailed knowledge of the beam thickness variation along the
depth could only be obtained destructively. It can be seen that
the measured curve suggests less force than the FEA prediction
for 6.7 pm thick beams, but it is very close to the prediction for
6 pm thick beams.

The fabrication and testing of curved beam mechanisms
proves the validity of the theoretical analysis. It also shows
that to design an accurate force-displacement characteristics of
the bistable structure, fabrication variance must be taken into
account. It is difficult to model a curved beam with varying
thickness, such as shown in Fig. 12, by either theoretical anal-
ysis or finite element analysis, but as the measurement shows,
a cubic average thickness gives a very good approximation for
the f—d characteristics of such structures.

VI. SUMMARY AND CONCLUSION

This paper has proposed, analyzed, designed and fabricated
a bistable mechanism that does not rely on hinges, latches or
as-fabricated internal stress for its bistability. The mechanism
comprises only a pair of initially cosine-shaped parallel beams
that are clamped together at their centers. Such a mechanism
appears to be well suited for use in applications such as relays,
valves, clips etc. Further, it should be possible to extend the
mechanism to two dimensions in the form of initially curved
but parallel plates.

A buckling-beam based analysis of the mechanism was used
to support its design. This analysis resulted in a relation be-
tween the force applied to, and the deflection of, the center of the
mechanism. It is interesting to note that the character of this rela-
tion is dependent only on the single parameter Q when the beam
deflections are properly normalized. Further, beam thickness
modulation and softspring coupling were introduced as means
of making the force-displacement characteristic of the mecha-
nism more desirable. The analytical methods developed for the
design of bistable double beams were shown to be accurate and
to provide insight into the behavior of such systems. It was the
analysis of a single beam without prestress that revealed the un-
stable second mode, which inspired the design synthesis process
of using one beam’s unstable mode to quench that of another.
Such insight is not gained by FEA, which is a valuable confir-
mation and optimization tool; hence illustrating that continuum
mechanics plays a strong and vital role in the development of
MEMS mechanisms.

Finally, experimental microscale mechanisms were fabri-
cated from single-crystal silicon wafers using deep-reactive ion
etching. The mechanisms exhibited the expected bistability.
Further, the details of their force-deflection relations were well
matched to those predicted by the buckling beam analysis,
which were in turn both well matched to those predicted by
FEA. This demonstrates the validity of the analysis and the
general observations made above.
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