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Abstract: The surface-flattening process has many applications in industries such as shipbuilding.
Curved surfaces in the industry are usually formed from flat surfaces, so the target surface needs
to be flattened to obtain its corresponding initial shape. In addition, the surface flattening process
obtains the inherent strain distribution required in forming. Different forming methods in the plate
forming process will produce different membrane deformations, such as shrinkage in the line heating
and tensile in the roller forming. Therefore, different surface-flattening methods should be used to
obtain the inherent strain distribution suitable for different forming methods. This paper proposes a
method to perform the surface flattening using the finite element method and constrain the membrane
strain generated in the flattening deformation by modifying the material constitutive relationship.
Using a dual modulus material constitutive model in membrane deformation makes the surface
more inclined to deform at locations with less stiffness during the flattening process. This method
yields predominantly tensile or compressive membrane strain without changing the bending strain.
By modifying the material model, this method can control the compressive strain region and the
principal strain direction. The results of the proposed method applying to different surface shapes
and its application in the surface-forming process are given in this paper.

Keywords: surface flattening, dual modulus material, inherent strain distribution, plate forming,
shell finite element

1. Introduction

In engineering, spatial surfaces are usually obtained from two-dimensional flat sur-
faces. The surface flattening is to find the initial configuration. Meanwhile, surface flatten-
ing is an effective method to formulate the forming plan [1,2].

The plate-forming process in the shipbuilding process includes different methods,
such as rolling, line heating, and peening. The traditional forming process is mainly based
on the workers’ experience, but the automated processing requires computerizing the
forming process design. The inherent strain is an important parameter to describe the
forming process [3]. The inherent strain is the plastic strain induced in the forming process
and causes the deformation. The forming process designing is to decide the position of the
forming line and the magnitude of the inherent strain. The primary purpose of flattening
is to obtain the total inherent strain distribution desired in forming, helping the forming
process design.

Different forming methods have different characteristics. For example, rollers cause
tensile inherent strain [4], and line-heating processing causes compressive inherent
strain [5,6]. The forming method should determine the flattening method. For example,
the surface flattening for the roller process should obtain a shrinkage-dominant membrane
strain. The surface flattening for the line-heating process should obtain the membrane
strain mainly by stretching.
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Wang [7] given an example of applying the plate flattening in heating path design.
They placed the target surface between two rigid plates; the bottom rigid plate is stationary,
and the top rigid plate moves downward with a certain speed. The motion stops when the
target surfaces are pressed to a flat plane. They assumed that the plate is isotropic, and did
not consider that the line-heating process only produces shrinkage-inherent strain.

Ueda [2] proposed a method for calculating surface flattening using finite elastic
elements by applying forced displacements and obtaining the strain distribution after
flattening. They made the tensile strain in the final strain distribution as small as possible
by iteratively applying initial stress to fit the line heating process. Moreover, it shows that
the strain can be concentrated along the direction of the coordinate system or within a
specific width by modifying the material elasticity modulus. The results also suggest that
the relationship between strain and surface shape is geometrical and unrelated to physical
processes. However, this method was mainly proposed for the line heating process, and it
should also be noted that this flattening method requires multiple iterations and consumes
much computational time.

Ryu [8] introduced an optimal approximate flattening algorithm for double-curved
surfaces. This method minimizes the deformation energy from the planar configuration to
the desired surface with the constraint of principal strain. In this nonlinearly constrained
optimization problem, design variables are nodal coordinates of elements in the flattening
plane. Moreover, they assigned constraints to strain following forming methods.

Zhang [9] proposed a method using the SQP optimization algorithm to solve the
flattening of double-curved surfaces, similar to Ryu’s method. However, they used the
result of geometric flattening as the initial value of the optimization algorithm iteration
to increase the convergence speed. In addition, they adopted the triangle element strain
theory. However, this optimization calculation is still computationally intensive.

Lan [10] proposed an optimization model for flattening of three-dimensional curved
hull plates based on an flattening method with a constant unit length. The error of area,
linear degree of borders, and mean strain energy were taken as objective functions. The
multi-objective memetic algorithm with heuristic operator was adopted to solve the opti-
mization model. This method mainly focuses on the flattening shape.

This paper proposes an efficient method for calculating the flattening of double-curved
surfaces using the finite element method to obtain the desired inherent strain in forming.
This method can obtain different strain distributions adapted to different forming methods.
As generating both tensile and compressive membrane strain during forming is generally
impossible, the inherent strain distribution desired for forming should only contain tensile
or compressive strain for a specific forming method. The obtained strain distribution is
useful in the forming plan design. This paper presents the results for different surface
shapes and examples of the application of this method to forming curved plates.

2. Basic Theory and Strategy

This paper uses a mechanical method based on shell finite element theory for surface-
flattening calculation. Firstly, build the finite element model of the target surface. The surface
is flattened on the plane by applying forced displacement in one direction, with no constraint
perpendicular to the forced displacement. It can be deformed arbitrarily in the plane.

The core idea of controlling strain distribution is constructing a material constitutive
relationship with dual modulus in tension and compression. So, the membrane component
tends to deform more towards the side with the lower stiffness, resulting in a membrane
strain distribution which is predominantly tensile or compressive. Moreover, by modifying
the membrane shear stiffness, the principal membrane strain is distributed in a specific
direction, more conducive to designing the forming plan and performing the automated
forming. We have written a program to implement this method of surface flattening. This
method obtains the shape of the surface after flattening and the strain generated during the
deformation. Figure 1 shows the basic strategy.
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It is important to emphasize that surface flattening differs from the actual forming
process. The surface flattening process is a means to obtain the inherent strain distribution
rather than an actual physical process. Moreover, the relationship between deformation and
strain during the flattening process is determined by the continuity condition, independent
of the material constitutive relationship. We can consider the total strain obtained in the
surface flattening to be the inherent strain required for forming. Therefore, we can simplify
the calculation by considering only the elastic process in the calculation.

Figure 1. Basic strategy of flattening.

2.1. Shell Mathematical Models

First, let us briefly review the notation, following the usual approach [11]. We denote
the 2D tensor by symbols with a number of underscores corresponding to their order and
the 3D tensor by symbols over arrows. Note that we use Greek indices, which will implicitly
vary in (1, 2), for the components of surface tensors. As shown in Figure 2, (~x1,~x2,~x3)
denote the reference orthonormal basis, (ξ1, ξ2, ξ3) denote the curvilinear coordinates of the
middle surface. a , b and c refer to the middle surface’s first, second, and third fundamental
form. We will use the Einstein summation convention.

Figure 2. Coordinates of a shell surface.
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The geometry of the shell at time t is defined as Equation (1):

t~X(ξ1, ξ2, ξ3) = t~x(ξ1, ξ2) + ξ3 t~a3(ξ
1, ξ2). (1)

Note that the notation (~a1,~a2) is the basis of the middle surface, defined in Equation (2).
~a3 is the unit normal vector, defined in Equation (3). See Figure 2.

t~aα =
∂ t~x(ξ1, ξ2)

∂ξα
, (2)

t~a3 =
t~aα × t~aβ

|| t~aα × t~aβ||
. (3)

(~g1,~g2,~g3) are the covariant basis of the shell domain, t~gi =
∂t~X
∂ξ i .

Moreover, substitute Equation (1) to obtain Equations (4) and (5)

t~gα = (δλ
α − ξ3bλ

α )
t~aλ, (4)

t~g3 = t~a3. (5)

The incremental displacement from the configuration at the time t to the configuration
at the time t + ∆t is:

~U(ξ1, ξ2, ξ3) = t+∆t~X(ξ1, ξ2, ξ3)− t~X(ξ1, ξ2, ξ3). (6)

A general displacement field can be expressed in Equations (7)–(9):

~U(ξ1, ξ2, ξ3) = ~u(ξ1, ξ2) + ξ3θλ(ξ
1, ξ2)~aλ(ξ1, ξ2), (7)

with
~U(ξ1, ξ2, ξ3) = ~u(ξ1, ξ2) + ξ3θλ(ξ

1, ξ2)~aλ(ξ1, ξ2). (8)

Within the scope of the thin shell, the rotation of the straight material line is uniquely
defined by a rotation vector normal to that line.

θλ(ξ
1, ξ2)~aλ(ξ1, ξ2) = t+∆t~a3(ξ

1, ξ2)− t~a3(ξ
1, ξ2). (9)

Hence, ~u denotes the middle-surface displacement solution and θ denotes the rotation
solution. The covariant Green–Lagrange strain components at the time t and referred to at
time 0 are defined by Equation (10)

tεij(ξ
1, ξ2, ξ3) =

1
2
( t~gi · t~gj − 0~gi · 0~gj). (10)

The incremental covariant strain components are

εij(ξ
1, ξ2, ξ3) = t+∆tεij(ξ

1, ξ2, ξ3)− tεij(ξ
1, ξ2, ξ3)

= 1
2 (

t~gi · ~U,j + ~U,i · t~gj + ~U,i · ~U,j),
(11)

with ~U,i =
∂~U
∂ξ i .

The principle of virtual work applied to the configuration at the time t + ∆t is [12]:∫
V

t+∆tSij δ t+∆tεijdV = W, (12)

where the t+∆tSij are the contravariant components of the second Piola–Kirchhoff stress
tensor at the time t + ∆t and referred to the configuration at the time 0, and the t+∆tεij are
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the covariant components of the Green–Lagrange strain tensor at the time t + ∆t and refer
to the time 0. The external virtual work is given by W and includes the work due to the
applied surface tractions and body forces.

We have the appropriate constitutive relations:

Sij = Cijklεkl , (13)

where Cijkl is the contravariant constitutive tensor in the natural coordinates.
In mathematics, double-curved surfaces do not have isometric correspondence with a

flat surface. Therefore, it cannot be deformed from the flat plate to the non-developable
surface without stretching, compression, or wrinkles. In the double-curved surface-forming
process, both membrane deformation and bending deformation must be applied. The
bending deformation is determined by the local curvature of the surface, while the overall
curvature inhomogeneity determines membrane deformation. We purpose to construct
the membrane strain distribution by changing the constitutive relation tensor while not
willing to affect the bending strain. Therefore, we divide the total strain into the membrane
and bending strain. We need to force the curved shell deformed to the plane by forced
displacement, so the external loads should be zero, W = 0. In addition, we consider the
thickness of the shell as a constant. From Equations (10) and (11), we obtain the expression
of each strain component:

εαβ = (m)εαβ + (b)εαβ α, β = 1, 2,
εα3 = 1

2 (
t~gα · θλ~aλ + t~a3 · ~U,α + θλ~aλ · ~U,α),

ε33 = 0,
(14)

with 

(m)εαβ = 1
2 (~aα · ~u,β +~aβ · ~u,α + ~u,α · ~u,β),

(b)εαβ = 1
2 ξ3(bλ

α~aλ · ~u,β + bλ
β~aλ · ~u,α

+~aα · ∂(θλ~aλ)

∂ξβ +~aβ · ∂(θλ~aλ)
∂ξα

+ ∂(θλ~aλ)
∂ξα · ~u,β +

∂(θλ~aλ)

∂ξβ · ~u,α)

+ 1
2 (ξ

3)
2
(bλ

α~aλ · ∂(θλ~aλ)

∂ξβ

+bλ
β~aλ · ∂(θλ~aλ)

∂ξα

+ ∂(θλ~aλ)
∂ξα · ∂(θλ~aλ)

∂ξβ ).

(15)

Moreover, from surface theory, we have:{
~u,α = ∂~u

∂ξα = (uλα − bλαu3)~aλ + (u3,α + bλ
α uλ)~a3,

∂(θλ~aλ)
∂ξα = θλβ~aλ + bλ

α θλ~a3.
(16)

Respectively, we separate the corresponding stress in Equation (13):
(m)Sαβ = (m)Cαβλµ

(m)ελµ,

(b)Sαβ = (b)Cαβλµ
(b)ελµ,

Sα3 = 1
2 Dαλελ3,

(17)

where (m)Sαβ, (b)Sαβ, Sα3 represent membrane stress, bending stress, and transverse shear
stress, respectively.

Consider an isotropic linear elastic material following Hooke’s law for bending strain:

(b)C
αβλµ =

E
2(1 + ν)

(aαλaβµ + aαµaβλ +
2ν

1− ν
aαβaλµ) (18)
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Dαλ =
2E

1 + ν
aαλ (19)

where we classically denote Young’s modulus by E and Poisson’s ratio by ν. (b)Cαβλµ refers
to the constitutive tensor in natural coordinate for bending strain and Dαλ refers to the
constitutive tensor in natural coordinate for transverse shear strain.

As mentioned before, we must use different constitutive relationships for membrane
strain in different situations. The following sections introduce different constitutive rela-
tions used to constrain membrane strain distribution.

2.2. Constrain the Magnitude of Membrane Strain

In the plate-forming process, generating both compressive and tensile membrane
strain is often impossible. Since the surface-flattening process is designed to obtain the
inherent strain required in forming, we need to generate only compressive or tensile
membrane strain during surface flattening.

Therefore, we modify the material’s constitutive relationship to control the strain distri-
bution obtained by surface flattening. When we need to obtain a predominant compressive
membrane strain, we reduce the material’s stiffness in compression, constructing a material
constitutive relation that satisfies the condition Ec < Et. Et represents Young’s modulus in
tension and Ec represents Young’s modulus in compression, so that the material fibers are
more inclined to produce compressive deformation, we must adopt a material constitutive
relationship with different tensile and compressive moduli, also called a dual modulus
material, see Figure 3.

Figure 3. Dual modulus stress–strain relation (a) Et < Ec, (b) Et > Ec.

In an arbitrary cross-section on a surface, the internal forces in the cross section must
be equilibrium since there are no external forces on the surface during the flattening process,
as in Figure 4. When using isotropic material properties, the magnitude of the tensile strain
is close to that of the compressive strain due to the requirement of internal force balance.
When the material stiffness in the tensile region decreases, the tensile strain increases to
ensure the internal force equilibrium. Again, the compressive strain will decrease due to the
requirement of deformation continuity. This also means that the tensile strain zone expands
while the compressive strain zone reduces. For any cross-section, this process exists, and
the final strain distribution obtained is predominant tensile. Based on the above principles,
we use a dual-modulus material model to achieve control of the strain magnitude.
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Figure 4. Constrain the magnitude of membrane strain.

To analyze the material with different modules in tension and compression, Am-
bartsumyan [13,14] defined a set of stress–strain relations referred to herein as the Am-
bartsumyan material model. Tabaddor [15] elaborated somewhat on the Ambartsumyan
material model. Jones [16,17] applied the model to the problem of buckling under biaxial
loading of circular cylindrical shells made of isotropic material.

According to the Ambartsumyan material model, the material’s constitutive relation is
determined by the principal stress state. ((p)~a1, (p)~a2) denote the principal direction of the
membrane strain in the tangent plane of the middle surface. We use (p)γαβ to represent the
principal membrane strain component. (pm)Cαβλµ represent the constitutive components in
the principal direction. Then we have the following equations:

(p)~aα ·~a3 = (p)~aα ·~a3 = 0, (20)

(p)~a1 · (p)~a2 = 0, (21)

|| (p)~a1|| = || (p)~a2|| = 1. (22)

We use the left subscript (p) to represent the principal direction.
It is well known that the principal strain (p)γαα is the eigenvalue of the strain’s mixed

component γ
β
α . We can obtain the principal membrane strain (p)γ and the principal

direction (p)~aα = jβ
α~aβ by solving the eigenvalues and the eigenvectors.

det(γβ
α − (p)γ δ

β
α ) = 0, (23)

(γ
β
α − (p)γ δ

β
α )jα = 0. (24)

Then we can transform the constitutive components from the principal direction to
the natural direction basis [18]. (m)Cαβλµ refers to the constitutive tensor in the natural
coordinate for membrane strain.

(m)C
αβλµ = (~aα · (p)~aα′)(~a

β · (p)~aβ′)(~a
λ · (p)~aλ′)(~a

µ · (p)~aµ′) (pm)C
α′β′λ′µ′ (25)
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To avoid the effect between the two principal directions, we ignore the Poisson effect
in the classical elastic material, so we let ν = 0 . Then we have

(pm)C
αααβ = (pm)C

ααβα

= (pm)C
αβαα = (pm)C

βααα

= (pm)C
ααββ = 0 (when α 6= β)

(26)

(pm)C
αααα =

{
Ec if (p)γαα ≤ 0
Et if (p)γαα > 0

(27)

where Ec, Et represent the compressive and tensile moduli, respectively.
To ensure convergence, we let

(pm)C
αβαβ = (pm)C

αββα =
(pm)C1111

(pm)C2222

(pm)C1111 + (pm)C2222 (when α 6= β) (28)

as He [19] suggested.
We let Ec = nE and Et = E with 0 < n < 1 when we want to obtain a strain

distribution dominated by compressive strain. We may refer to n as the relaxation factor.
The factor n is an imagined value used to construct the dual modulus material. When n is
small, the tensile stress generated will be much greater than compressive. It is much easier
to produce compressive strain and vice versa. On the contrary, we let Et = nE and Ec = E
with 0 < n < 1, when we want to obtain a strain distribution dominated by tensile strain.
Furthermore, we can control the ratio of the area of the compressive area and the tensile
area by changing the value of the relaxation factor n.

2.3. Constrain the Direction of Membrane Strain

We need to specify this direction in advance when we want the principal strain to be
distributed only in a specified direction, for example, orthogonal to the Cartesian coordinate
axis. Then we define a material constitutive relationship in this specified direction to
reinforce the shear stiffness along this direction. It is not easy to produce shear deformation
in this direction when the forced displacement is applied. When the shear strain in the
principal direction of the material is slight, the principal direction of the strain is nearly the
same as the principal direction of the material, and the principal strain distributes in the
specified direction.

We use ((c)~a1, (c)~a2) to represent the constrained strain direction needed. Similarly to
Equation (25), we have

(m)C
αβλµ = (~aα · (c)~aα′)(~a

β · (c)~aβ′)(~a
λ · (c)~aλ′)(~a

µ · (c)~aµ′) (cm)C
α′β′λ′µ′ (29)

where (cm)Cαβλµ denotes the constitutive components of membrane strain in the specified
constrained direction. We use the left subscript (c) to represent the constrained direction.

Similarly, we define the constitutive components as follows:

(cm)C
αααβ = (cm)C

ααβα

= (cm)C
αβαα = (cm)C

βααα

= (cm)C
ααββ = 0 (when α 6= β),

(cm)Cαααα = E,

(cm)C
αβαβ = (cm)C

αββα =
mE
2

,

with m > 1 (when α 6= β).

(30)

In this constitutive relationship, since we reinforce the shear stiffness along this direc-
tion, the membrane strain is generated in the specified direction during the deformation of
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the surface flattening. This way, we can obtain a more regular membrane strain distribution,
which is beneficial for forming plan design.

Furthermore, we can combine these two conditions, Equations (26)–(28) and (30).

(cm)C
αααβ = (cm)C

ααβα

= (cm)C
αβαα = (cm)C

βααα

= (cm)C
ααββ = 0 (when α 6= β),

(cm)Cαααα =

{
Ec if (c)γαα ≤ 0
Et if (c)γαα > 0

,

(cm)C
αβαβ = (cm)C

αββα

=
m (cm)C1111

(cm)C2222

(cm)C1111 + (cm)C2222 ,

with m > 1 (when α 6= β).

(31)

Using the constitutive relationship above, we can obtain the membrane strain in a
specific direction. When we want to obtain a strain distribution dominated by compressive
strain, we let Ec = nE and Et = E with 0 < n < 1.

Based on the above model, discretize the target surface. We can carry out the stiffness
matrix by using the constitutive relationship above and applying the virtual work principle.
We can obtain the displacement field solution and the flattened shape by solving the
equilibrium equations. Then, employing Equation (15), the membrane and bending strain
distribution are obtained. In addition, due to the continuity of the displacement field, the
compatibility condition is satisfied naturally.

3. Numerical Example

Much research has been published on shell finite elements. We use MITC4 (mixed
interpolation of tensorial components) [12,20] elements to discretize the shells and solve
the problems. In this section, we write programs to implement the above flattening method
and give examples of calculations for different double-curved surfaces flattening.

3.1. Spherical Cap

We use a spherical cap with a curvature of 1 m−1 and a radius of 0.6 m as the target
shape for the surface-flattening calculation, shown in Figure 5. This section calculates
the membrane strain dominated by compressive or tension according to the above algo-
rithm and compares the differences in the results when the relaxation factor n is taken at
different values.

In this comparison, the result of surface flattening using isotropic general steel con-
stitutive relations is the reference result. It can be found that the circumferential strain
is tensile strain, and the radial strain is compressive strain near the edge. This form of
strain distribution is difficult to achieve in a usual forming process. Following the above
method, we need to constrain the strain magnitude generated by the surface flattening.
The stiffness in one direction reduces by using the relaxation factor n described above. The
relaxation factor n takes the values of 0.1, 0.01, and 0.001, respectively, to compare their
calculation results.

Figure 6 shows the membrane strain distribution dominated by tensile strain,
(a) for the reference result and (b), (c), and (d) for the conditions n = 0.1, 0.01, and 0.001,
respectively. Figure 7 shows the membrane strain distribution dominated by compressive
strain. Take the circumferential and radial strain on a radius and compare their distribution
in the radial direction, as shown in Figure 8. Moreover, Table 1 compares the flattened
surface’s shape and the membrane strain’s value.

In the reference result, we obtain tensile strain near the edges and compressive strain
near the center. The maximum values of both are similar. When we constrain the membrane
strain to obtain compressive strain, in the condition n = 0.1, it can be seen from the figure
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that the area of the contracted part of the center of the spherical cap increases significantly.
The tensile strain near the edge decreases, but a part of the area in the tensile state remains.
When n = 0.01, the compressive strain on the surface continues to increase. At this time,
the tensile strain on the surface is already significantly smaller than the compressive strain.
Finally, when n decreases to 0.001, the compressive strain in the surface increases slightly.
At this point, the surface is in a contracted state, and in the edge area, there is still a tensile
circumferential strain.

Figure 5. The dimension of the spherical cap.

Table 1. Comparison of spherical cap shape-flattening results.

Case Radius after
Flattening

Change
Relative to the
Original Arc
Length (%)

The Radius of
the

Compressive
Area

Maximum
Membrane

Strain

Minimum
Membrane

Strain

Compressive
n = 0.001 0.606 −5.9 0.606 0.0072 −0.0679
n = 0.01 0.608 −5.5 0.608 0.0105 −0.0647
n = 0.1 0.618 −4.0 0.577 0.0236 −0.0512

Reference 0.632 −1.7 0.451 0.0437 −0.0269

Tensile
n = 0.1 0.641 −0.4 0.266 0.0565 −0.0089

n = 0.01 0.644 0.0 0.143 0.0601 −0.0025
n = 0.001 0.644 0.1 0.103 0.0611 −0.0013

Similarly, when we constrain the membrane strain to obtain tensile strain, the shrink-
age region near the center of the surface gradually reduces as the relaxation factor n
decreases. When n = 0.001, the shrinkage strain exists only within a radius of 0.1 m and
is numerically much smaller than the tensile strain. Moreover, Table 1 shows that when
flattening the surface to compress, the radius after flattening is 5.9% smaller than the arc
length of the surface. In contrast, when flattening the surface to stretch, the radius after
flattening is 0.1% larger than the arc length of the surface. In the plate-forming process,
when choosing a forming method with compressive inherent strain, such as the line heating,
the initial shape should be slightly larger than the target shape. Conversely, when choosing
a forming method with tensile inherent strain, such as roller peening, the initial material
should be slightly smaller than the target shape.
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In these examples, we can conclude that the method proposed in this paper can
effectively perform surface flattening and obtain in-plane strain distributions that are
predominantly compressive or tensile, depending on the requirements. With this method,
we can perform surface flattening for different forming methods to obtain a more accurate
initial shape for forming.

−0.02693 −0.008865

−0.001285−0.0025377

n = 0.001n = 0.01

n = 0.1

Figure 6. Principal membrane strain vector of spherical cap flattening with dominating tensile strain
(a) reference, (b) n = 0.1, (c) n = 0.01, (d) n = 0.001.

3.2. Pillow and Saddle Shape

Pillow- and saddle-shaped surfaces are typical ship hull plate shapes. The surface
flattening is essential in the plate-forming process. This section gives examples of pillow-
shape and saddle-shape surface flattening. The following Figure 9 shows the shapes of the
surface. The plate size is 2 m× 1 m× 20 mm.

We perform the surface-flattening calculation for pillow and saddle shapes under the
following four conditions:

• Using the general steel constitutive relations to produce tensile strain without con-
straint as a reference result,

• Using a constructed constitutive relation to produce tensile strain dominant, setting
factor n = 0.001,
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• Using a constructed constitutive relation to produce tensile strain in X direction
dominant, setting factors n = 0.001 and m = 1000,

• Using a constructed constitutive relation to produce tensile strain in Y direction
dominant, setting factors n = 0.001 and m = 1000.

We use the surface-flattening results without constraint as reference results. Then,
Figures 10 and 11 compare the results of membrane strain distribution. According to the
symmetry of the target shape, only a quarter region of the results is shown. Moreover, we
compare the shapes flattened in Table 2.

−0.02693 −0.051257

−0.067864−0.064715

n = 0.1

n = 0.01 n = 0.001

Figure 7. Principal membrane strain vector of spherical cap flattening with dominating compressive
strain (a) reference, (b) n = 0.1, (c) n = 0.01, (d) n = 0.001.

For pillow shape surfaces, in the reference results, the membrane strain near the
edges is predominantly tensile, and the membrane strain in the region near the center is
predominantly compressive. When a constraint is applied so that the strain is predominant
tensile in the whole region, the compressive strain is much smaller than the tensile strain.
However, the direction of the principal strain is not uniform on the whole plate. Although
the maximum tensile strain increases, forming can be performed singly. When the direction
of the principal strain is further constrained, the membrane strain is mainly tensile along
the X direction. There is a minor compressive strain near the X axis and a slight increase
in tensile strain in the area far from the X axis. At this time, the direction of the principal
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strain is more regular and more conducive to forming. When constraining the principal
strain along the Y direction, there is a more significant tensile strain in the area far from
the Y axis. Meanwhile, the maximum tensile strain value in this situation is significantly
larger than in the first two cases. Comparing the above results, we can conclude that plate
forming by applying membrane strain along the X direction is a more easily achievable
forming method.

Table 2. Comparison of pillow- and saddle-shape flattening results.

Case
Edge Length
X Direction

(m)

Edge Length
Y Direction

(m)

Maximum
Membrane

Strain (10−3)

Minimum
Membrane

Strain (10−3)

Pillow

Reference 2.0366 1.0034 4.37 −2.32
Tensile strain 2.0394 1.0045 6.17 −0.14

Tensile strain X dir 2.0427 1.0019 6.86 −0.12
Tensile strain Y dir 2.0325 1.0161 22.39 −0.93

Saddle

Reference 1.9989 1.0054 1.56 −2.87
Tensile strain 2.0025 1.0065 3.96 −0.17

Tensile strain X dir 2.0023 1.0064 4.67 −0.24
Tensile strain Y dir 2.0006 1.0053 10.27 −1.74

−0.02

−0.04

−0.06

−0.08

−0.04

−0.05

−0.06

−0.07

−0.01

−0.02

−0.03

Figure 8. Comparison of principal membrane strain in spherical cap-flattening (a) circumferential
strain, (b) radial strain.
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Figure 9. Surface shape with contour line (a) pillow shape, (b) saddle shape.

−0.00092596

−0.00013981−0.0023207

−0.00012184

Figure 10. Principal membrane strain vector of pillow-shape flattening (a) reference, (b) tensile strain
dominant, (c) tensile strain in X direction dominant, (d) tensile strain in Y direction dominant.
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−0.00174

−0.00016601−0.0028695

−0.00024464

Figure 11. Principal membrane strain vector of saddle-shape flattening (a) reference, (b) tensile strain
dominant, (c) tensile strain in X direction dominant, (d) tensile strain in Y direction dominant.

Correspondingly, the saddle-shape surface-flattening has the central part stretched,
and the edge part compressed. When the membrane strain is constrained, the area of
tensile strain increases, and the maximum value of tensile strain increases. At this point,
the compressive strain remains only in part very close to the edges. Therefore, it is nu-
merically much smaller than the tensile strain. When further constraining the strain only
along a single direction, again, there is a more considerable tensile strain near the center,
decreasing with increasing distance to the center. The strain at the edges is much smaller
than at the center. Comparing constraining along the X direction with the Y direction, the
strain produced when constrained along the Y direction is significantly larger than when
constrained along the X direction.

The flattened shape differs when different constraint methods are used for surface
flattening. For example, when the tensile strain is increased by applying constraints, the
resulting flattened shape increases slightly. Different initial shapes should be used when
forming the same target shape using different forming methods.

Based on the above examples, we can conclude that the proposed method can constrain
the principal strain direction while constraining the strain state to obtain the membrane
strain distributed along a specific direction. We can perform surface flattening differently
to obtain different processing schemes for a shape.

3.3. Comparison and Verification

Ueda [2] proposed a method that uses iterations of applying a specific inherent strain
to obtain an orthogonal strain distribution. This section verifies the strain distribution
obtained by comparing it with the previous methods. The target surface is a saddle-shaped
surface, as shown in Figure 12.
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Figure 12. Shape of a curved plate.

Using the surface-flattening method in this paper, we can also obtain the orthogonal
inherent strain distribution required for forming. Figure 13 gives the obtained strain
distribution. Table 3 shows the comparison of the flattened strain. The maximum and
minimum values of the bending strain are 2.67× 10−3 and −9.67× 10−4, respectively, and
the minimum membrane strain becomes −2.05× 10−3. The strain magnitude is very close
to the result of Ueda, and the distribution form is approximately the same.

Table 3. Result comparison.

Ueda’s Result This Paper

Maximum bending strain 2.98 2.82
Minimum bending strain −9.77 −9.67

Minimum membrane strain −2.07 −2.06
Mises stress with inherent strain distributed (MPa) 9.28 1.37

Then, we apply the strain distribution to a freely deformed flat plate as inherent
strain. Table 4 gives a comparison of the deformation results. It shows that the error
from the maximum deformation is about 0.77%. The deformed shape is very close to
the target shape. Figure 14 gives the resulting Mises stress. It shows that the maximum
value of Mises stress is 1.37 MPa, slightly smaller than Ueda’s calculated result. The high
stress values on the corners may be caused by asymmetry of the target shape. Moreover,
the Mises stress is less than 0.5 MPa in most areas of the plate, so we can assume that
the inherent strain applied does not generate secondary elastic deformation at this time.
The strain distribution we obtained satisfies the compatibility condition and is usable for
processing. Furthermore, since the relationship between deformation and strain during
the flattening process is determined by the compatibility condition, independent of the
material constitutive relationship, the strain distribution must be compatible.

From this comparison, we can conclude that our proposed method can obtain the
membrane strain distribution for forming process and satisfy the compatibility condition.
Compared with the previous method, this method does not require iterative calculations,
and the results can be obtained by one static calculation with high computational efficiency.
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−0.0020646 −0.000967382.6573e−5

−0.5
−0.5−0.5

−0.5
−1 −1

Figure 13. Orthogonal inherent strain using the proposed method (a) membrane strain, (b) bending
strain (top surface).

Table 4. Geometry error comparison.

Desired Shape Distributed Inherent
Strain (Ueda’s Result)

Distributed Inherent
Strain (This Paper)

wmax (mm) 30.0 29.98 29.77
wmin (mm) −40.0 −39.64 −40.00

−0.5

−0.4

−0.2

−1

Figure 14. Mises stress with inherent strain applied to a free plate.

4. Application

The forming of double-curved plates is an essential process in shipbuilding. Curved
surface flattening helps find the initial shape of double-curved plates and design the
forming plan. This section gives an example of applying a surface-flattening calculation in
engineering. We can calculate the surface flattening of the target shape to obtain the initial
flat plate shape and the inherent strain distribution desired during the forming process. We
can then formulate a processing plan according to the required inherent strain distribution
and determine the processing path and parameters. The following steps describe the entire
process of the forming experiment.

• Flatten the target surface according to the above method with constraint, and obtain
the inherent strain distribution required.

• Design the forming plan according to the inherent strain distribution. Lay out the
rolling line in the direction perpendicular to the bending strain and the heating line
in the area of high membrane strain. Select processing parameters according to the
processing parameter database.

• Carry out the forming process simulation to verify the forming plan.
• Carry out the forming experiment, and compare it with the target shape.
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4.1. Surface Flattening and Process Plan

Various methods form a ship hull’s double-curved outer plats. Ueda [2] proposed
using electromagnetic induction line heating for plate forming. In the line-heating process,
the material is constrained from the surrounding area when it expands by heat, resulting
in compressive plastic strain. Due to the uneven heating on the upper and lower surfaces
of the plate, temperature differences cause different compressive strain. The deformation
caused by line heating is mainly membrane shrinkage. Shim [21] proposed using a line
array roll set for curved plate forming. In this method, three-point bending is used to
generate bending plastic strain in the plate, and the membrane deformation of the plate
is small. Chang [4] proposed a way to process curved plates using arc-shaped rollers. In
this method, the shape of the rollers is controlled to provide different pressure at each part
of the plate, and the plate produces membrane tensile deformation. Zhao [6] proposed to
combine line heating and roller bending for plate forming. A richer deformation can be
produced by combining different forming tools.

We choose a pillow shape surface as the target shape and use a combination of line
heating [22] and concave–convex roller bending [6,23] to perform the forming process.
First, the surface flattening calculation is performed for the target shape. The membrane
strain should be constrained because the line heating process can only produce compressive
membrane strain. The membrane strain in the surface flattening calculation should be
mainly tensile. Based on the surface-flattening calculation results, we can obtain the
bending strain and membrane strain distribution required in the forming process, as shown
in Figure 15 below. According to the inherent strain distribution, we can decide forming
position. Based on the inherent strain magnitude, we can obtain the forming parameters by
referring to a parameter database [23]. We take the following processing scheme. First, we
use roller bending to apply bending strain along the X direction. Then, line heating applies
the compressive membrane strain on the sides of the plate. Due to the simultaneous action
of bending strain and membrane strain, we process the flat plate into the target pillow
shape. For the roller bending process, the downward depth of the roller bending is set to
3 mm and repeated twice. For the line heating process, the power of the heat source is
60 kW, and the speed is ten mm/s; repeat four times. The arrangement of the processing
line is shown in Figure 16.

−0.00058347

−0.5
−0.5

−0.5
−0.5−1−1

Figure 15. Principal inherent strain distribution desired in forming process (a) membrane strain,
(b) bending strain (top surface).
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Figure 16. Process line schematic (a) roller path (b) line heating path.

4.2. Finite Element Simulation

We use a computer to simulate the forming process according to the above scheme.
We use ABAQUS software [24] for finite element simulations. First, we establish the
finite element model of the plate. The mesh size is set to 10 mm. We use four-node
reduced integral shell elements (S4R) in the deformation calculation and use four-node heat
transfer elements (DS4) in the heat-transfer calculation, and the material properties refer to
Dong’s [22,23] study. In the roller-bending process, the upper and lower rollers are modeled
as rigid bodies, as shown in Figure 17a,b. The roller processing is a quasi-static process.
In the line-heating process, the surface heat source model is established according to the
shape of the induction heating heat source, and then the heat transfer process of forming is
simulated. The heat source is simplified to a surface heat-flow density in the heat-transfer
calculation. Thus the complex coupled thermal electromagnetic simulation is avoided.
A subroutine DFLUX is used in ABAQUS to realize the heat source movement along a
straight line on the surface of the plate and set the convection and radiation heat-dissipation
conditions with the external environment [24]. The temperature field obtained from the
heat-transfer calculation is then used as a load for the elastic-plastic mechanical calculation
to obtain the deformation resulting from the line-heating process. In the mechanical
calculation, the boundary conditions constrain only the three corner-point constraints of
the rigid body displacement.

Figure 17. Finite element model (a) up roller, (b) down roller, (c) inductor coil, (d) roller-bending
model, (e) plate mesh grid.
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4.3. Experiment

We performed the above process on a plate-forming experimental processing plat-
form [6]. The experimental platform comprises hydraulic rollers, induction heating system,
servo positioning system, laser-scanning measurement system, and other assistant parts.
The platform is shown in Figure 18. It can be combined or used alone for roller bending
and induction line heating to form curved plates. We carried out tests according to the
above processing plan.

Figure 18. Experimental platform.

4.4. Results and Discussion

Figure 19 shows the out-of-plane deformation contour diagram of the plate in the
simulation and the deformation measurement results in the processing test. Figure 20
compares the deformation along the longitudinal and transverse cross-sections with the
target shape. Both show that the processing scheme can form the flat plate to the target
pillow shape. As shown in Figure 20b, there is an error of about 10 mm in the long side
direction. The error may be because the actual processing cannot strictly produce the strain
distribution obtained by unfolding, and further research should be carried out to improve
forming accuracy. Figure 21 shows the actual strain produced during the forming process.
Compared with the strain distribution obtained by flattening the target shape, the strain
distribution resulting from forming is similar to the desired strain distribution. This result
shows that the target shape can be formed by applying the strain distribution obtained in
surface flattening.

−0.4−0.2

−0.1
−0.05

−0.5
−1

−0.05
−0.1

−0.2−0.4
−0.5

−1

(b) Experimental result(a) Simulation result

Figure 19. Shape of deformed plate (a) simulation result, (b) experimental result.
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With this example, we can conclude that applying the surface-flattening method
proposed in this paper can guide the forming scheme in the surface forming process.
Furthermore, the surface-flattening method can be flexibly adjusted according to different
forming methods.

−0.02

−0.04

−0.06

−0.08

−0.10

−0.12

−0.06

−0.08

−0.10

−0.12

−0.5 −1

Figure 20. Displacement in Z direction along section (a) section in Y direction, (b) section in X direction.

−0.01078 −0.01963

−0.5
−0.5

−0.5
−0.5−1 −1

Figure 21. Principal strain vector produced in forming process (a) membrane strain, (b) bending
strain (top surface).

5. Conclusions

This paper proposes a method for surface-flattening calculation using the finite element
method. The membrane strain can be constrained by modifying the material constitutive
relationship. This method can obtain membrane strain dominated by tensile or compressive
strain. According to the numerical examples, this method can efficiently realize the curved
surface-flattening process and obtain the strain distribution and the initial shape. Changing
the value of the relaxation coefficient n can control the proportion of the tensile and
compressive strain regions. Furthermore, the direction of the principal strain can also be
constrained to make the membrane strain distribution regular. Compared with other strain
flattening methods, this can obtain a more accurate strain distribution and save computing
resources. The strain distribution obtained by this calculation method can guide curved
surface forming in the forming experiment.
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