
Farina et al. Adv. Model. and Simul.

in Eng. Sci.            (2021) 8:5 

https://doi.org/10.1186/s40323-021-00191-8

RESEARCH ART ICLE Open Access

A cut finite element method for spatially
resolved energy metabolismmodels in
complex neuro-cell morphologies with
minimal remeshing
Sofia Farina1, Susanne Claus3, Jack S. Hale1, Alexander Skupin1,2 and Stéphane P. A. Bordas1*

*Correspondence:
stephane.bordas@alum.northwestern.
edu,
stephane.bordas@uni.lu
1 Institute of Computational
Engineering, University of
Luxembourg„ Maison du
Nombre, 6 Avenue de la Fonte,
4364 Esch-sur-Alzette,
Luxembourg
Full list of author information is
available at the end of the article

Abstract

A thorough understanding of brain metabolism is essential to tackle
neurodegenerative diseases. Astrocytes are glial cells which play an important
metabolic role by supplying neurons with energy. In addition, astrocytes provide
scaffolding and homeostatic functions to neighboring neurons and contribute to the
blood–brain barrier. Recent investigations indicate that the complex morphology of
astrocytes impacts upon their function and in particular the efficiency with which these
cells metabolize nutrients and provide neurons with energy, but a systematic
understanding is still elusive. Modelling and simulation represent an effective
framework to address this challenge and to deepen our understanding of brain energy
metabolism. This requires solving a set of metabolic partial differential equations on
complex domains and remains a challenge. In this paper, we propose, test and verify a
simple numerical method to solve a simplified model of metabolic pathways in
astrocytes. The method can deal with arbitrarily complex cell morphologies and
enables the rapid and simple modification of the model equations by users also
without a deep knowledge in the numerical methods involved. The results obtained
with the new method (CutFEM) are as accurate as the finite element method (FEM)
whilst CutFEM disentangles the cell morphology from its discretisation, enabling us to
deal with arbitrarily complex morphologies in two and three dimensions.

Keywords: CutFEM, Unfitted methods, FEM, Level sets, Reaction diffusion system,
Energy metabolism

Introduction

Wepropose to test and verify a simple numerical framework to solve a simplifiedmodel of

metabolic pathways, representative of cellular metabolism in the brain. Metabolic models

can aid the understanding of cell behaviour. Most metabolic models involve the solution

of a system of ODEs [1] leaving open the question of how the geometry and spatial orga-

nization affect cell behaviour. This work presents a method that is a first step towards

extending existing models to answer this question. Themethod, based on recent develop-
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Fig. 1 The complex morphology of an astrocyte from a human post mortem sample obtained by
fluorescent (GFAP) super-resolution light microscopy [63] and reconstructed by the machine learning based
tool MicMac [5]

ments in unfitted finite elementmethods is general, and can deal with an arbitrary number

of coupled reaction diffusion equations and handle complex cell morphologies. Thanks

to the versatility of the automatic code infrastructure provided by FEniCS, the code is

well-suited to newcomers to finite element methods interested in modelling biological

systems.

To test the new framework, we address complex cell geometries in two and three dimen-

sions and compare themethod to the standard finite elementmethod in terms of accuracy.

The results obtained with the new method CutFEM are as accurate as the finite element

method (FEM) whilst CutFEM disentangles the cell morphology from its discretisation,

enabling to deal with arbitrarily complex morphologies, including kinks and triple junc-

tions, in two and three dimensions.

A thorough understanding of brain metabolism is essential to tackle neurodegenera-

tive diseases [2,3]. Astrocytes are glial cells which play an important metabolic role by

supplying neurons with energy [4]. These cells also provide scaffolding and help repair

neighboring neurons, where they maintain balanced ionic concentrations (homeostasis)

and contribute to the blood–brain barrier by preventing the diffusion of large molecules

into the brain.

Recent investigations show that the morphology of astrocytes, which can be complex

(see Fig. 1), impacts upon their function, in particular the efficiency with which these

cells metabolise nutrients and provide neurons with energy [5]. Modelling and simulation

could be effective in furthering our understanding brain metabolism by enabling to test

biological hypotheses and investigate the relative importance of model parameters on

quantities of interest to biologists.

The challenges involved with modelling and simulating metabolic activity in cells

include:

1. Building a representative model of themetabolic pathways, usually a set of reaction–

diffusion equations;

2. Identifying the parameters for these partial differential equations (PDEs) as well as

the sensitivity of the system to these parameters [6–11];

3. Discretising the complex and evolving geometries of the cells;
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4. Solving this set of PDEs on these complex domains;

5. Ensuring the accuracy of the solution by measuring discretisation error [12–14];

6. Ensure the usability of the numerical framework by non-experts.

This last point aims at simplifying multi-disciplinary interactions between computa-

tional, data science and domain experts, it is also becoming increasingly important to

devise numerical frameworks which can be used and enhanced without being a com-

putational science expert. To do so, open-source frameworks such as FEniCS [15–17],

getFEM [18], FreeFEM [19], Deal.ii [20] are all possible candidates. These open-source

frameworks enable the user to write models in a language which is natural to them

and requires minimal interaction with technical details associated with well-established

numerical methods.

Concerning metabolic activities, some models focused their attention to the metabolic

pathways which they describe as a series of chemical reactions that enable the synthesis

and breakdown of molecules as [21–24].

So far, very little attention has been paid to the role of cell morphology on themodelling

[25,26]. However, cell morphology is known to be important to describe the state of the

cell. For example, [27] show the importance of cell morphology on the development of

Alzheimer’s disease.

In this paper, we tackle points 1., 3., 4., and 6., above, and leave points 2. and 5. for

further communications, as well as the extension to evolving domains.

Model We present a simple model of energy metabolism which takes into account the

main pathways of the metabolic process in a single cell. Here, we focus on an astrocyte

as a specific cell, but the developments are general. In particular, we include glycolysis,

Lactate Dehydrogenase, TCA cycle and basal cellular activity explicitly in the cell model.

Each pathway is described by a chemical reaction leading to a coupled reaction diffusion

system.

Cell geometry Our ultimate goal is to enable the use of microscopy to produce input

geometries for our computational framework and include the evolution of the cellular

domain. To enable this, we define cell geometries using signed distance functions, also

known as level-set functions [28,29], which were successfully deployed in modeling other

biological phenomena with moving interfaces, such as [30,31].

Discretisation

The solution of the set of coupled reaction diffusion equations has two characteristics,

which create challenges for the standard finite element method:

• Local gradients in metabolite concentrations;

• Discontinuities across cell boundaries.

Standard finite element method would require to create a mesh that fits the boundary of

the object. Even though much progress has been made in meshing technology [32], the

advantages of methods that separate the geometry from the object are very appealing for

our ultimate objective of describing a cell evolving in time. Classic FEM would require to

build a mesh conforming the object at each time step leading to very high computational

drawbacks.
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Fig. 2 a Standard FEM requires the mesh to be conform the boundary of the domain ∂� bCutFEM embeds
the implicitly defined interface ∂� into a background mesh, in yellow the set of ghost penalty facets FG

Enriched finite element methods such as the partition of unity FEM (PUFEM) [33,

34], the generalized finite element method (GFEM) [35] and the extended finite element

method [36] are ideal to tackle these two challenges [30,37].

Indeed, these methods enable the local enrichment of the discrete solution space

with known features about the solution, including discontinuities and sharp gradients

or singularities. This makes it possible to handle arbitrarily complex geometries quasi-

independently of the mesh (see Fig. 2).

Nonetheless, without preconditioning or special treatment [38–44] enriched finite ele-

ments cannot natively deal with arbitrarily complex geometries because of particular geo-

metrical limit cases (interfaces passing close to a degree of freedom) and ill-conditioning

stemming from linear dependencies due to complex enrichment functions acting upon

large parts of the computational domain.

CutFEM [45–51] is an extension of XFEM that naturally addresses limit cases associ-

ated with complex geometries, and lends itself to image-based simulations. Moreover,

we use the libCutFEM library, which is a cut finite element extension of the open-source

framework of the FEniCS Project [15–17,47]. FEniCS offers a highly flexible and easy way

of transforming models expressed as partial differential equations into numerical meth-

ods based on the finite element method through the Unified Form Language (UFL) [52],

a domain-specific programming language for writing the weak form of partial differen-

tial equations. The UFL specification of the finite element problem is then automatically

translated by the other components of the FEniCS Project (DOLFIN [16] and the FEniCS

FormCompiler (FFC) [15]) into high-performance specific C++ code with little or no user

intervention.

Solution schemeTo solve the set of coupled, time-dependent and non-linear PDEs, we first

discretise in time using a standard implicit time stepping scheme. The non-linear equation

is solved using a Newton–Raphson scheme. The Jacobian, required for the Newton–

Raphson scheme, is calculated automatically at the symbolic level by FEniCS. This greatly

eases the implementation from the user’s perspective, as deriving and implementing the

consistent Jacobian manually can be a tedious and error prone task. The resulting linear
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systems at each step of the Newton–Raphson algorithm is solved using standard linear

solvers from the PETSc library [53].

Usability and extensibility of the framework

Thanks to the flexibility of FEniCS, the framework is generic and usable by biologists

without a background or specific training in Computational Sciences or Applied Math-

ematics. The code used to create the two of the examples is freely online accessible (see

“Availability of data and materials”) and can be adapted to other problems straightfor-

wardly.

The paper is organized as follows. In “The problem formulation” section, we present the

biological model for energy metabolism followed by the governing equation and its weak

form. The FEM and CutFEM discretization can be found in “Discretization” section. In

“Implementation” section a detailed explanation of how implement ourmodel in CutFEM

is presented. Our numerical results are introduced in “Numerical results” section and the

conclusions follow in “Conclusion and discussion” section.

The problem formulation

The aim of this section is to introduce the energy metabolism model, which can be

expressed as a set of partial differential equations, in its strong and weak form.

Basic model for energy metabolism

The scope of this model is to isolate conceptually the essential mathematical properties of

themetabolic processes of a cell, themechanism that generate energy for cellular activities

from the synthesis and breakdown of nutrients [1].

The simplified model of metabolic pathway in a cell is sketched in Fig. 3 and described

by the following reactions (see “Abbreviations” for details)

HXK := GLC + 2ATP → 2ADP + 2GLY (1)

PYRK := GLY + 2ADP → 2ATP + PYR (2)

LDH := PYR → LAC (3)

Mito := PYR → 28ATP (4)

act := ATP → ADP. (5)

The pathway starts when the molecules derived from food (nutrients) enter the cytosol

of the cell, and the process called glycolysis starts the breakdown of glucose (GLC) into

two molecules of pyruvate (PYR). The glycolysis process can be split, to our modeling

purpose, into two main chemical reactions: ATP-consuming (1) and ATP-producing (2).

The pyruvate produced by glycolysis can, then, be converted into lactate (LAC) by the

enzyme lactate dehydrogenase (LDH) simplified with the chemical reaction (3) or enter

mitochondria and used to produce ATP through the TCA cycle shown in reaction (4).

Last, we take into account the activity of the cell which uses ATP for its own sustenance

represented by the chemical reaction (5).

In order to facilitate our model we consider that the backward reactions are negligible.

Moreover, we consider that the enzymes that catalyzed the chemical reactions are located

in a specific region of the cellular domain.
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Fig. 3 The main pathways we consider in our Simplified Model of Energy Metabolism of a cell. The glucose
(GLC) enters inside the cell into the cytosol and takes part into the glycolysis composed by the two reactions
HXK and PYRK. The products of the glycolysis, PYR and ATP, are then used into LDH reaction, that generates
LAC, into act reaction, that describes the cellular activity producing ADP, and inside the mitochondria where
the reaction denoted Mito happens generating the major source of ATP for the cell

Strong formulation of governing equations

Let� be an open and bounded subset ofRd (d = 2 or 3)with Lipschitz-continous boundary

and we denote the concentration of the chemical species using the bracket notation, [ · ],
as a function

[ · ] : � × [0, T ] → R.

Mathematically, we can express the sequence of reactions Eqs. (1)–(5) with a cou-

pled system of semi-linear parabolic reaction diffusion equations [54]. We consider that

the species involved are subject to diffusion in the domain and we denote D[ · ] > 0

the diffusive constants. The reactions obey to the law of mass action [55] where

KHXK , KPYRK , KLDH, KMito andKact are the rate constants andwe introduceGaussian func-

tions, indicated with GHXK(x0, σ ), GPYRK(x0, σ ), GLDH(x0, σ ), GMito(x0, σ ) and Gact(x0, σ ),

to locate the region where the reactions are happening

G· = G(x0,·, σ·) =
1

√

2πσ 2
·
exp−

(x − x0,·)2

2σ 2
·

,

where x0,· ∈ �· and σ ∈ R. Eventually, to represent the entrance of the glucose inside

the cytosol we define a source term function f : A× [0, T ] → R, where A is a subset of �

as

f (x, t) =

⎧

⎨

⎩

α ∈ R if (x, t) ∈ A × [0, 1],

0 otherwise.
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The strong form of the reaction diffusion system is then, finding the concentrations

[GLC](x, t), [ADP](x, t), [ATP](x, t), [GLY](x, t), [PYR](x, t) and [LAC](x, t) for all x ∈ �

and t ∈ [0, T ] such that
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∂[GLC]
∂t = D[GLC]∇2[GLC] − KHXK[GLC][ATP]

2GHXK + f

∂[ATP]
∂t = D[ATP]∇2[ATP] − 2KHXK[GLC][ATP]

2GHXK

+2KPYRK[ADP]
2[GLY]GPYRK + 28KMito[PYR]GMito

−Kact[ATP]Gact

∂[ADP]
∂t = D[ADP]∇2[ADP] + 2KHXK[GLC][ATP]

2GHXK

−2KPYRK[ADP]
2[GLY]GPYRK + Kact[ATP]Gact

∂[GLY]
∂t = D[GLY]∇2[GLY] + 2KHXK[GLC][ATP]

2GHXK

−KPYRK[ADP]
2[GLY]GPYRK

∂[PYR]
∂t = D[PYR]∇2[PYR] + KPYRK[ADP]

2[GLY]GPYRK

−KLDH[PYR]GLDH − KMito[PYR]GMito

∂[LAC]
∂t = D[LAC]∇2[LAC] + KLDH[PYR]GLDH.

(6)

The system is completed with homogeneous Neumann boundary conditions on ∂� and

initial conditions at time t = 0

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪
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⎪

⎪

⎪
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[GLC](x, t = 0) = a0(x) x ∈ �

[ATP](x, t = 0) = b0(x) x ∈ �

[ADP](x, t = 0) = c0(x) x ∈ �

[GLY](x, t = 0) = d0(x) x ∈ �

[PYR](x, t = 0) = e0(x) x ∈ �

[LAC](x, t = 0) = f0(x) x ∈ �.

(7)

where a0, b0, c0, d0, e0, f0 : � → R.

Precise questions on global existence of solutions of reaction–diffusion systems are still

an open problem, we refer the reader to [56]. In this work, we consider all diffusion coef-

ficients D[·] equals, ensuring that a global solution of the system (6) with initial condition

(7) exists.

Weak formulation of governing equations

In this sectionwe convert the strong formof the PDEs in Eq. (6) into a correspondingweak

form. This is necessary step in order to discretise both the FEM and CutFEM methods.

For further details see e.g. [57].

We define the standard Hilbert space V = v ∈ H1(�) and we denote with V = V ×
V × V × V × V × V the product space.
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The weak form of system (6) can be found multiplying each equation by a test function

v1, v2, v3, v4 , v5, v6 ∈ V and integrating over the space domain �
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⎪
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⎪
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∫

�
∂[GLC]

∂t v1 dx =
∫

�
D[GLC]∇2[GLC] v1 dx −

∫

�
KHXK[GLC][ATP]

2GHXK v1 dx

+
∫

�
f v1 dx

∫

�
∂[ATP]

∂t v2 dx =
∫

�
D[ATP]∇2[ATP] v2 dx −

∫

�
2KHXK[GLC][ATP]

2GHXK v2 dx

+
∫

�
2KPYRK[ADP]

2[GLY]GPYRK v2 dx

+
∫

�
28KMito[PYR]GMitov2 dx −

∫

�
Kact[ATP]Gactv2 dx

∫

�
∂[ADP]

∂t v3 dx =
∫

�
D[ADP]∇2[ADP] v3 dx +

∫

�
2KHXK[GLC][ATP]

2GHXK v3 dx

−
∫

�
2KPYRK[ADP]

2[GLY]GPYRK v3 dx +
∫

�
Kact[ATP]Gact v3 dx

∫

�
∂[GLY]

∂t v4 dx =
∫

�
D[GLY]∇2[GLY] v4 dx +

∫

�
2KHXK[GLC][ATP]

2GHXK v4 dx

−
∫

�
KPYRK[ADP]

2[GLY]GPYRK v4 dx
∫

�
∂[PYR]

∂t v5 dx =
∫

�
D[PYR]∇2[PYR] v5 dx +

∫

�
KPYRK[ADP]

2[GLY]GPYRK v5 dx

−
∫

�
KLDH[PYR]GLDH v5 dx −

∫

�
KMito[PYR]GMito v5 dx

∫

�
∂[LAC]

∂t v6 dx =
∫

�
D[LAC]∇2[LAC] v6 dx +

∫

�
KLDH[PYR]GLDH v6 dx.

(8)

SinceD[·] is constant, we apply integration by parts to the second-order spatial derivative

−
∫

�

D[ · ]∇2[ · ] vi dx =
∫

�

D[ · ]∇[ · ]∇vi dx −
∫

∂�

D[ · ]
∂[ · ]
∂n

vids. (9)

Since we have specified pure Neumann boundary conditions for each concentration

species, the boundary terms vanish. Leading to

−
∫

�

D[ · ]∇2[ · ] vi dx =
∫

�

D[ · ]∇[ · ]∇vi dx. (10)

We can, then, substitute Eq. (10) into Eq. (8) and use the following compact notation

(u, v) =
∫

�

uv dx. (11)

allowing us to state the weak form of the problem problem as: we seek the solutions

[GLC],[ATP], [ADP],[GLY], [PYR], [LAC] in the space V such that for all t ∈ [0, T ] and
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for all test functions v1, v2, v3, v4 , v5, v6 ∈ V
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⎪

⎪
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⎪
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⎨
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⎪
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⎪
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⎪
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⎩

(

∂[GLC]
∂t , v1

)

=
(

− D[GLC]∇[GLC],∇v1

)

+
(

− KHXK[GLC][ATP]
2GHXK

+f, v1

)

(

∂[ATP]
∂t , v2

)

=
(

− D[ATP]∇[ATP],∇v2

)

+
(

− 2KHXK[GLC][ATP]
2GHXK

+2KPYRK[ADP]
2[GLY]GPYRK + 28KMito[PYR]GMito

−Kact[ATP]Gact , v2

)

(

∂[ADP]
∂t , v3

)

=
(

− D[ADP]∇[ADP],∇v3

)

+
(

+ 2KHXK[GLC][ATP]
2GHXK

−2KPYRK[ADP]
2[GLY]GPYRK + Kact[ATP]Gact , v3

)

(

∂[GLY]
∂t , v4

)

=
(

− D[GLY]∇[GLY],∇v4

)

+
(

+ 2KHXK[GLC][ATP]
2GHXK

−KPYRK[ADP]
2[GLY]GPYRK , v4

)

(

∂[PYR]
∂t , v5

)

=
(

− D[PYR]∇[PYR],∇v5

)

+
(

+ KPYRK[ADP]
2[GLY]GPYRK

−KLDH[PYR]GLDH − KMito[PYR]GMito, v5

)

(

∂[LAC]
∂t , v6

)

=
(

− D[LAC]∇[LAC],∇v6

)

+
(

+ KLDH[PYR]GLDH, v6

)

.

(12)

In the subsequent section we discuss the discretization of Eq. (12) using the standard

finite element method and the CutFEM.

Discretization

In order to solve Eq. (12), we must discretise it in both space and time. Discretisation

is a process by which continuous mathematical objects (e.g. v1) are transformed into a

discrete counterpart that can be manipulated on a computer. We choose to discretise in

space using the classical Finite Element Method [58] (FEM) and then using the Cut Finite

Element Method (CutFEM) [47]. The FEM results serve as a baseline for comparison of

the CutFEM method. For both FEM and CutFEM we discretize in time using a standard

finite difference method.

The important distinction between FEM and CutFEM from the point of view of the

user is that the FEM requires an extra mesh generation step; a mesh must be generated

that conforms to the boundary of the domain, before the simulation can take place. This

can be a difficult task, as the mesh must be of sufficiently good quality to ensure an

accurate solution, while still conforming to the boundary. In contrast, CutFEM removes

the need for a conformingmesh generation step. The boundary of the domain is described

implicitly as a level set function that can be extracted directly from e.g. processed image

data, or using constructive solid geometry (CSG) [59]. The promise of CutFEM is that

discretization of geometry can be performed automatically without a mesh generation

step that often requires lengthy manual intervention.

We recognise that both the Finite Element Method, and even more so, the CutFEM

are highly technical and take some time to understand. The point of this section then

is not to give a full and detailed exposition of both of these methods. Instead we aim

show a precise derivation of the discrete weak forms and then in the subsequent section

we show their translation into the FEniCS Project domain specific language, called the

Unified Form Language (UFL) [52]. In practice, if the user can convert their problem into

a discrete weak formulation then the the FEniCS Project and the libCutFEM library can
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automatically perform all of the subsequent discretization steps. For full details of how

this process takes places the reader is referred to [16,47].

FEM

Todiscretise our problem in timewe choose a finite difference approximation, specifically,

the backward Euler method [60]. First, we discretize the time interval [0, T ], denoting �t

the size of the timestep.We denote with subscript n a concentration of (possibly multiple)

chemical species at time tn, where 0 ≤ n < N withN = T/�t is an integer that counts the

time steps. The backward Eulermethod then approximates the continuous time derivative

as

∂

∂t
[ · ] ≈

[ · ]n+1 − [ · ]n
�t

. (13)

We discretize the spatial domain � using a triangulation Th that conforms (matches)

the exact boundary ∂�. On this mesh we define the space of piece wise Lagrange finite

elements of degree one as V and with V the product V = V ×V ×V ×V ×V ×V . The

space V can then be used to discretize the weak form equations (12).

We denote U = ([GLC], [ATP], [ADP], [GLY], [PYR], [LAC]) the vector of all the con-

centration solutions and v = (v1, v2, v3, v4 , v5, v6) ∈ V the corresponding vector of test

functions. The initial conditions are denoted [U ]0. We then solve a sequence of problems:

find [U ]n+1 ∈ V for n = 0, . . . , N − 1 such that

fh([U ]n+1, [U ]n; v) = 0 ∀v ∈ V , (14)

where

fh([U ]n+1, [U ]n; v) =
∫

�

(

�t−1([GLC]n+1 − [GLC]n)v1 + D[GLC]∇[GLC]n+1∇v1+

− fv1 + KHXK[GLC]n+1[ATP]
2
n+1v1GHXK+

+ �t−1([ATP]n+1 − [ATP]n)v2 + D[ATP]∇[ATP]n+1∇v2+

+ 2KHXK[GLC]n+1[ATP]
2
n+1v2GHXK+

− 2KPYRK[GLY]n+1[ADP]
2
n+1v2GPYRK+

− 28KMito[PYR]n+1v2GMito + Kact[ATP]n+1v2Gact+

+ �t−1([ADP]n+1 − [ADP]n)v3 + D[ADP]∇[ADP]n+1∇v3

− 2KHXK[GLC]n+1[ATP]
2
n+1v3GHXK+

+ 2KPYRK[GLY]n+1[ADP]
2
n+1v3GPYRK − Kact[ATP]n+1v3Gact

+ �t−1([GLY]n+1 − [GLY]n)v4 + D[GLY]∇[GLY]n+1∇v4+

− 2KHXK[GLC]n+1[ATP]
2
n+1v4GHXK+

+ KPYRK[GLY]n+1[ADP]
2
n+1v4GPYRK

+ �t−1([PYR]n+1 − [PYR]n)v5 + D[PYR]∇[PYR]n+1∇v5+

− KPYRK[GLY]n+1[ADP]
2
n+1v5GPYRK+

+ KLDH[PYR]n+1v5GLDH + KMito[PYR]n+1v5GMito
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+ �t−1([LAC]n+1 − [LAC]n)v6 + D[LAC]∇[LAC]n+1∇v6+

− KLDH[PYR]n+1v6GLDH

)

dx. (15)

Since Eq. (14) is a non-linear function of the unknown solution [U ]n+1 we choose to use

a Newton–Raphson type algorithm to solve it. This Newton–Raphson algorithm requires

the computation of the derivative of fh with respect to U (commonly called the Jacobian

of fh).We do not perform this stepmanually, but instead use the automatic differentiation

capabilities of UFL [52], as shown in “Implementation” section.

CutFEM

Instead of discretizing the spatial domain � using a mesh that conforms to the boundary,

in CutFEM, the problem domain � is described by a level-set function. The level set

function is a scalar function on Rd , such that φ(x) < 0 for x ∈ �, φ(x) > 0 for x /∈ �

and φ(x) = 0 for x ∈ ∂�. We then cover the domain � by a regular background mesh 	

(� ⊆ 	) of simple shape, e.g. a box containing � meshed with a uniform triangulation.

Let K denote a triangle/tetrahedron in this triangulation. Now, let T̃h be the fictitious

domain mesh composed by all elements K ∈ 	 such that K ∩ � 
= 0 (� ⊆ T̃h ⊆ 	).

Furthermore, the union of all elements in T̃h is called the fictitious domain �̃.We denote

with

G∗
h := {K ∈ T̃h : K ∩ ∂� 
= ∅}

the set of elements intersected by the interface, and we define the set of so-called ghost

penalty facets [46] (see Fig. 2)

FG = {F facet in T̃h : F = K ∩ K ′ where K ∈ G∗
h or K ′ ∈ G∗

h}.

The stabilisation term introduced in the next section will be applied to this subset of

facets. We consider the space

W = {v ∈ C0(�̃) : v|K ∈ P1(K ),∀K ∈ T̃h}

and the jump gradient is defined for all facet F and v ∈ W by [[∂nF v]] = nF ·
∇v|K − nF · ∇|K ′ where nF denotes the unit normal to F in fixed but arbitrary direc-

tion. We use the same notation as the previous section, denoting the solution U =
([GLC], [ATP], [ADP], [GLY], [PYR], [LAC]), v = (v1, v2, v3, v4 , v5, v6) and the product

space W = W × W × W × W × W × W , We then solve a sequence of problems:

find [U ]n+1 ∈ V for n = 0, . . . , n − 1 such that

fh([U ]n+1, [U ]n; v) + j([U ]n+1, v) = 0 ∀v ∈ W (16)

where fh([U ]n+1, [U ]n; v) is identical to the standard FEMEquation (15). Here, j([U ]n+1, v)

denotes the following stabilization terms

j([U ]n+1, v) =
∑

F∈FG

(

(γ hD[GLC][[∂nF [GLC]n+1]], [[∂nF v1]])F (17)

+(γ hD[ATP][[∂nF [ATP]n+1]], [[∂nF v2]])F (18)

+(γ hD[ADP][[∂nF [ADP]n+1]], [[∂nF v3]])F (19)

+(γ hD[GLY][[∂nF [GLY]n+1]], [[∂nF v4]])F (20)
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+(γ hD[PYR][[∂nF [PYR]n+1]], [[∂nF v5]])F (21)

+(γ hD[LAC][[∂nF [LAC]n+1]], [[∂nF v6]])F
)

(22)

inspired by [47]. Here, γ is a positive penalty parameter. These stabilization terms extend

the solution from the physical domain� onto the fictitious domain �̃, it is consistent with

the continuous system. They prevent ill-conditioning of the system matrices in case only

small parts of � are contained in an element near the boundary ∂�. This stabilisation is

critical for the robustness and reliability of CutFEM.

Implementation

The finite element method discretization has been implemented using Python with the

open source finite element solver DOLFIN from the FEniCS Project, see [15,16]. The Cut-

FEM discretization has been implemented using Python using the libCutFEM library [47]

which builds on top of DOLFIN and the rest of the FEniCS Project. In this sectionwe show

parts of the code for the libCutFEM example that highlight the close link between the

mathematics and the concrete computer implementation. The standard FEniCS Project

implementation is similar so we have chosen to show only the libCutFEM implementation

for reasons of brevity. The reader should refer to the free online repository for two full

working examples that are around 250 lines of code each. The precise problem setup and

results from this example are shown in “Two-dimensional non-Lipschitz domain” section.

We import the dolfin and cutfem Python modules. These two modules contain all

of the functionality we need to solve the problem using the CutFEM approach.

We create the background mesh 	 and then define a level set function describing the

heart-shaped domain.

In the next part of the code, we use two special libCutFEM methods to 1. create a

special cut mesh, and 2. a mesh_cutter that intersects the mesh with the level set and

computes the distinct sets of cells (i.e. those that are on the inside of the level set and those

that are outside).

With these special objects in handwe candefine specialCutFEM-specificUFLMeasure

objects that will subsequently allow us to write the residual and the stabilisation weak

forms. Simply put, a measure defines regions of the problem mesh (cells, edges, parts
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inside the level set, and parts outside etc.) on which FEniCS will integrate different parts

of a weak form.

We create a finite element function space V̄ that we can use to further define the UFL

algebraic objects that we need.

Nowwehave everything thatweneed towrite theweak residual fh([U ]n+1, [U ]n; v) in Eq.

(14) using the UFL. We use the integration measure dxc which indicates the integration

on cells inside the domain � and in parts of the cut cells inside �. This form would look

identical in the standard FEniCS Project code except that we would use the dx measure

that denotes integration over all cells of the mesh.

The stabilization term j([U ]n+1, v), Eq. (17) is written in UFL using the integration

measure dS(1) which integrates on the ghost penalty facets FG (Fig. 4).
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Fig. 4 We can see the fictitious domain �̃ for the heart shaped function, and the facets marked. In red the
set of facets FG where we apply the stabilization term j([U]n+1 , v)

For both forms F and jwe remark how similar the UFL notation is to the mathematical

notation in Eqs. (14) and (17). Calculating the UFL expression for the Jacobian J can be

performed automatically using the derivative function.

The last step before the solver is to use the Composite framework of CutFEM to define

the problem on different parts of the mesh domain.
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Eventually, we can solve the non-linear and time-dependent problem with the fol-

lowing two nested loops, the outer one for the timestepping, and the inner one for the

Newton–Raphson algorithm. The FEniCS Project infrastructure (UFL+FFC+DOLFIN)

automatically generates and executes low-level code to assemble the sparse matrices A

and b. This linear system is then solved using PETSc and MUMPS.

In theprevious piece of code,weused the increment as stopping criteria for theNewton–

Raphson algorithm. We refer the reader to the free online repository with an example

where the stopping criteria is the tolerance to the residual. In the full example in the free

online repository the solution at each timestep is outputted to a VTK file that can be

opened with Paraview (https://paraview.org) for visualisation.

https://paraview.org


Farina et al. Adv. Model. and Simul. in Eng. Sci.            (2021) 8:5 Page 16 of 32

Numerical results

In this section we evaluate the accuracy of the CutFEM discretisation scheme for different

geometries by comparing the CutFEM solution to the standard FEM solution. In addition,

we want to confirm that at the steady state solutions (for large values of time t) predicted

by CutFEM tend towards the asymptotic solutions of the associated ordinary differential

equation (ODE) system. Then, we investigate the accuracy of CutFEM in comparison

with the standard FEM for a simple circular geometry. We increase the complexity of the

geometry and we show the ability of CutFEM to straightforwardly solve a test case within

a non-Lipschitz domain. Lastly, we consider a three dimensional domain.

Thenumerical schemewas implementedusing theCutFEMlibrary [47] basedonFEniCS

Project [15–17]. The linear systems arising in the numerical experiments are solved using

a direct (MUMPS) solver for the two-dimensional examples and a iterative (CG) solver

with algebraic multigrid preconditioning (hypre) for the three-dimensional example.

Asymptotic solution ODEs

The aim of this section is to validate our CutFEM implementation highlight that the solu-

tion of the reaction–diffusion system tends to the solution of the ODE system associated

to the chemical reactions Eqs. (1)–(5) for time going to infinity. The solution of the ODE

system is computed in two ways 1. we use the solve_ivp of the package scipy in python

2. we manually compute the asymptotic solutions, which can be found in Appendix A

together with the ODE system in Eq. (24).

For the PDEs, we solve the reaction diffusion system in a circular domain defined in

CutFEM using the level set function φ(x, y) = (x − 4)2 + (y − 3)2 − 25. The Gaussian

parameters locating the chemical reactions, that are shown in Fig. 5a, have been set

as following: GHXK(x0 = 0.5, y0 = 2.0, σ = 0.1), GPYRK(x0 = 1.1, y0 = 1.2, σ = 0.1),

GLDH(x0 = 4.0, y0 = 5.0, σ = 0.1), GMito(x0 = 4.0, y0 = 5.0, σ = 0.1) and Gact(x0 =
6.0, y0 = 6.5, σ = 0.1). Note, we have co-localized the reactions (3) and (4), in order to

obtain that PYR is used equally in the two reactions, such that we can set the parameter

α of the ODE asymptotic solutions of Eq. (26) equal to 0.5.

The influx of GLC entering the cell domain has been set equal to 100 until time t = 1

and is entering the cell into a circular subdomain with radius 0.3 and center the origin.

The rate constants K· of the chemical reactions are set equal to 10.0, in order to avoid

that one reaction dominates over, and the diffusive parameters D[ · ] of each chemical

species is 100.0 to accelerate the convergence to the ODEs solutions. The initial amount

of concentrations inside the cell are set to zero except for [ATP] and [ADP] that are equal

to 1. Final time is 1000, as well as the number of time step. TheCutFEMpenalty parameter

γ has been set equal to 0.1. The mesh size is set to a maximum diameter of 0.1744. In

this experiment, a finer mesh is not required for proving the convergence to the ODEs

solutions.

As initial condition, the asymptotic ODEs use the solution of PDEs at time equal to 1

when the source term of glucose stops, which keeps the total amounts of concentration

unchanged, as shown in Appendix A.

To use scipy to solve the ODEs we set all the parameters as the PDEs, the influx of GLC

and the initial conditions are obtained from the PDE ones integrating over the domain.
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Fig. 5 a The locations of the chemical reactions Eqs. (1)–(5) and the influx of GLC are shown in the circular
domain in order to prove the convergence of the PDEs solutions to the ODEs. Note, the chemical reactions
LDH Eq. (3) and Mito Eq. (4) have been placed in the same location. b The solutions of the PDEs obtained
using CutFEM and integrated over the domain (red line) are plot in comparison with the asymptotic
solutions of the ODEs for each concentration (blue line) and with the ODEs solved using scipy . The
convergence of the PDEs to the ODEs solutions is reached for t > 200



Farina et al. Adv. Model. and Simul. in Eng. Sci.            (2021) 8:5 Page 18 of 32

Table 1 In the table shows themaximum cell diameter, the number of DOFs, and the

computational time for FEM andCutFEM in a circular domain and forCutFEM for the

perturbed boundary domain

Maximum cell diameter DOF Computational time

Circle FEM 0.049999 477114 4 h 30 m

Circle CutFEM 0.049741 387786 23 h

Perturbed circle CutFEM 0.048893 402288 21 h

In order to compare the numerical solution of the system (6) solved using CutFEM, we

integrate the solutions of the concentrations over the domain � to obtain the average

chemical concentration of each species at each time step. We use the following notation

[̃·](t) :=
∫

�

[·](t) dx ∀t ∈ [0, T ]. (23)

In Fig. 5b, we plot the solutions obtained using the Formula (23) for the PDEs, the

asymptotic ODE solutions obtained using Eq. (26) and the ODE solutions with scipy. As

expected from the asymptotic solutions computed in Appendix A, the average concen-

trations of GLC, ATP, GLY and PYR go to zero whilst the products of the system are

LAC and ADP. We can see that the ODE solutions with scipy converge to the asymptotic

solution very quickly, and after time t = 200 also the PDE solutions tend to the same

values.

Example one: two-dimensional circular domain

In this section, we assess the accuracy of the CutFEM solution. First, we consider the cell,

�, as a circle defined by the level set function φ(x, y) = (x − 4)2 + (y − 3)2 − 25 and we

show that the results obtained with CutFEM are of the same order as those obtained with

FEM, where the circular domain is explicitly meshed using package mshr.

To investigate the behaviour of CutFEM for more complex boundaries we consider an

irregular cell geometry defined by a perturbed circle represented by the level set function

φ(x, y) = (x− 4)2 + (y− 3)2 − cos (4x) cos (5x)− sin (4y) cos (5y)− 25.We highlight how

it is easy for CutFEM to work with a more complex shape just by changing the level set

function.

In this experiment the glucose source term and the reaction locations and parameters

are set as in section , with the exception of the Mito reaction that is located at GMito(x0 =
4.0, y0 = 7.5, σ = 0.1). The test case is represented schematically in Fig. 6a.

The chemical species are allowed to diffuse inside the cell with diffusive constants

D[ · ] = 1.0 for each species. The rate constants of the chemical reaction and the initial

chemical concentrations are set as in the previous test case, see Section . Final time is 10

and we set the number of time steps as 300. As before, the penalty parameter of CutFEM

is set to 0.1. The choice of the mesh size is shown in Table 1 in accordance with the size

of the Gaussian parameters σ .

In Fig. 6b, we investigate the average concentrations inside the three domains at each

time step using Eq. (23). The average concentrations for each species computed in the

circular domain with FEM and CutFEM show equivalent results. The solutions obtained

using the perturbed domain show higher average concentration of GLC and ADP than

the results in the circular domain.We remind the reader that the system solved inside the
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Fig. 6 a The chosen location of the chemical reactions Eqs. (1)–(5) and of the influx of GLC are shown to
compare FEM and CutFEMresults in a circular domain. b In the y-axis is plot the integral over the domain at
each time step using Eq. (23), giving us the average concentration, of CutFEM and FEM in a circular domain
and CutFEM solved in a circular domain with perturbed boundary. The average concentration of each
species of FEM (blue line) and CutFEM (red line) are equivalent while the CutFEM solutions of the perturbed
domain (black line) share the same results for concentrations ATP, GLY, PYR, LAC and differs but show the
same trend for GLC and ADP
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perturbed domain is not supposed to produce same results as the circular one, however

the dynamics show the same trend as shown in Fig. 6b.

For time equal to 5, we plot the solutions of the concentrations for each chemical species

in Fig. 7.We notice how theGaussian functions drive the chemical reactions in the regions

defined in Fig. 6a. For example, we can notice that ATP is consumed in two regions that

locate respectively HXK and act, while ADP is produced. The GLC entered the cell is

diffusing in the domain and taking part to the HXK reaction. In comparison, the results

of FEM and CutFEM are almost identical.

To further analyze the plot shown in Fig. 7, we compare in Fig. 8 FEM and CutFEM

solutions line x = y at time 5 (Fig. 8a) and final time 10 (Fig. 8b). We can recognize

where the reactions are from the bump in the curve. The plot indicates that the results

are equivalent.

Our experiments suggest that CutFEM produces similar solutions to the FEM but the

computational time needed to solve CutFEM is five times as high as standard FEM. The

number of DOFs is smaller for CutFEM compared to FEM, as shown in Table 1.

Concerning the larger computational time requires for CutFEM, the CutFEM imple-

mentation is based on FEniCS 1.5.0 released in 2015, while the FEM ones on FEniCS

2019.1.0 released in 2019 with significant improvements and computational optimiza-

tions. Since CutFEM relies in large parts on the FEniCS functions, its computational time

would be highly reduced when using a newer version of FEniCS. Breaking down the total

computational time, we identified that the CutFEM implementation of assembly is signif-

icantly slower than the FEniCS implementation of assembly. However, critically, we have

verified that both implementations scale at the expected optimal rateO(N ) in the number

of cells N (results not shown). The larger constant in the O(N ) scaling in the CutFEM

implementation points to certain computational kernels not optimised for efficiency.

In conclusion, in this section we showed howCutFEM and FEM gives equivalent results

for a circular domain. Moreover, we investigated the behaviour of CutFEM with a more

complex domain, the perturbed circle.

Two-dimensional non-Lipschitz domain

In this section, we consider an irregular boundary, i.e. where the normal field along the

surface is non-smooth. We choose a heart-shaped domain, which has two singularities

(this is known as a non-Lipschitz domain).

The heart-shaped is described by the level set function φ(x, y) = (y −
√

|x|)2 − 1 + x2.

The description of the problem setting is shown in Fig. 9. The gaussian functions are

defined as GHXK(x0 = 0.1, y0 = −0.5, σ = 0.1), GPYRK(x0 = 0.3, y0 = 10.0, σ = 0.1),

GLDH(x0 = −0.5, y0 = 0.5, σ = 0.1), GMito(x0 = 0.5, y0 = 0.7, σ = 0.1) and Gact(x0 =
0.0, y0 = 0.9, σ = 0.1). We consider a source term for GLC active within a disk of radius

0.3, centered at the cusp and take the GLC influx to be 100.

The diffusive constants, the reaction rate and the initial concentrations are as in “Exam-

ple one: two-dimensional circular domain” Section, as well as the penalty parameter for

the stabilization term.

We solve the reaction diffusion system (6) using CutFEM, where we have set a back-

ground mesh with a maximum cell diameter equal to 0.01803, the number of DOFs is

129,606 and the total time to run the simulation was approximately 4 h.
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Fig. 7 Solutions of the concentrations, from top to bottom: GLC, ATP, ADP, GLY, PYR and LAC, at time t = 5
in a circular domain solved with FEM (Left), CutFEM (Center) and CutFEM in a perturbed boundary (Right).
The source term of GLC is no longer active, and the quantity of GLC is spreading through the domain and
participating into the reaction HXK. ATP and ADP show that in the region where HXK, PYRK and act are
located, when one is consumed the other is produced. We can notice production of GLY, PYR and LAC.
Comparing the results in the three domain, they are extremely close to each other and visually not
distinguishable
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Fig. 8 We plot the solutions of the concentrations in a circular domain obtained with FEM and CutFEM

along the line x = y at time t = 5 (a) and final time T = 10 (b). We can notice in the plot the location where
the reactions are happening thanks to the bump in the plot. The only small differences detectable are in LAC
at t = 5 and in GLC at t = 10 where CutFEM is slightly below the FEM curve

Figures 10 and 11 show the solutions obtained in the heart-shaped domain for each

chemical species at the initial and final time. At the initial time, we can see how the

GLC (Fig. 10a) enters the cellular domain, diffuses and takes part in HXK. On the other

hand, the region where the reaction act (consuming ATP and producing ADP) is clearly

visible (Fig. 10b, c). Observing the plot of GLY (Fig. 10d) we can see the region where

GLY is produced by HXK and at the same time consumed by PYRK. Interestingly, we can

notice that at the initial time, the PYR produced by PYRK contributes to generating LAC,
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Fig. 9 Location of the chemical reactions Eqs. (1)–(5) and the source term of GLC in the heart shaped domain

however PYR has not reached the Mito reaction site, so that there is no production of

ATP from this reaction (Fig. 10e, f).

At the final time (T = 10), the GLC has diffused into the domain, and is still used to

generate HXK (Fig. 11a). Concentrations ADP, PYR and LAC have reached a stable state

(Fig. 11c, e, f), while ATP is consumed by the act reaction and is produced by the Mito

reaction (Fig. 11b). GLY is still consumed by PYRK and produced by HXK (Fig. 11d).

Briefly, we observe that CutFEM solves the test case inside the heart shaped domain, the

singularities are well described thanks to the choice of a fine mesh. The computational

time of CutFEM in this test case is smaller than in the previous experiment since the

number of DOFS is 4 times less then the previous test case.

Experiment three: 3 dimensional complex domain

For the last experiment, we work with a 3 dimensional domain. We consider a union of

six spheres that generate a pop-corn shape. To create the shape we use the union of the

following level set functions

φ1(x, y, z) = (x − 4)2 + (y − 3)2 + z2 − 25

φ2(x, y, z) = (x − 12)2 + (y − 3)2 + z2 − 25

φ3(x, y, z) = (x − 8)2 + (y − 7)2 + z2 − 25

φ4(x, y, z) = (x − 8)2 + (y + 1)2 + z2 − 25

φ5(x, y, z) = (x − 8)2 + (y − 3)2 + (z + 4)2 − 25

φ6(x, y, z) = (x − 8)2 + (y − 3)2 + (z − 4)2 − 25
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Fig. 10 Solutions of the Model obtained in a heart-shaped domain at the Initial time (t = 0). GLC is entering
the domain from the infimum of the domain. ATP is used in the region where act and HXK are located, vice
versa ADP is produced. GLY is produced from HXK. We can see PYR and LAC produced by PYRK and LDH,
respectively
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Fig. 11 Solution of the Model obtained in a heart-shaped domain at the final time (T = 10). From top to
bottom from left to right: [GLC], [ATP], [ADP], [GLY], [PYR], [LAC]. GLC is still consumed in the infimum where
HXK is. ADP, PYR and LAC have reached a state where the amount of concentration is uniformly distributed
into the domain. ATP is consumed to produce ADP by act and produced by the Mito reaction. GLY is
consumed by PYRK and produced by HXK
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Fig. 12 a Setting of chemical reactions Eqs. (1)–(5) and the source term of GLC for the 3D domain, projected
into the x–y axes. b The plot shows the average concentrations of each species computed in the
three-dimensional example (blue line) compared with the one obtained in Fig. 6b with CutFEM in the circle

We sketch in Fig. 12a the problem setting projected onto the xy plane. The parameters

chosen for the reaction locations are: GHXK(x0 = 0.5, y0 = 2.0, z0 = 0.0, σ = 0.5),

GPYRK(x0 = 1.1, y0 = 1.2, z0 = 0.0, σ = 0.5), GLDH(x0 = 4.0, y0 = 5.0, z0 = 0.0, σ = 0.5),

GMito(x0 = 4.0, y0 = 7.5, z0 = 0.0, σ = 0.5) andGact(x0 = 6.0, y0 = 8.5, z0 = 0.0, σ = 0.5).

The source term is located in a ball of radius 0.3 centered on the origin, and we increase

the source influx to 1000 until time 1. The diffusive constants, the reaction rates and the

initial conditions are set as in “Asymptotic solution ODEs” section.
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Based on the converged mesh sizes obtained for the two-dimensional examples, we set

themesh size to h = 0.3772.Note that the choice of theGaussian parameters σ is designed

to make the reactions significant since the mesh is coarser than the meshes used in the

previous examples. Also, we increase the number of time steps to 100, while the final time

is 10. The CutFEM penalty parameter is 0.1.

In Fig. 12b, we plot the average concentration of each species using Eq. (23). We exam-

ine the trend of the average concentrations plotting them with the ones computed in

“Example one: two-dimensional circular domain” section. Even though the system solved

one in 2D and one in 3D gives different results, we expect their average concentrations to

behave similarly. Clearly, we have a higher influx of GLC entering the three-dimensional

domain, as well as higher initial concentrations of ATP andADP. As expected, the average

concentrations are higher in the three-dimensional domain but they all follow the same

trend as the two-dimensional cases.

We show the results obtained in the three-dimensional domain at time 5 in Fig. 13. The

results are in accordance with the ones showed in Section . We notice that the species are

diffusing inside the domain and the reactions are happening in the location we indicated

with the Gaussian functions.

In conclusion, in our three-dimensional experiment we can see how the chain of chem-

ical reactions describe the energy metabolism of a cell in a complex structure. CutFEM

is able to work with complex three-dimensional geometries, although the computational

time is large (is 3 days in this case).

Conclusion and discussion

Studying brain energy metabolism can be helpful to further our understanding of sev-

eral neurodegenerative diseases such as Alzheimer’s and Parkinson’s but a mechanistic

perspective is still lacking. To investigate energy metabolism in biological relevant mor-

phologies, we presented a simplified model of metabolism in a single cell using reaction–

diffusion equations and demonstrated how to discretize the model using the FEM and

CutFEM numerical methods. CutFEM has the advantage of enabling the use of a single

level set function per cell, independent of the complexity of the cell geometry. Imple-

menting using FEniCS and libCutFEM ensures the usability by non-experts. In particular,

modifying one or several of the reaction diffusion equations can be made by altering

only a few lines of code and any linearisation and parallelisation is done automatically by

the FEniCS framework. One of the difficulties of non-conforming methods for implicit

domain definition [40,61,62] is due to the ill-conditioning of the system matrices when

the interfaces or the boundary of the domain passes close to a node, leading to very large

or very small diagonal terms. The consistent stabilisation term used by CutFEM prevents

this issue and leads to a stable and convergent scheme. Other approaches are provided in

[42–44].

Our results indicate thatCutFEM is a valuable approach to dealwith biological problems

with arbitrarily complex cell morphologies. The appeal of level set descriptions coupled

to enriched finite element approaches such as CutFEM lies in the fact that the motion of

geometries over time only requires updating the level set function, without modifying the

mesh. This will be instrumental to consider complex and time dependent shapes of cells

such as astrocytes.
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Fig. 13 Solution of the reaction–diffusion system at time t = 5 solved using CutFEM inside a 3 dimensional
pop corn shape. From top to bottom from left to right [GLC], [ATP], [ADP], [GLY], [PYR], [LAC]. The GLC is
diffusing into the domain starting from the influx location. ATP and ADP are consumed and produced by the
reaction act. GLY is produced by HXK and PYR produced by PYRK
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Our next steps will be to initiate the geometry of the cells through microscopy images

1 and to investigate the effect of perturbed astrocytic metabolism on neuronal support,

which could lead to a better understanding of mechanisms in neurodegeneration.

Abbreviations

GLC: Glucose; ATP: Adenosine triphosphate; ADP: Adenosine diphosphate; GLY: Glyceraldehyde 3-phosphate; PYR:
Pyruvate; LAC: Lactate; [ · ]: Concentration; HXK: Hexokinase; PYRK: Pyruvate kinase; Mito: TCA cycle activity; LDH: Lactate
dehydrogenase; act: ATP consuming cellular activity; �: Domain; D[·] : Diffusion term; K· : Reaction rate chemical reaction;
f : Source term; G· : Gaussian function; CutFEM: Cut Finite Element Method; PDEs: Partial Differential Equations; ODEs:
Ordinary Differential Equations.
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Appendix A: Asymptotic solution

The system of ordinary differential equations is obtained applying the law of mass action

to Eqs. (1)–(5). To avoid misinterpretation, we denote the concentration A = [GLC],

B = [ATP], C = [ADP], D = [GLY], E = [PYR], F = [LAC] and we obtain the system

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dA
dt

= −KHXKAB
2

dB
dt

= −2KHXKAB
2 + 2KPYRKC

2D + 28KMitoE − KactB

dC
dt

= 2KHXKAB
2 − 2KPYRKC

2D + KactB

dD
dt

= 2KHXKAB
2 − KPYRKC

2D

dE
dt

= KPYRKC
2D − KLDHE − KMitoE

dF
dt

= KLDHE

(24)

The initial condition for Eq. (24) are chosen using the solution of the PDEs system Eq.

(6).We compute the integral over the domain� using Eq. (23) of the solutions of the PDEs

when the source term ends, making stable the total amount of concentrations inside the

https://bitbucket.org/sofiafarina/cutfem-energy-metabolism/
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domain
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A(t = 0) =
∫

�
[GLC](t = 1)dx := A0

B(t = 0) =
∫

�
[ATP](t = 1)dx := B0

C(t = 0) =
∫

�
[ADP](t = 1)dx := C0

D(t = 0) =
∫

�
[GLY ](t = 1)dx := D0

E(t = 0) =
∫

�
[PYR](t = 1)dx := E0

F (t = 0) =
∫

�
[LAC](t = 1)dx := F0

(25)

Considering abundance of ATP and ADP inside the domain, this lead to only a possible

system of steady state solution, that is when all the GLC is consumed by reaction HXK Eq.

(1), GLY is consumed by reaction PYRK Eq. (2) and ATP is fully transformed into ADP

from Eq. (5):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A∞ = 0

B∞ = 0

C∞ = C0 + B0 + 28(E0 + D0 + 2A0)α

D∞ = 0

E∞ = 0

F∞ = F0 + (E0 + 2A0 + D0)(1 − α)

(26)

In the solutions we have introduced a parameter α ∈ [0, 1] which take into account the

fact that the concentration of PYR is transformed not in equal part to LAC and ATP from

the reaction LDH Eq. (3) and reaction Mito Eq. (4).
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