
A Cut-free Sequent Calculus for

Bi-Intuitionistic Logic

Linda Buisman1 and Rajeev Goré12

1 The Australian National University
Canberra ACT 0200, Australia

2 Logic and Computation Programme
Canberra Research Laboratory, NICTA⋆, Australia

{Linda.Buisman|Rajeev.Gore}@anu.edu.au

Abstract. Bi-intuitionistic logic is the extension of intuitionistic logic
with a connective dual to implication. Bi-intuitionistic logic was intro-
duced by Rauszer as a Hilbert calculus with algebraic and Kripke se-
mantics. But her subsequent “cut-free” sequent calculus for BiInt has
recently been shown by Uustalu to fail cut-elimination. We present a new
cut-free sequent calculus for BiInt, and prove it sound and complete with
respect to its Kripke semantics. Ensuring completeness is complicated by
the interaction between implication and its dual, similarly to future and
past modalities in tense logic. Our calculus handles this interaction using
extended sequents which pass information from premises to conclusions
using variables instantiated at the leaves of failed derivation trees. Our
simple termination argument allows our calculus to be used for auto-
mated deduction, although this is not its main purpose.

1 Introduction

Propositional intuitionistic logic (Int) has connectives →, ∧, ∨ and ¬, with
¬ϕ definable as ¬ϕ := ϕ →⊥. Propositional dual intuitionistic logic (DualInt)

has connectives −< , ∧, ∨ and ∼ , with ∼ϕ definable as ∼ϕ := ⊤−< ϕ. Bi-
intuitionistic logic (BiInt) or subtractive logic or Heyting-Brouwer logic is the
union of Int and DualInt. It is a conservative extension of both and was first
studied by Rauszer [11, 12].

Rauszer’s Kripke semantics for BiInt involve a reflexive and transitive bi-
nary relation R, and its converse R−1, similar to the normal tense logic Kt.S4.
Specifically, a world w makes ϕ → ψ true if every R-successor v that makes
ϕ true also makes ψ true, and a world w makes ϕ−< ψ true if there exists an
R-predecessor v where ϕ holds but ψ does not. Thus, ϕ−<ψ (“ϕ excludes ψ”)
is a natural dual to ϕ→ ψ (“ϕ implies ψ”).

While there are many cut-free sequent systems for Int (e.g., [15, 6, 5]) and
DualInt (e.g., [16, 4]), the case for BiInt is less satisfactory. Rauszer presented

⋆ National ICT Australia is funded by the Australian Government’s Dept of Commu-
nications, Information Technology and the Arts and the Australian Research Council
through Backing Australia’s Ability and the ICT Centre of Excellence program.

a sequent calculus for BiInt in [11] and “proved” it cut-free, but Uustalu [17]

has recently shown that the BiInt-valid formula p → (q ∨ (r → ((p−< q) ∧ r))
cannot be derived in Rauszer’s calculus without the cut rule. Uustalu’s example
also shows that Crolard’s sequent calculus [3] for BiInt is not cut-free. Uustalu’s
example fails in these calculi because certain sequent rules are restricted to
singleton succedents or antecedents in their conclusions, and these fail to capture
the interaction between → and −< . Uustalu and Pinto have apparently given
a cut-free sequent-calculus for BiInt [19, 18] using labelled formulae which use
the Kripke semantics directly in the rules. But we have been unable to examine
their rules or proofs, as only the abstract of their work has been published.

We present a new purely syntactic cut-free sequent calculus for BiInt. We
avoid Rauszer’s and Crolard’s restrictions on the antecedents and succedents for
certain rules by basing our rules on Dragalin’s GHPC [5] which allows multiple
formulae on both sides of sequents. To maintain intuitionistic soundness, we re-
strict the premise of the implication-right rule to a singleton in the succedent.
Dually, the premise of our exclusion-left rule is restricted to a singleton in the
antecedent. But using Dragalin’s calculus and its dual does not give us BiInt

completeness. We therefore follow Schwendimann [13], and use sequents which
pass relevant information from premises to conclusions using variables instan-
tiated at the leaves of failed derivation trees. We then recompute parts of our
derivation trees using the new information, similarly to the restart technique of
[9]. Our calculus thus uses a purely syntactic addition to traditional sequents,
rather than resorting to a semantic mechanism such as labels. Our termination
argument also relies on two new rules from Śvejdar [14].

If we were interested only in decision procedures, we could obtain a decision
procedure for BiInt by embedding it into the tense logic Kt.S4 [20], and using
tableaux for description logics with inverse roles [9]. However, an embedding into
Kt.S4 provides no proof-theoretic insights into BiInt itself. Moreover, the restart
technique of Horrocks et al. [9] involves non-deterministic expansion of disjunc-
tions, which is complicated by inverse roles. Their actual implementation avoids
this non-determinism by keeping a global view of the whole counter-model under
construction. In contrast, we handle this non-determinism by syntactically en-
coding it using variables and extended formulae, neither of which have a semantic
content. Our purely syntactic approach is preferable for proof-theoretic reasons,
since models are never explicitly involved in the proof system: see Remark 2.

In Section 2, we define the syntax and semantics of BiInt. In Section 3, we in-
troduce our sequent calculus GBiInt and give an example derivation of Uustalu’s
interaction formula. We prove the soundness and completeness of GBiInt in Sec-
tions 4 and 5 respectively. A version with full proofs can be found in [2].

2 Syntax and Semantics of BiInt

The formulae Fml of BiInt are built from a denumerable set of Atoms and the
constants ⊤ and ⊥ using the connectives ∧, ∨, →, −<, ¬, and ∼. The length of
a formula χ is just the number of symbols it contains. We use classical first-order

w � ϕ ∨ ψ if w � ϕ or w � ψ

w � ϕ ∧ ψ if w � ϕ & w � ψ

w � ¬ϕ if ∀u ∈ W.[wRu ⇒ (u 2 ϕ)]
w � ϕ→ ψ if ∀u ∈ W.[wRu ⇒ (u 2 ϕ or u � ψ)]
w � ∼ ϕ if ∃u ∈ W.[uRw & u 2 ϕ]

w � ϕ−<ψ if ∃u ∈ W.[uRw & u � ϕ & u 2 ψ]

Fig. 1. BiInt semantics

logic when reasoning about BiInt at the meta-level. A BiInt frame is a pair
〈W,R〉, where W is a non-empty set of worlds and R ⊆ W × W is a binary
reflexive transitive relation. A BiInt model is a triple M = 〈W,R, ϑ〉, where
〈W,R〉 is a BiInt frame and the truth valuation ϑ is a function W ×Atoms →
{true, false} which obeys: ∀w ∈ W.ϑ(w,⊤) = true; ∀w ∈ W.ϑ(w,⊥) = false; and
which obeys persistence, also known as truth monotonicity:

∀u,w ∈ W.∀p ∈ Atoms .(ϑ(w, p) = true & wRu) ⇒ (ϑ(u, p) = true).

Given a model M = 〈W,R, ϑ〉, a world w ∈ W and an atom p ∈ Atoms, we
write w � p if ϑ(w, p) = true. We pronounce � as “forces”, and we pronounce
2 as “rejects”. The forcing of compound formulae is defined in Fig. 1. Since ¬
and ∼ can be derived from → and −< respectively, we restrict our attention
to →, −<, ∧, ∨. We obtain persistence for compound formulae by induction on
their length, and then reverse persistence for compound formulae follows from
persistence because the truth valuation is binary:

∀M = 〈W,R, ϑ〉.∀u,w ∈ W.∀ϕ ∈ Fml .(w � ϕ & wRu ⇒ u � ϕ)
∀M = 〈W,R, ϑ〉.∀u,w ∈ W.∀ϕ ∈ Fml .(w 2 ϕ & uRw ⇒ u 2 ϕ).

We write ǫ to mean the empty set. Given a formula ϕ and two sets of formulae
∆ and Γ , we write ∆,Γ for ∆ ∪ Γ and we write ∆,ϕ for ∆ ∪ {ϕ}. Given a
model M = 〈W,R, ϑ〉 and a world w ∈ W, we write w � Γ (w forces Γ) if
∀ϕ ∈ Γ.w � ϕ, and we write w =| ∆ (w rejects ∆) if ∀ϕ ∈ ∆.w 2 ϕ. We
deliberately use “=|” for rejection of sets to emphasize that every member of the
set is rejected, instead of “2”, which could be seen as “some member is rejected”.

Γ
BiInt

∆ means: ∀M = 〈W,R, ϑ〉.∀w ∈ W.(w � Γ ⇒ ∃ϕ ∈ ∆.w � ϕ)
Γ 6

BiInt
∆ means: ∃M = 〈W,R, ϑ〉.∃w ∈ W.(w � Γ & w =| ∆).

Thus Γ 6
BiInt

∆ means that Γ
BiInt

∆ is falsifiable. As usual, our sequent calculus
has a semantic reading which assumes that there exists an initial world w0 in a
BiInt-model M where w0 � Γ and w0 =| ∆. We then systematically apply the
sequent rules using backward proof-search to either construct M successfully,
giving us Γ 6

BiInt
∆, or conclude that M cannot exist, giving us Γ

BiInt
∆.

3 Our Sequent Calculus GBiInt

We now present GBiInt, a Gentzen-style sequent calculus for BiInt. The se-
quents have a non-traditional component in the form of variables that are instan-

tiated at the leaves of the derivation tree, and passed back to lower sequents from
premises to conclusion. Note that variables are not names for Kripke worlds.

We extend our syntax for presenting some of our sequent rules. The extended
BiInt formulae are defined as: if ϕ is a BiInt formula, then ϕ is an extended
BiInt formula, and if S/P is a set {{ϕ0

0, · · · , ϕ
n
0}, · · · , {ϕ

0
m, · · · , ϕ

k
m}} of sets of

BiInt formulae, then
∨

S and
∧

P are extended BiInt formulae with intended
semantics

∨

S ≡ (ϕ0
0 ∧ · · · ∧ ϕn0) ∨ · · · ∨ (ϕ0

m ∧ · · · ∧ ϕkm)
∧

P ≡ (ϕ0
0 ∨ · · · ∨ ϕn0) ∧ · · · ∧ (ϕ0

m ∨ · · · ∨ ϕkm).

From now on, we implicitly treat extended BiInt formulae as their BiInt

equivalents. Given a BiInt model M = 〈W,R, ϑ〉, and a world w ∈ W, the
following semantics follows directly from their definition:

w �

∨

S if ∃Γ ∈ S.w � Γ and w =|
∧

P if ∃∆ ∈ P .w =| ∆.

We can now extend the definition of forcing and rejecting to extended BiInt

formulae in the obvious way. If Γ and ∆ are sets of extended BiInt formulae,
and ϕ is an extended BiInt formula, then w � Γ if ∀ϕ ∈ Γ.w � ϕ, and w =|
∆ if ∀ϕ ∈ ∆.w 2 ϕ.

A GBiInt sequent is an expression S
P

∣

∣

∣

∣Γ ⊢ ∆, where the left hand side
(LHS) Γ is a set of extended BiInt formulae; the right hand side (RHS) ∆ is
a set of extended BiInt formulae; and the variables S and P are each a set of
sets of formulae. We sometimes write just Γ ⊢ ∆, ignoring the variable values
for readability, but only when the values of the variables are not important to
the discussion. In terms of the counter-model under construction, we say that
a sequent S

P

∣

∣

∣

∣Γ ⊢ ∆ is falsifiable [at w0 in M] iff there exists a BiInt model
M = 〈W,R, ϑ〉 and ∃w0 ∈ W such that w0 � Γ and w0 =| ∆. Thus, a sequent
Γ ⊢ ∆ is not falsifiable iff Γ

BiInt
∆. We say the variable conditions of a sequent

γ = S
P

∣

∣

∣

∣Γ ⊢ ∆ hold iff γ is falsifiable at w0 in some model M = 〈W,R, ϑ〉 and
the following Successor/Predecessor conditions hold:

S-condition: ∃Σ ∈ S.∀w ∈ W.w0Rw ⇒ w � Σ
P-condition: ∃Π ∈ P .∀w ∈ W.wRw0 ⇒ w =| Π .

A sequent rule is an expression of one of the two forms below

γ1 · · · γn
(name) γ
side conditions

γ0 · · · γn
(name) γ
side conditions

where n ≥ 0, and each γi is a sequent. The rule has a name, a conclusion
γ, optional premise(s) γ1, · · · , γn, optional side conditions, and universal
branching as indicated by a solid line or existential branching as indicated by a
dashed line (explained shortly).

Our traditional rules (Fig. 2) are based on Dragalin’s GHPC [5] for Int be-
cause we require multiple formulae in the succedents and antecedents of sequents
for completeness; we have added symmetric rules for the DualInt connective −<.
The main difference is that our (→L) rule and the symmetric (−<R) carry their

(Id)
S:=ǫ
P:=ǫ

˛

˛

˛

˛Γ, ϕ ⊢ ∆, ϕ
(⊥L)

S:=ǫ
P:=ǫ

˛

˛

˛

˛Γ,⊥⊢ ∆
(⊤R)

S:=ǫ
P:=ǫ

˛

˛

˛

˛Γ ⊢ ∆,⊤

S1
P1

˛

˛

˛

˛

˛

˛

Γ, ϕ ∧ ψ,ϕ, ψ ⊢ ∆
(∧L)

S:=S1
P:=P1

˛

˛

˛

˛

˛

˛

Γ, ϕ ∧ ψ ⊢ ∆

S1
P1

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆,ϕ ∧ ψ,ϕ
S2
P2

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆,ϕ ∧ ψ,ψ
(∧R)

S:=S1∪S2
P:=P1∪P2

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆, ϕ ∧ ψ

S1
P1

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆,ϕ ∨ ψ,ϕ, ψ
(∨R)

S:=S1
P:=P1

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆,ϕ ∨ ψ

S1
P1

˛

˛

˛

˛

˛

˛

Γ, ϕ ∨ ψ,ϕ ⊢ ∆
S2
P2

˛

˛

˛

˛

˛

˛

Γ, ϕ ∨ ψ,ψ ⊢ ∆
(∨L)

S:=S1∪S2
P:=P1∪P2

˛

˛

˛

˛

˛

˛

Γ, ϕ ∨ ψ ⊢ ∆

S1
P1

˛

˛

˛

˛

˛

˛

Γ, ϕ → ψ ⊢ ϕ,∆
S2
P2

˛

˛

˛

˛

˛

˛

Γ, ϕ → ψ,ψ ⊢ ∆
(→L)

S:=S1∪S2
P:=P1∪P2

˛

˛

˛

˛

˛

˛

Γ, ϕ → ψ ⊢ ∆

S1
P1

˛

˛

˛

˛

˛

˛

Γ, ψ ⊢ ∆,ϕ−<ψ
S2
P2

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆, ϕ−<ψ, ϕ

(−<R)
S:=S1∪S2
P:=P1∪P2

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆,ϕ−<ψ

For every rule with premises πi and conlusion γ, apply the rule only if:
∀πi.(LHSπi 6⊆ LHSγ or RHSπi 6⊆ RHSγ)

Fig. 2. GBiInt rules - traditional

principal formula and all side formulae into the premises. Our rules for ∧ and ∨
also carry their principal formula into their premises to assist with termination.
Note that there are other approaches to a terminating sequent calculus for Int,
e.g., Dyckhoff’s contraction-free calculi [6], or history methods by Heuerding
et al. [8] and Howe [10]. These methods are less suitable when the interaction
between Int and DualInt formulae needs to be considered, since they erase po-
tentially relevant formulae too soon during backward proof search. Moreover, we
found it easier to prove semantic completeness with our loop-checking method
than with history-based methods since both [8] and [10] prove completeness using
syntactic transformations of derivations. Consequently, while GBiInt is sound
and complete for the Int (and DualInt) fragment of BiInt, it is unlikely to be
as efficient on the fragment as these specific calculi.

Our rules for → on the right and −< on the left (Fig. 3) are non-traditional.

The (→R) and (−<L) rules have two premises instead of one, and they are con-
nected by existential branching as indicated by the dotted horizontal line.
Existential branching means that the conclusion is derivable if some premise is
derivable; thus it is dual to the conventional universal branching, where the con-
clusion is derivable if all premises are derivable. We chose existential branching
rather than two separate non-invertible rules so the left premise can communicate
information via variables to the right premise. This inter-premise communica-
tion and the use of variables is crucial to proving interaction formulae of BiInt,
and it gives our calculus an operational reading.

When applying an existential branching rule during backward proof search,
we first create the left premise. If the left premise is non-derivable, then it returns

(Ret)
S:={Γ}
P:={∆}

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆

where no other rule is applicable

S1
P1

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆,ϕ → ψ,ψ

(→I
R)

S:=S1
P:=P1

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆, ϕ → ψ

S1
P1

˛

˛

˛

˛

˛

˛

Γ, ϕ, ϕ−<ψ ⊢ ∆

(−< I
L)

S:=S1
P:=P1

˛

˛

˛

˛

˛

˛

Γ, ϕ−<ψ ⊢ ∆

S1
P1

˛

˛

˛

˛

˛

˛

Γ, ϕ ⊢ ψ
S2
P2

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆,ϕ → ψ,
V

P1

(→R)

S/P:=

8

>

>

<

>

>

:

S1/P1 if P1 = ǫ
S2/P2 if right prem created
{Γ}/{∆, ϕ → ψ} otherwise

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆, ϕ → ψ

right prem created only if P1 6= ǫ & ∀Πi ∈ P1.Πi 6⊆ {∆,ϕ → ψ}

S1
P1

˛

˛

˛

˛

˛

˛

ϕ ⊢ ∆,ψ
S2
P2

˛

˛

˛

˛

˛

˛

Γ, ϕ−<ψ,
W

S1 ⊢ ∆

(−<L)

S/P:=

8

>

>

>

<

>

>

>

:

S1/P1 if S1 = ǫ
S2/P2 if right prem created

{Γ, ϕ−<ψ}/{∆} otherwise

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Γ, ϕ−<ψ ⊢ ∆

right prem created only if S1 6= ǫ & ∀Σi ∈ S1.Σi 6⊆ {Γ, ϕ−<ψ}

S1
P1

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆,Π1 · · · Sn
Pn

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆,Πn

(
V

R)
S:=

Sn
1

Si
P:=

Sn
1

Pi

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆,
V

Π

S1
P1

˛

˛

˛

˛

˛

˛

Γ, Σ1 ⊢ ∆ · · · Sn
Pn

˛

˛

˛

˛

˛

˛

Γ,Σn ⊢ ∆
(
W

L)
S:=

Sn
1

Si
P:=

Sn
1

Pi

˛

˛

˛

˛

˛

˛

Γ,
W

Σ ⊢ ∆

For every universally branching rule with premises πi and conlusion γ,
apply the rule only if: ∀πi.(LHSπi 6⊆ LHSγ or RHSπi 6⊆ RHSγ)

For every existentially branching rule with left premise π and conlusion γ,
apply the rule only if: LHSπ 6⊆ LHSγ or RHSπ 6⊆ RHSγ

Fig. 3. GBiInt rules - non-traditional

the variables S1 and P1. We then use these variables to create the right premise,
which corresponds to the same world as the conclusion, but with updated infor-
mation. Our existential branching rules work together with (Ret), which assigns
the variables at non-derivable leaves of failed derivation trees, and (

∧

R) and
(
∨

L), which extract the different variable choices at existential branching rules.

The conclusion of each of our rules assigns the variables based on the
variables returned from the premise(s), and we use the indices i, 1, 2 to indicate
the premise from which the variable takes its value. For rules with a single
premise, the variables are simply passed down from premise to conclusion. For
example, the conclusion of (∧L) in Fig. 2 assigns S := S1, where S1 is the
value of the variable at the premise. However, for rules with multiple universally
branching premises, we take a union of the sets of sets corresponding to each
falsifiable premise. For example, the conclusion of (

∧

R) in Fig. 3 assigns S :=
⋃n

1 Si, where Si is the value of the variable at the i-th premise.

This way, the sets of sets stored in our variables determinise the return
of formulae to lower sequents – each non-derivable premise corresponds to an
open branch, and at this point we do not know whether it will stay open once
processed in conjunction with lower sequents. Therefore, we need to temporarily
keep all open branches: see Example 2 in [2]. Then the intuition behind adding
∧

P to the right premise of (→R) is that the subsequent application of (
∧

R)
will create one or more premises, depending on the cardinality of P . Since P
is a set of sets representing all the open branches, all of the premises of (

∧

R)
have to be derivable in order to obtain a derivation. On the other hand, if some
premises of (

∧

R) are non-derivable (open), we form the set that consists of the
union of the variables returned by those premises, and pass the union back to
lower sequents, and so on. The premises that are derivable contribute only ǫ and
are thus ignored by the union operator. Also, we only create the right premise
of (→R) if every member of P introduces new formulae to the current world.
Otherwise, the current world already contains one of the open branches, which
would still remain open after an application of (

∧

R). To summarise, the sets-of-
sets concept of variables is critical to the soundness of GBiInt, as it allows us
to remember the required choices arising further up the tree.

The extended syntax allows us to syntactically encode the variable choices
described above. While the variables S and P are sets of sets when we pass them
down the tree and combine them using set union, we use

∨

S on the left and
∧

P on the right of the sequent to reflect these choices when we add
∨

S or
∧

P
to the right premise of an existentially branching rule. Then the (

∨

L) and (
∧

R)
rules break down the extended formulae

∨

S and
∧

P to yield several premises,
each corresponding to one variable choice. Thus the extended syntax allows us
to give an intuitive syntactic representation of the variable choices.

We have also added the rule (→I
R) for implication on the right (and dually,

(−<I
L)) originally given by Śvejdar [14]. Rather than immediately creating the

successor for a rejected ϕ → ψ, the (→I
R) rule first pre-emptively adds ψ to

the right hand side of the sequent. Although Śvejdar himself does not give the
semantics behind this rule, and is unable to explain the precise role it plays in
his calculus, it is very useful in our termination proof. The rule effectively uses
the reverse persistence property – if some successor v forces ϕ and rejects ψ,
then the current world w must reject ψ too, for if w forces ψ, then by forward
persistence so does v, thus giving a contradiction.

The side condition on each of our rules is a general blocking condition,
where we only explore the premise(s), if they are different from the conclusion.
For example, in the (∧R) case, the blocking condition means that we apply the
rule in backward proof search only if ϕ 6∈ ∆ and ψ 6∈ ∆, since otherwise some
premise would be equal to the conclusion.

GBiInt also has the subformula property. This is obvious for all rules,
except (→R) and the dual (−<L). For these, the right premise “constructs” the
formulae

∧

P and
∨

S. However, since P and S are sets of sets of subformulae
of the conclusion that are again extracted by (

∧

R) and (
∨

L), the right premise

of (→R) and (−<L) effectively only contains subformulae of the conclusion.

A GBiInt tree for S
P

∣

∣

∣

∣Γ ⊢ ∆ is a tree rooted at S
P

∣

∣

∣

∣Γ ⊢ ∆ where each child
is obtained by a backwards application of a GBiInt rule and each leaf is an
instance of (⊥L), (⊤R), (Id) or (Ret).

Definition 1. A GBiInt tree for γ = S
P

∣

∣

∣

∣Γ ⊢ ∆ is a derivation if: γ is the
conclusion of a (⊥L), (⊤R) or (Id) rule application; OR γ is the conclusion of
a universal branching rule application and all its premises are derivations;
OR γ is the conclusion of an existential branching rule application and some

premise is a derivation.

In the following example, we use a simplified version of the (∧R) rule, which
discards the principal formula from the premises, merely to save horizontal space.
Also, we only show non-empty variable values.

Example 1. The following is a derivation tree of Uustalu’s interaction formula
p→ (q ∨ (r → ((p−<q) ∧ r)), simplified to the sequent p ⊢ q, r → ((p−<q) ∧ r).

Let X := r → ((p−<q) ∧ r). The tree should be read bottom-up while ignoring
the variables S and P . At the leaves, the variables are assigned and transmit
information down to parents and across to some siblings. The top left application
of (Ret) occurs because an application of (−<R) to the bolded p−<q is blocked,
since its left premise would not be different from its conclusion. The key to
finding the contradiction is the bolded p−<q formula that is passed from the
left-most leaf back to the right premise (1) of (→R). The (

∧

R) in (1) is unary
here, since the P variable contains only one set of formulae.

(Ret)
S:={{p,r,q}}
P:={{p−<q}}

˛

˛

˛

˛

˛

˛

p, r, q ⊢ p−<q

(Id)

p, r ⊢ p−<q, p

(−<R)
S:={{p,r,q}}
P:={{p−<q}}

˛

˛

˛

˛

˛

˛

p, r ⊢ p−< q
(Id)

p, r ⊢ r
(∧R)

S:={{p,r,q}}
P:={{p−<q}}

˛

˛

˛

˛

˛

˛

p, r ⊢ (p−<q) ∧ r (1)
(→R)

p ⊢ q, r → ((p−<q) ∧ r)

where (1) is:

(Id)

p,q ⊢ q,X, p−<q

(Id)

p ⊢ q, X, p−<q,p
(−<R)

p ⊢ q,X,p−<q
(
V

R)

p ⊢ q, X,
V

{{p−<q}}

We now show that proof search in GBiInt terminates because our soundness
proof relies on the left premises of existentially branching rules to deliver vari-
ables to their right premises. The (Ret) rule is an operational rule. All other rules
are logical rules and are categorised as follows: the static rules (Id), (⊥L), (⊤R),

(∧L), (∨L), (∧R), (∨R), (→L), (−<R), (→I
R) add formulae to the current world

in the counter-model; the transitional rules (→R), (−<L) create new worlds and

Function Prove
Input: sequent γ0

Output: Derivable (true or false)

1. If ρ ∈ {(Id), (⊥L), (⊤R)} is applicable to γ0 then return true
2. Else if any special or static rule ρ is applicable to γ0 then

(a) Let γ1, · · · , γn be the (universally branching) premises of ρ
(b) Return

Vn

i=1
Prove(γi)

3. Else for each transitional rule ρ applicable to γ0 do
(a) Let γ1 and γ2 be the (existentially branching) premises of ρ
(b) If

W

i∈{1,2} Prove(γi) = true then return true
4. Endif
5. Return false.

Fig. 4. Proof search strategy. Note that we have left out the variables for simplicity.
Vn

i=1
Prove(γi) is true iff Prove(γi) is true for all premises γi for 1 ≤ i ≤ n, and

W

i∈{1,2} Prove(γi) is true iff Prove(γi) is true for some premise γi for i ∈ {1, 2}.

add formulae to them; and the special rules (
∨

L), (
∧

R) decompose variables re-
turned from non-derivable leaves. This classification justifies our backward proof
search strategy (Fig. 4).

For a BiInt formula ϕ, the subformulae sf(ϕ) are defined as usual with
ϕ ∈ sf(ϕ). For extended BiInt formulae

∨

S,
∧

P , and a set Γ of extended
BiInt formulae let:

sf(
∨

S) =
⋃

Σ ∈ S

sf(Σ) sf(
∧

P) =
⋃

Π ∈ P

sf(Π) sf(Γ) =
⋃

χ ∈ Γ

sf(χ).

Note that the subformulae of
∨

S and
∧

P do not include the conjunctions
and disjunctions implicit in their BiInt equivalents.

Given a GBiInt-tree T and a branch B in T , we say that B is forward-
only if B contains only applications of static and special rules, (→R) and the

right premises of (−<L). Similarly, B is backward-only if B contains only

applications of static and special rules, (−<L) and the right premises of (→R).
A branch is single-directional if it is either forward-only or backward-only. A
branch contains interleaved left premises of transitional rules if it contains a
sequence 〈· · · , γi, · · · , γj , · · · , γk, · · · 〉 s.t. γi is the left premise of (→R), γj is the

left premise of (−<L), and γk is the left premise of (→R).

Lemma 1. Every forward/backward only branch of any GBiInt-tree is finite.

Proof. We prove the lemma for forward-only branches, the one for backward-
only branches is similar. Let >len be a lexicographic ordering of sequents: (Γ2 ⊢
∆2) >len (Γ1 ⊢ ∆1) iff |Γ2| > |Γ1|, or (|Γ2| = |Γ1| and |∆2| > |∆1|). Then from
the blocking conditions of the rules, the length of a sequent according to >len
increases on every forward-only branch: see [2] for details. Since GBiInt has the
subformula property, eventually no more formulae can be added to a sequent on
a forward-only branch, and the branch will terminate.

.

.

.

π2 = (Γ2, ϕ2 ⊢ ψ2)

.

.

.

πr
2

(→R)
Γ2 ⊢ ∆2, ϕ2 → ψ2

.

.

.

ϕ1 ⊢ ψ1, ∆1

.

.

.

πr
1

(−<L)
Γ1, ϕ1−<ψ1 ⊢ ∆1

.

.

.

Γ0, ϕ0 ⊢ ψ0

.

.

.

πr
0

(→R)
π0 = (Γ0 ⊢ ∆0, ϕ0 → ψ0)

.

.

.

Fig. 5. Interleaved left premises of transitional rules.

Lemma 2. If a GBiInt-tree has an infinite branch, then the branch has an
infinite number of interleaved left premises of transitional rules.

Proof. By Lemma 1, single-directional branches must terminate. Thus, an in-
finite branch must involve an infinite number of interleaved left premises of
transitional rules.

The degree of a BiInt formula ϕ is the number of → and −< connectives
in ϕ. The degree of a sequent Γ ⊢ ∆ is: deg(Γ ⊢ ∆) =

∑

ϕ∈sf(Γ∪∆) deg(ϕ). The
following corollaries directly follow from the definition of the degree of a sequent.

Corollary 1. By the subformula property of GBiInt, the degree of a sequent
can never increase in backward proof search.

Corollary 2. Given two sequents γ1 and γ2, if sf(γ2) (sf(γ1), then deg(γ2) <
deg(γ1). That is, removing some formula ϕ from a sequent during backward proof
search decreases the sequent degree if ϕ is not a subformula of any other formula
in the sequent.

Theorem 1 (Termination). Every GBiInt-tree constructed according to the
strategy of Fig. 4 is finite.

Proof. Suppose for a contradiction that there exists an infinite GBiInt-tree
T . Since every rule has a finite number of premises, then by König’s lemma
T contains a branch B of infinite length. By Lemma 2, B contains an infinite
number of interleaved left premises of transitional rules as shown in Fig. 5.

Let χ ∈ sf(π0) be such that deg(χ) = max({deg(ϕ) | ϕ ∈ sf(π0)}), that is, χ
is one of the subformulae with the maximum degree. Thus χ is not a subformula
of any formula with a larger degree. We show that χ 6∈ sf(π2). There are two
cases:

χ 6∈ sf(Γ0): Then χ ∈ sf(∆0) or χ = ϕ0 → ψ0. In both cases, χ 6∈ sf(π2).

χ ∈ sf(Γ0): Then it cannot be the case that χ ∈ sf(ϕ1) or χ ∈ sf(ψ1), since

then deg(ϕ1−< ψ1) > deg(χ), contradicting deg(χ) = max({deg(ϕ) | ϕ ∈
sf(π0)}). Therefore, either:
– χ and all its occurrences in subformulae disappear from the sequent at

the premise of (−<L), in which case χ 6∈ sf(π2), or
– χ is moved to the RHS by applying (→L) to some χ → τ . But then
deg(χ → τ) > deg(χ), contradicting deg(χ) = max({deg(ϕ) | ϕ ∈
sf(π0)}).

Thus we have χ ∈ sf(π0) and χ 6∈ sf(π2). Also, the subformula property
of GBiInt gives sf(π2) ⊆ sf(π0). Together with χ ∈ sf(π0) and χ 6∈ sf(π2),
this means sf(π2) (sf(π0). Then by Corollary 2 we have deg(π2) < deg(π0).

Note that the steps indicated by vertical ellipses (
...) in Fig. 5 are arbitrary,

since by Corollary 1 no rule can increase the degree of a sequent. Since we
have deg(π2) < deg(π0), then every sequence of interleaved transitional rule
applications must decrease the degree of the sequent. This can only happen a
finite number of times, until no more transitional rules are applicable. Therefore
our assumption was wrong, and no branch can be infinite. Hence every GBiInt-
tree is finite.

4 Soundness

Instead of showing that each rule application preserves validity downwards, we
show that each rule application preserves falsifiability upwards. Since variables
introduce a two-way flow of information in the GBiInt trees, we separate the
notion of soundness into two: local soundness, applicable to a single rule applica-
tion, and global soundness, which considers the propagation of variables down the
tree. Note that locality here refers to locality in the GBiInt trees, not locality
in the underlying Kripke models.

Definition 2. A logical rule in GBiInt is locally sound iff: if the conclusion is
falsifiable, then some universally branching premise is falsifiable, or all exis-

tentially branching premises are falsifiable.

Lemma 3. Each static and special rule of GBiInt is locally sound.

Proof. We assume the conclusion is falsifiable at w0 in M = 〈W,R, ϑ〉 and easily
show that some premise is falsifiable at w0 in M = 〈W,R, ϑ〉: see [2] for details.

We now show global soundness, which relies on the notion of variable condi-
tions because of the operational nature of GBiInt. Since our transitional rules
use the variables returned from proof search of the left premise to instantiate
the right premise, we need to show that the variables are instantiated and prop-
agated soundly.

Lemma 4. In any GBiInt tree T , for every sequent γ0 ∈ T : if γ0 is falsifi-
able, then some universally branching, or all existentially branching, premises
are falsifiable, and the variable conditions hold at γ0.

Proof. By induction on the length h(γ0) of the longest branch rooted at γ0.

Base case: h(γ0) = 0. So γ0 is an instance of (Id), (⊥L), (⊤R), or (Ret).
(Id), (⊥L), (⊤R): The conclusion is never falsifiable, so there is nothing to

show.
(Ret): We show that the conclusion Γ ⊢ ∆ is always falsifiable, and that

the variable conditions hold at Γ ⊢ ∆. We create a model with a single
world w0, and for every atom p ∈ Γ , let ϑ(w0, p) = true, and for every
atom q ∈ ∆, let ϑ(w0, q) = false. An atom cannot be both in Γ and ∆,
since (Id) is not applicable to Γ ⊢ ∆.
To show that Γ ⊢ ∆ is falsifiable at w0, we need to show that w0 � Γ
and w0 =| ∆. For every atom in Γ and ∆, the valuation ensures this. For
every composite formula ϕ, we do a simple induction on its length. Since
(Ret) is only applied when no other rules are applicable, the required
subformula ψ is already in Γ or ∆ as appropriate, and ψ falls under the
induction hypothesis. Thus we know that: (i) w0 � Γ and (ii) w0 =| ∆.
Then (i) and the persistence property of BiInt give us that ∀w ∈ W :
w0Rw ⇒ w � Γ . Similarly, (ii) and the reverse persistence property of
BiInt give us that ∀w ∈ W.wRw0 ⇒ w =| ∆. That is, the variable
conditions hold at the conclusion of the (Ret) rule.

Induction step: We assume that the lemma holds for all γ0 with h(γ0) ≤ k,
and show that it holds for all γ0 with h(γ0) ≤ k + 1. Consider the rule
application ρ such that γ0 is the conclusion of ρ. By the assumption of
the lemma, the conclusion γ0 of ρ is falsifiable at some w0 in some model
M = 〈W,R, ϑ〉. If ρ is a static or a special rule (universally branching),
then the lemma easily follows from the induction hypothesis. Otherwise, ρ
is a transitional rule (existentially branching). We show the case for (→R),

the case for (−<L) is symmetric:
S1
P1

˛

˛

˛

˛

˛

˛

Γ, ϕ ⊢ ψ
S2
P2

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆, ϕ → ψ,
V

P1

(→R)

S/P:=

8

>

>

<

>

>

:

S1/P1 if P1 = ǫ
S2/P2 if right prem created
{Γ}/{∆,ϕ → ψ} otherwise

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Γ ⊢ ∆, ϕ → ψ

right prem created only if P1 6= ǫ & ∀Πi ∈ P1.Πi 6⊆ {∆, ϕ → ψ}

Since the conclusion is falsifiable, there is a world w0 such that (i) w0 � Γ
and, (ii) w0 =| ∆,ϕ → ψ. From the BiInt-semantics of →, (ii) implies that
there is a successor w1 such that: (iii) w0Rw1, (iv) w1 � ϕ and (v) w1 2 ψ.
1. To show that the left premise γ1 of (→R) is falsifiable, we need to show

that there exists a world w′ s. t. γ1 is falsifiable at w′. We let w′ = w1.
Then (i), (iv) and (v) give us that γ1 is falsifiable.
Now, γ1 has height(γ1) ≤ k, therefore the induction hypothesis applies
to γ1. By the induction hypothesis, since γ1 is falsifiable at w1, we have
that the variable conditions hold at γ1. In particular, the P condition
holds, giving:

∃Π ∈ P1.∀w ∈ W.wRw1 ⇒ w =| Π (4.1)

Now there are two cases: either the right premise γ2 was created, or it
was not (and there is nothing to show). If it was created, then we need

to show that it is falsifiable by exhibiting a world w′′ such that γ2 is
falsifiable at w′′. We let w′′ = w0. Then, since w0Rw1, we have w0 =| Π
by (4.1). Since Π ∈ P1, then by the semantics of extended formulae, we
have that w0 =|

∧

P1. Together with (i) and (ii), this means that γ2 is
falsifiable at w0. Moreover, the variable conditions hold at γ2, since it
also is falsifiable, and has height(γ2) ≤ k, so the induction hypothesis
applies to it.

2. To show that the variable conditions hold at the conclusion γ0, we do
the case for S; the case for P is dual. We need to show:

∃Σ ∈ S.∀w ∈ W.w0Rw ⇒ w � Σ (4.2)

Since we have shown that the variable conditions hold at the left premise,
we know that in particular P1 6= ǫ. Then there are two cases: either the
right premise was created, or it was not:
– If the right premise γ2 was created, then its variable conditions hold,

since γ2 falls under the induction hypothesis. This gives us:

∃Σ2 ∈ S2.∀w ∈ W.w0Rw ⇒ w � Σ2.

Thus S := S2 obeys (4.2).
– If the right premise was not created, then we need to show that the

variable conditions hold at the conclusion for S := {Γ}. Now, we
have w0 � Γ by (i), and then the persistence property tells us that
∀w ∈ W.w0Rw ⇒ w � Γ . Thus S := {Γ} obeys (4.2).

Theorem 2 (Soundness). If Γ ⊢ ∆ is derivable then Γ
BiInt

∆.

Proof. We assume that Γ ⊢ ∆ is derivable and prove Γ ⊢ ∆ is not falsifiable.
Then Γ

BiInt
∆ follows by definition. By induction on the height k of the deriva-

tion. Base case: A derivation of height 1 can only be an instance of (⊥L), (⊤R)
or (Id). In each case, γ is not falsifiable. Inductive step: We assume that if
there is a derivation for γ of height ≤ k, then γ is not falsifiable. Using Defini-
tion 1 and Lemma 4, it is easy to show by contradiction that if γ has a derivation
of height ≤ k + 1, then γ is not falsifiable.

5 Completeness

We prove completeness via model graphs following [7]. We say that Γ ⊢ ∆ is
consistent if ⊥6∈ Γ , ⊤ 6∈ ∆ and Γ ∩∆ = ǫ. We say that Γ ⊢ ∆ is closed w.r.t.
a GBiInt rule ρ if either ρ is not applicable to Γ ⊢ ∆, or whenever Γ ⊢ ∆
matches the conclusion of an instance of ρ, then for some premise Γ1 ⊢ ∆1, we
have Γ1 ⊆ Γ and ∆1 ⊆ ∆. We say that Γ ⊢ ∆ is saturated if it is consistent
and closed w.r.t. the static rules of GBiInt.

Corollary 3. If S
P

∣

∣

∣

∣Γ ⊢ ∆ is not derivable, then Γ ⊢ ∆ is consistent for all S
and P.

Remark 1. As usual, every sequent has a set of one or more “saturations” due
to the branching of (∧R), (∨L), etc., rules. The usual approach is to non-
deterministically choose one of the non-derivable premises of each such rule.
However, in the presence of the inverse relation, a branch that appears open
may close once we return variables to a lower sequent. Therefore, we need to
temporarily keep all the non-derivable premises, since we do not know which of
the open branches will stay open when we return to a lower sequent.

Lemma 5. For each finite non-derivable sequent Γ ⊢ ∆, there is an effective
procedure to construct a finite set ζ = {α1, · · · , αn} of finite saturated sequents,
with Γ ∪∆ ⊆ LHS(αj) ∪RHS(αj) ⊆ sf(Γ) ∪ sf(∆) for all 1 ≤ j ≤ n.

Proof. Let T = Γ ⊢ ∆. Repeatedly apply static rules to the leaves of T to obtain
new leaves. Keep the non-derivable leaves only; by Corollary 3 they are consis-
tent. By Theorem 1, the saturation process will terminate; let ζ = {α1, · · · , αn}
be the final leaves of T . By the subformula property, LHS(αj) ∪ RHS(αj) ⊆
sf(Γ) ∪ sf(∆) for all 1 ≤ j ≤ n.

Definition 3. A model graph for a sequent Γ ⊢ ∆ is a finite BiInt frame
〈W,R〉 such that all w ∈ W are saturated sequents Γw ⊢ ∆w and:

1. Γ ⊆ Γw0
and ∆ ⊆ ∆w0

for some w0 ∈ W, where w0 = Γw0
⊢ ∆w0

;
2. if ϕ→ ψ ∈ ∆w then ∃v ∈ W with wRv and ϕ ∈ Γv and ψ ∈ ∆v;
3. if ϕ−<ψ ∈ Γw then ∃v ∈ W with vRw and ϕ ∈ Γv and ψ ∈ ∆v;
4. if wRv and ϕ→ ψ ∈ Γw then ψ ∈ Γv or ϕ ∈ ∆v;
5. if vRw and ϕ−<ψ ∈ ∆w then ψ ∈ Γv or ϕ ∈ ∆w′ ;
6. if wRv and ϕ ∈ Γw then ϕ ∈ Γv;
7. if vRw and ϕ ∈ ∆w then ϕ ∈ ∆v.

Lemma 6. If there exists a model graph 〈W,R〉 for Γ ⊢ ∆, then there exists a
BiInt model M = 〈W,R, ϑ〉 such that for some w0 ∈ W, we have w0 � Γ and
w0 =| ∆. We call M the counter-model for Γ

BiInt
∆.

Proof. Follows from Definition 3 by induction on the length of Γ ⊢ ∆.

We now show how to construct a model graph for Γ ⊢ ∆ from a consis-
tent Γ ⊢ ∆. Recall from Remark 1 that we need to keep a number of inde-
pendent versions of worlds because of the choices arising due to disjunctive
non-determinism. We do this by storing one or more independent connected-
components 〈W1,R1〉, · · · , 〈Wn,Rn〉 in the constructed model graph 〈W,R〉,
and the indices (sorts) of worlds and relations tell us the connected-component
of the graph to which they belong. We write 〈Wj ,Rj〉[j := i] to relabel the con-
nected component 〈Wj ,Rj〉 with sort j to a connected component 〈Wi,Ri〉 with
sort i. Similarly, we also label each member of the variables P and S, so we can
later extract the member with sort i, corresponding to the component of 〈W,R〉
with sort i. We write R-neighbour to mean R-predecessor or R-successor.

Our algorithm in Fig. 6 starts by saturating the root world to obtain one
or more saturated “states”. For each “state” αi, it recursively creates all the

Procedure MGC
Input: sequent Γ ⊢ ∆
Output: model graph 〈Wf ,Rf 〉, variables Sf and Pf

1. Let ζ = {α1, · · · , αn} be the result of saturating Γ ⊢ ∆ using Lemma 5;
2. For each αi ∈ ζ do

(a) Let 〈Wi,Ri〉 = 〈{αi}, {(αi, αi)}〉; let recompute := false;
(b) For each non-blocked ϕ→ ψ ∈ ∆αi and while recompute = false do

i. Apply (→R) to ϕ→ ψ and obtain a left premise π1 = Γαi , ϕ ⊢ ψ;
ii. Let 〈W,R〉,S ,P := MGC(π1);
iii. If ∃Πj ∈ P.Πj ⊆ ∆αi then

A. Let uj ∈ Wj be the root of the connected component Wj from W;
B. Let G = 〈Wj ,Rj〉[j := i]; add G to 〈Wi,Ri〉, and put αiRiui.

iv. else
A. Let 〈Wi,Ri〉 = 〈ǫ, ǫ〉; let recompute := true;
B. Invoke the right premise of (→R) to obtain π2 = Γαi ⊢ ∆αi ,

V

P;
C. Apply (

V

R
) to π2 to obtain m ≥ 1 non-derivable premises γ1, · · · , γm;

D. For each γk, 1 ≤ k ≤ m, let 〈Wk,Rk〉,Sk,Pk := MGC(γk);
E. Let 〈Wi,Ri〉 := 〈

S

Wk,
S

Rk〉, and Si :=
S

Sγk and Pi :=
S

Pγk ;

(c) For each non-blocked ϕ−<ψ ∈ Γαi and while recompute = false do
i. Perform a symmetric procedure to Steps 2(b)i to 2(b)ivE.

(d) If recompute = false then let Si := {Γαi} and Pi := {∆αi}.
3. Return 〈

S

Wi,
S

Ri〉,
S

Si,
S

Pi

Fig. 6. Model Graph Construction Procedure

R-neighbours and saturates them, and so on. If during the construction of any
R-neighbour, new information is returned from the higher sequents (Step 2(b)iv),
then we delete the entire subtree (connected component of sort i) rooted at αi,
and recreate αi using the new information (Step 2(b)ivB). This re-creates all the
R-neighbours of αi. Otherwise, if none of the R-neighbours of αi return any new
information, or there are no R-neighbours for αi, then Step 2d instantiates the
variables and returns from the recursion. In the latter case, the “state” αi already
has all the required information it can possibly receive from any R-neighbours,
thus αi is final. Note the duality: new information from a single R-neighbour
means that all of the members of a variable were new, while new information at
a “state” αi means that some R-neighbour returned new information.

When we return from MGC, we form the union of the components of the
model graph and the variables from the different “states”, so that the caller of
MGC can extract the appropriate component at Step 2(b)iiiA.

Remark 2. Note that while the counter-model construction procedure keeps the
whole counter-model in memory, this procedure is only used to prove the com-
pleteness of GBiInt. Our procedure for checking the validity of BiInt formulae
(Fig. 4) does not need the whole counter-model, and explores one branch at a
time, as is usual for sequent/tableaux calculi.

Theorem 3 (Completeness). GBiInt is complete: if Γ ⊢ ∆ is not derivable,
then there exists a counter-model for Γ

BiInt
∆.

Proof. If Γ ⊢ ∆ is not derivable, then Γ ⊢ ∆ is consistent by Corollary 3. We
construct a model graph for Γ ⊢ ∆ using the procedure of Fig. 6, and obtain
〈Wf ,Rf 〉. Let 〈W,R〉 be any connected component of 〈Wf ,Rf 〉. To show that
〈W,R〉 satisfies the properties of a model graph, we give the cases for properties
1, 2 and 4, the others are similar:

1. Γ ⊆ Γw0
and ∆ ⊆ ∆w0

for some w0 ∈ W: This holds because w0 is one
of the saturated sequents obtained from Γ ⊢ ∆. Moreover, if we delete the
original w0 at Step 2(b)ivA, a final version of w0 is created at Step 2(b)iiiB
which is never deleted.

2. if ϕ → ψ ∈ ∆w then ∃v ∈ W with wRv and ϕ ∈ Γv and ψ ∈ ∆v: This
holds because we have either created v using (→R) at Step 2(b)iiiB, or had
w fulfill the role of this successor by reflexivity if (→R) was blocked.

4. if wRv and ϕ→ ψ ∈ Γw then ψ ∈ Γv or ϕ ∈ ∆v: In our construction, there
are three ways of obtaining wRv, so we need to show that for each case, the
property holds. We first show that ϕ→ ψ ∈ Γv:
1. v was created by applying (→R) to w on some α → β ∈ ∆w. Then Γv

also contains ϕ→ ψ.
2. w was created by applying (−<L) to some α−<β ∈ Γv. Then, when the

final version of Γv was created, ϕ→ ψ ∈ Γw was added to the S variable
at Step 2d. There are two cases:
• The right premise π2 of (−<L) was invoked at v. Then S was added

to π2 at v by the symmetric process to Step 2(b)ivB. Thus the up-
dated Γv also contains ϕ→ ψ.

• The right premise of (−<L) was not invoked at v. This means that
∃Σj ∈ S.Σj ⊆ Γv, and the j-th version of v’s predecessor w is chosen
at the symmetric process to Step 2(b)iiiA. But since Step 2d at w
assigns Σj := Γw, then we have Γw ⊆ Γv and thus ϕ→ ψ ∈ Γv.

3. v = w, and wRw by reflexivity. Then Γv = Γw, so ϕ→ ψ ∈ Γv.
In all cases, saturation for v will then ensure that ψ ∈ Γv or ϕ ∈ ∆v.

We can obtain a counter-model for Γ
BiInt

∆ from 〈W,R〉 via Lemma 6.

We use di-tree to mean a directed graph such that if the direction of the
edges is ignored, it is a tree. The following corollary follows directly from our
procedure since it never creates proper clusters: see [2].

Corollary 4. BiInt is characterised by finite rooted reflexive and transitive di-
trees.

6 Conclusions and Future Work

Our cut-free calculus for BiInt enjoys terminating backward proof-search and
is sound and complete w.r.t Kripke semantics. A simple Java implementation

of GBiInt is available at http://users.rsise.anu.edu.au/~linda. The next
step is to add a cut rule to GBiInt, and prove cut elimination syntactically.
We are also extending our work to the modal logic S5, and the tense logic
Kt.S4. Our approach of existential branching and inter-premise communication
bears some similarities to hypersequents of Pottinger and Avron [1]. It would
be interesting to investigate this correspondence further. From an automated
deduction perspective, GBiInt is the first step towards an efficient decision
procedure for BiInt. The next task is to analyse the computational complexity
of GBiInt and investigate which of the traditional optimisations for tableaux
systems are still applicable in the intuitionistic case.

We would like to thank the anonymous reviewers for their suggestions.

References

1. A. Avron. The method of hypersequents in the proof theory of propositional non-
classical logics. In Proc. Logic Colloquium, Keele, UK, 1993, 1–32, OUP, 1996.

2. L. Buisman and R. Goré. A cut-free sequent calculus for bi-intuitionistic logic:
extended version. http://arxiv.org/abs/0704.1707, 2007.

3. T. Crolard. Subtractive logic. Theor. Comp. Sci., 254(1–2):151–185, March 2001.
4. J. Czermak. A remark on Gentzen’s calculus of sequents. NDJFL, 18(3), 1977.
5. A. Dragalin. Mathematical Intuitionism: Introduction to Proof Theory, volume 68

of Translations of Mathematical Monographs. Cambridge Univ. Press, 1988.
6. R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. The Journal

of Symbolic Logic, 57(3):795–807, September 1992.
7. R. Goré. Tableau methods for modal and temporal logics. In D’Agostino at al,

editor, Handbook of Tableau Methods, pages 297–396. Kluwer, 1999.
8. A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient loop-check for backward

proof search in some non-classical propositional logics. TABLEAUX’96, 1996.
9. I. Horrocks, U. Sattler, and S. Tobies. A PSpace-algorithm for deciding ALCNIR+ -

satisfiability. LTCS-98-08, LuFG Theor. Comp. Sci, RWTH Aachen, 1998.
10. J. M. Howe. Proof search issues in some non-classical logics. PhD thesis, University

of St Andrews, 1998.
11. C. Rauszer. A formalization of the propositional calculus of H-B logic. Studia

Logica, 33:23–34, 1974.
12. C. Rauszer. An algebraic and Kripke-style approach to a certain extension of

intuitionistic logic. Dissertationes Mathematicae, 168, 1980. Inst. of Math, Polish
Academy of Sciences.

13. S. Schwendimann. A new one-pass tableau calculus for PLTL. In Proc.

TABLEAUX’98, pages 277–292, 1998.
14. V. Śvejdar. On sequent calculi for intuitionistic propositional logic. Commenta-

tiones Mathematicae Universitatis Carolinae, 47(1):159–173, 2006.
15. M. E. Szabo, ed. The Collected Papers of Gerhard Gentzen. Studies in Logic and

the foundations of Mathematics. North-Holland, Amsterdam, 1969.
16. I. Urbas. Dual-intuitionistic logic. NDJFL, 37(3):440–451, Summer 1996.
17. T. Uustalu. Personal communication. via email, 2004.
18. T. Uustalu. Personal communication. via email, 2006.
19. T. Uustalu and L. Pinto. Days in logic ’06 conference abstract. At http://www.

mat.uc.pt/~kahle/dl06/tarmo-uustalu.pdf, accessed on 27th October 2006.
20. F. Wolter. On logics with coimplication. JPL, 27(4):353–387, 1998.

