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Abstract. We present an iterative algorithm for solving variational inequalities under the weakest monotonicity
condition proposed so far. The method relies on a new cutting plane and on analytic centers.
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1. Introduction. Notation and definitions

Recently, Goffin et al. [3] developed a convergent framework for determining a solution
x∗ of the (primal) variational inequality VIP(F, X) associated with the continuous map-
ping F and the polyhedron X = {x : Ax ≤ b},1 under an assumption slightly stronger than
pseudomonotonicity. In this paper we show that their algorithm can be extended to quasi-
monotone variational inequalities that satisfy a weak additional assumption if one replaces,
at iteration k, the ‘natural’ cutting plane

〈F(xk), x − xk〉 = 0 (1)

by a modified hyperplane that does not go through the current iterate xk . This result is in
some way the strongest possible in that no valid cutting plane can be derived under the sole
assumption that F be quasimonotone on X .

We recall that a point x∗ of X is solution of the primal variational inequality VIP(F, X)

if there holds

〈F(x∗), x − x∗〉 ≥ 0 ∀x ∈ X. (2)

It is a solution of the dual variational inequality VID(F, X) if

〈F(x), x − x∗〉 ≥ 0 ∀x ∈ X. (3)
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318 MARCOTTE AND ZHU

We denote by X∗
P the set of solutions of VIP(F, X) and by X∗

D the set of solutions of
VID(F, X). While the latter set could be empty, nonemptiness of X∗

P follows from the
continuity of F and the compactness of X . Whenever F is continuous, we have that X∗

D ⊆
X∗

P (see Auslender [1]).
At a point x in X , we say that the mapping F monotone if

〈F(y) − F(x), y − x〉 ≥ 0 ∀y ∈ X, (4)

pseudomonotone if

〈F(x), y − x〉 ≥ 0 ⇒ 〈F(y), y − x〉 ≥ 0 ∀y ∈ X. (5)

and quasimonotone if

〈F(x), y − x〉 > 0 ⇒ 〈F(y), y − x〉 ≥ 0 ∀y ∈ X. (6)

If the mapping F satisfies (4) (respectively (5), (6)) for every x in X , then we say that it is
monotone (respectively pseudomonotone, quasimonotone) on X . If F is pseudomonotone
on X , then it is well known (see Auslender [1] again) that the solution sets X∗

P and X∗
D

coincide.

2. A cutting plane-analytic center algorithm

Throughout this section we assume that F is continuous and that the solution set X∗
P is

non-empty. The following proposition gives some conditions ensuring the nonemptiness of
X∗

D .

Proposition 1. If either

(i) F is the gradient of a differentiable quasiconvex function;
(ii) F is quasimonotone, F �= 0 on X and X is bounded;

(iii) F is quasimonotone, F �= 0 on X and there exists a positive number r such that, for
every x ∈ X with‖x‖ ≥ r, there exists y ∈ X such that‖y‖ ≤ r and 〈F(x), y−x〉 ≤ 0;

(iv) F is pseudomonotone at x∗ ∈ X∗
P ;

(v) there exists a point x∗ in X∗
P such that F is quasimonotone at x∗ and F(x∗) is not

normal to X at x∗,

then X∗
D is nonempty.

Proof:

(i) Let F = ∇ f and let x∗ be a global minimizer of f over X . By definition, f (x∗) ≤ f (x)

for all x in X , which implies, by quasiconvexity of f , that

〈∇ f (x), x − x∗〉 ≥ 0 ∀x ∈ X,

i.e., since, F = ∇ f, x∗ ∈ X∗
D .
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(ii) and (iii) Under these assumptions, it has been shown by Hadjisavvas and Schaible [4]
that the solution set of the dual variational inequality (3) is nonempty.

(iv) This is a direct consequence of the pseudomonotonicity of F at x∗ ∈ X∗
P .

(v) Since F(x∗) is not normal to X , there exists a point x0 in X such that 〈F(x∗), x0−x∗〉 >

0. Let x be any point of X and set xt = tx0 + (1 − t)x for t ∈ (0, 1]. We have:

〈F(x∗), x − x∗〉 ≥ 0

and

〈F(x∗), xt − x∗〉 > 0.

Since F is quasimonotone at x∗, we obtain:

〈F(xt ), xt − x∗〉 ≥ 0.

Letting t → 0 it follows from the continuity of F that 〈F(x), x − x∗〉 ≥ 0, i.e.,
x∗ ∈ X∗

D . ✷

Example 1 (taken from [4]). Let X = [0, 1] × [0, 1] and t = (x1 +√
x2

1 +4x2
2)/2. We define

F(x1, x2) =
{

(−t/(t + 1), −1/(t + 1)) if (x1, x2) �= (0, 0)

(0, −1) if (x1, x2) = (0, 0).

Then F is quasimonotone on X , as condition (ii) of Proposition 1 is satisfied. Moreover,
for x∗ = (1, 1) ∈ X∗

P , conditions (iv) and (v) are also satisfied. In fact, X∗
D = {(1, 1)}. ✷

Example 2 (also taken from [4]). Let X = [0, +∞) × {0} and F = (|sin x1|, 1). The
function F is quasimonotone and continuous on X and X∗

P = {(nπ, 0) : n ∈ N }. Condition
(iv) holds for x∗ = (0, 0) and we have: X∗

D = {(0, 0)}. ✷

We now introduce the elements required in the construction of algorithms for solving
quasimonotone variational inequalities. Let 	(y, x) : Rn × Rn → Rn denote an auxiliary
mapping, continuous in x and y and strongly monotone in y, i.e.,

〈	(y, x) − 	(z, x), y − z〉 ≥ β‖y − z‖2 ∀y, z ∈ X (7)

for some positive number β. We associate with 	 the auxiliary variational inequality
AVIP(	, X, x) (see Zhu and Marcotte [8]) whose unique solution w(x) satisfies:

〈	(w(x), x) − 	(x, x) + F(x), y − w(x)〉 ≥ 0 ∀y ∈ X. (8)

It is known that the mapping w is continuous (see Harker and Pang [5]) and that x is solution
of VIP if only if it is a fixed point of w.
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Let ρ and α be positive numbers less than 1 and β, respectively. Let l, which depends on x ,
be the smallest nonnegative integer such that

〈F(x + ρl(w(x) − x)), x − w(x)〉 ≥ α‖w(x) − x‖2. (9)

(The existence of a finite l satisfying the above condition will be proved in Proposition 2
below.)

We introduce the composite mapping G defined, for every x in X , as:

G(x) = F(x + ρl(w(x) − x)). (10)

If x∗ is in X∗
P we have that w(x∗) = x∗, l = 0 and G(x∗) = F(x∗).

Proposition 2. The operator G is well defined for every x ∈ X. Moreover, if F is Lipschitz
continuous on X with Lipschitz constant L , there holds:

l ≤
⌈

ln((β − α)/L)

ln ρ

⌉
.

Proof: To prove that G is well defined, we must show that l < ∞. From the definition of
w(x) we get:

〈F(x), x − w(x)〉 ≥ 〈	(w(x), x) − 	(x, x), w(x) − x〉 (11)

≥ β‖x − w(x)‖2.

Assume that (9) is not satisfied for any integer l, i.e.,

〈F(x + ρl(w(x) − x)), x − w(x)〉 < α‖w(x) − x‖2 ∀l. (12)

Taking the limit (recall that F is continuous, and that x + ρl(w(x) − x) → x , as l → ∞),
we obtain:

〈F(x), x − w(x)〉 ≤ α‖w(x) − x‖2, (13)

in contradiction with (11). (Recall that, by definition, α < β.)
Now assume that F is Lipschitz continuous on X , with Lipschitz constant L . We have:

〈F(x + ρl(w(x) − x)), x − w(x)〉 = 〈F(x), x − w(x)〉
+〈F(x + ρl(w(x) − x)) − F(x), x − w(x)〉

≥ β‖w(x) − x‖2 − Lρl‖w(x) − x‖2

= (β − Lρl)‖w(x) − x‖2

≥ α‖w(x) − x‖2 if α ≤ β − Lρl ,

from which the second conclusion of the proposition follows. ✷
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Figure 1. A strict cutting plane.

The next proposition shows that the composite mapping G possesses a property that can be
used to derive a strict cutting plane at any point of X that is not solution of VIP(F, X). A
geometrical illustration of the cutting plane is given in figure 1, where 	(y, x) has been set
to y − x , in which case w(x) is simply the projection of x − F(x) onto the feasible set X .

Proposition 3. If x /∈ X∗
P then, for every y∗ ∈ X∗

D, we have

〈G(x), x − y∗〉 > 0. (14)

Proof: Let y(x) = x + ρl(w(x) − x). We have that G(x) = F(y(x)) and:

〈F(y(x)), w(x) − x〉 ≤ −α‖w(x) − x‖2

< 0,

since x /∈ X∗
p implies that x �= w(x). Therefore:

〈F(y(x)), y(x) − x〉 = ρl〈F(y(x)), w(x) − x〉 < 0. (15)

However, for every y∗ ∈ X∗
D there holds

〈F(y(x)), y(x) − y∗〉 ≥ 0. (16)



322 MARCOTTE AND ZHU

By combining (15) and (16) we obtain

〈F(y(x)), x − y∗〉 > 0,

as claimed. ✷

Recently, Magnanti and Perakis [7] proposed a unifying geometric framework for solv-
ing variational inequality problems involving mappings with strongly monotone (possibly
multivalued) inverses. They used volume reduction arguments to derive convergence and
complexity results. Under a strengthened pseudomonotonicity assumption, Goffin et al. [3]
obtained comparable results for an analytic center cutting plane method, using potential
reduction arguments. The following algorithm is a modification of the algorithm of [3] that
replaces the ‘natural’ hyperplane 〈F(xk), x − xk〉 = 0 by the ‘strict’ hyperplane

〈F(xk + ρl(w(xk) − xk)), x − xk〉 = 0. (17)

This yields the analytic center cutting plane algorithm described below.

EXTENDED ANALYTIC CENTER CUTTING PLANE ALGORITHM

Step 0 (initialization)
Let β be the strong monotonicity constant of 	(x, y)

with respect to y and let α ∈ (0, β).
k = 0, Ak = A, bk = b

Step 1 Xk = {x : Ak x ≤ bk}
Find an approximate center xk of Xk .

Step 2 (stopping criterion)
if gP(xk) ≤ ε then STOP

else GOTO Step 3.
Step 3 (auxiliary variational inequality problem)

Let w(xk) satisfy the variational inequality

〈F(xk) + 	(w(xk), xk) − 	(xk, xk), y − w(xk) ≥ 0 ∀y ∈ X.

Step 4 Let yk = xk + ρlk (w(xk) − xk) and G(xk) = F(yk),
where lk is the smallest integer that satisfies

〈F(xk + ρlk (w(xk) − xk)), xk − w(xk)〉 ≥ α‖w(xk) − xk‖2.

Step 5 (cutting plane)

H k = {x : 〈G(xk), (x − xk)〉 = 0}

Ak+1 =
(

Ak

G(xk)T

)
bk+1 =

(
bk

〈G(xk), xk〉
)

Increase k by one and return to Step 1. ✷
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The proof of convergence of the above algorithm is very short and relies on the following
property of cutting plane methods based on approximate analytic centers2, which we call
the ‘finite cut property’:

Finite cut property (Goffin et al. [2]): Given a ball of radius ρ lying in the polyhedron X ,
there exists an iteration index k(ρ) such that Xk does not contain the given ball.

Theorem 1. Let the polyhedron X have nonempty interior. Let F be Lipschitz continuous
with Lipschitz constant L on X and let the set X∗

D be nonempty. Then either the extended
analytic center cutting plane algorithm stops with a solution of VIP after a finite number
of interations, or there exists a subsequence of the infinite sequence {xk} that converges to
a point in X∗

P .

Proof: Assume that xk /∈ X∗
P for every iteration index k, and let y∗ ∈ X∗

D . From Propo-
sition 3, we know that y∗, which lies in Xk since X∗

D ⊆ Xk , never lies on H k for any
k. Let {ȳi }i∈N be an arbitrary sequence of points in the interior of X converging to y∗,
and εi a sequence of positive numbers such that limi→∞ εi = 0 and that the sequence

Figure 2. Geometrical construction behind the proof.
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of closed balls {B(ȳi , εi )}i∈N lies in the interior of X . Note that limi→∞{B(ȳi , εi )} =
{y∗}.

From the finite cut property, we know that there must exist a smallest index k(i) and a
point ỹi ∈ B(ȳi , εi ) such that ỹi lies on the ‘wrong’ side of the hyperplane H k(i), i.e.,

〈
G

(
xk(i)

)
, xk(i) − ỹi

〉
< 0.

As 〈G(xk(i)), xk(i) − y∗〉 > 0, there exists a point ŷi on the segment [ỹi , y∗] such that
〈G(xk(i)), ŷi − xk(i)〉 = 0. (See figure 2.)

Since X is compact, we can extract from the sequence {xk(i)}i∈N a convergent subsequence
{xk(i)}i∈s. Denote by x̆ its limit point. We have:

〈
G

(
xk(i)

)
, ŷi − xk(i)

〉 = 0 ∀i ∈ S. (18)

From Proposition 2, we know that the integer sequence lk(i) is bounded. Consequently we
can extract from the sequence {lk(i)}i∈S a constant subsequence lk∗(i) = k∗. Now, from the
continuity of the function w(x) for fixed k and the relations (9) and (18), it follows by taking
the limit in (18) that

〈G(x̆), y∗ − x̆〉 = 0

By Proposition 3, we conclude that x̆ ∈ X∗
P . ✷

Notes

1. The reader unfamiliar with variational inequalities is referred to [1], [5] and [6].
2. The definition of approximate analytic centers can be found in [3].
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