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Abstract: A critical transportation infrastructure integrated with the Internet of Things based wireless
sensor network, operates as a cyber-physical system. However, the new form of IoT enabled trans-
portation infrastructure is susceptible to cyber-physical attacks in the sensing area, due to inherent
cyber vulnerabilities of IoT devices and deficient control barriers that could protect it. Traditional risk
assessment processes, consider the physical and cyber space as isolated environments, resulting in
IoT enabled transportation infrastructure not being assessed by stakeholders (i.e., operators, civil
and security engineers) for cyber-physical attacks. In this paper, a new risk assessment approach
for cyber-physical attacks against IoT based wireless sensor network is proposed. The approach
relies on the identification and proposal of novel cyber-physical characteristics, in the aspect of threat
source (e.g., motives), vulnerability (e.g., lack of authentication mechanisms) and types of physical
impacts (e.g., casualties). Cyber-physical risk is computed as a product of the level and importance
of these characteristics. Monte Carlo simulations and sensitivity analysis are performed to evaluate
the results of an IoT enabled bridge subjected to cyber-physical attack scenarios. The results indicate
that 76.6% of simulated cases have high-risk and control barriers operating in physical and cyber
space can reduce the cyber-physical risk by 71.8%. Additionally, cyber-physical risk differentiates
when the importance of the characteristics that are considered during risk assessment is overlooked.
The approach is of interest to stakeholders who attempt to incorporate the cyber domain in risk
assessment procedures of their system.

Keywords: IoT; transportation infrastructure; threat source; vulnerability; physical impact;
cyber-physical risk; control barriers; Monte Carlo; sensitivity analysis

1. Introduction

Until recently, critical infrastructure was considered to operate in an isolated cyber
or physical environment. However, the increasing reliance of critical infrastructure on
advanced technologies (e.g., Internet of Things (IoT)) has enabled the integration of the
physical world with computational facilities and the operation of critical infrastructure as a
cyber-physical system [1]. In the domain of critical transportation infrastructure, a signifi-
cant number of IoT applications have been recently introduced, providing reliable services
with less human intervention [2]. These services include, but are not limited to, early warn-
ing system against hazards (e.g., scour) [3], or a smart management system in a bridge life
cycle assessment [4]. In the field of structural health monitoring and damage assessment,
advancements of IoT technology have revealed the potential for several applications (e.g.,
monitoring through image processing) [5,6]. These IoT applications enhance the ability
to automate processes, enabling civil engineering professionals to make well-informed
decisions regarding the structural health statuses of their systems. Such IoT applications,
could not be materialized without the use of IoT based wireless sensors network (WSN), as
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a key technology that enables the connection with the physical environment within their
layered architecture [7]. The fundamental three-layer IoT architecture includes the sensing,
network, and application layer, each one defined by its functions and the devices that are
used in it [8]. Specifically, IoT devices (e.g., sensors, gateways) located in the physical
space (e.g., deck of a bridge) as part of the sensing layer, collaboratively detect, collect, and
process data. The network layer enables the wireless transmission of data, availing of recent
advances in wireless network protocols (e.g., ZigBee, Bluetooth). This data is sent to the
end-user for data analytics and processing, through the application layer. The convergence
of traditional urban critical transportation infrastructure (i.e., bridge, roadways, highways,
tunnels, embankments) with IoT applications, facilitates the transition to an IoT enabled
transportation infrastructure, which serves as the intersection between the physical and
cyber space. Although in the past cyber or physical attacks assumed to have an impact
on either the cyber or physical space alone, now an exploitation of a cyber vulnerability
(e.g., lack of authentication mechanisms) by a threat source (i.e., attacker) can result in
physical impact(s) (e.g., economic losses), facilitating cyber-physical attacks against critical
infrastructure [9]. The security breach of confidentiality, integrity, availability (CIA) can
result in severe consequences [10]. Successful cyber-physical attacks against IT systems in
the transportation domain exploited cyber vulnerabilities to cause severe physical impacts
(e.g., injuries) [11]. In one of these attacks, the European Union Agency for Cybersecu-
rity reported a two-days Denial of Services attack (DoS) against the Swedish Transport
Administration, resulting in major delays and degraded services to customers [12].

Despite the promising IoT applications in the critical transportation infrastructure
domain, IoT devices that comprise an IoT based WSN in the sensing layer, suffer from
inherent technical weaknesses and vulnerabilities. Technical weaknesses refer to issues
such as limited energy resources, low memory, and computational capacity of IoT devices,
while vulnerabilities refer to security gaps that can be exploited by an attacker [13]. Vul-
nerabilities can originate from deficiencies in the wireless network protocol adopted in
IoT devices [14–16]. As critical transportation infrastructure has been an appealing target
for threat sources (e.g., terrorist) due the level of impact that can be obtained from its
disruption, the application of an IoT based WSN in the sensing layer is increasing the
risks of cyber-attacks [17]. Thus, the cyber-physical risk assessment of an IoT enabled
transportation infrastructure against cyber-physical attacks in the sensing layer has become
more crucial than ever.

Although approaches to assess the risks of transportation infrastructure against natural
hazards (e.g., earthquake) have been proposed in previous work [18], those aimed to assess
risks against cyber-physical attacks are limited. For example, an increased need for security
awareness, has been outlined for railway systems [19]. However relevant studies, such as
the EU projects PROTECTRAIL [20], SECRET [21], CARONTE [22], CIPSEC [23,24], target
to inform stakeholders, about emerging security issues (e.g., access control, electromagnetic
attacks etc.), rather than assessing the risk brought by the exploitation of vulnerabilities
of IoT devices. Other approaches in the transportation domain (see Section 2 for more
details), integrate cyber security international standards, mainly derived from the National
Institute of Standards and Technology (NIST), such as NIST SP800-30 [25]. By considering
a qualitative likelihood-impact matrix, based on organizational deficiencies (e.g., lack of
employees training), stakeholders can assess risks and apply control measures strictly
related to business organization assets (e.g., disclosure of sensitive data) and operations
overlooking the impact to physical space. Additionally, despite the recent advances of
machine learning methods (e.g., signature-based method) in the critical infrastructure
domain these are mainly implemented for network anomaly detection as a second line of
defence rather than the proactive management of risk [26], which is the main focus of this
paper. Other limitations of machine learning methods include the possibility of adversarial
machine learning (i.e., an attacker performs reverse engineering to avoid detection) [27]
and the complexity of converging both cyber and physical detection methods [28], due to
coexistence of a physical infrastructure that is enabled through operation in cyberspace.
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The gradual transformation to an IoT enabled transportation infrastructure has created a
knowledge gap, in cyber-physical risk assessment, leading to the consideration of cyber
threats as separated from the physical ones [29]. This knowledge gap rises due to under-
reporting, that has led to a lack of statistical data about cyber-attacks [30]. Additionally,
new threat sources based on complex human profile characteristics (e.g., motives), and
vulnerabilities have arisen from cyber space [31]. The absence of unified risk assessment
methodologies for critical infrastructure domains makes it more difficult to identify how
cyber-physical risks can be managed [32].

To bridge this gap, this paper contributes by providing a cyber-physical risk assessment
approach for IoT enabled transportation infrastructure subjected to cyber-physical attacks
at the sensing area that can be applied by stakeholders who act as assessors (i.e., operators,
civil and security engineers). The approach aims to enable stakeholders to manage the
cyber-physical risk in the sensing area in a proactive manner. In our approach, cyber-
physical risk is computed as the product of three main aspects: (i) the vulnerabilities of
IoT devices; (ii) the threat source who can exploit the vulnerabilities; and (iii) the physical
impact resulting from the successful exploitation of the vulnerabilities. Vulnerabilities
and threats are assessed based on combined cyber and physical characteristics, while
physical impacts are assessed considering previous related work in the security and civil
engineering domain. Quantitative scores are employed to assess the level and importance of
the cyber-physical characteristics. An illustrative, yet realistic, case study of an IoT enabled
bridge, being subjected to cyber-physical attack (i.e., energy depletion attack) against its
IoT based WSN is used to demonstrate the application and usefulness of the approach. The
cyber-physical attack is composed of four scenarios, based on the application of different
control barriers, which can prevent and detect cyber-physical attacks. Control barriers can
operate in the cyber (e.g., intrusion detection systems) and physical space (e.g., motion
detectors), separately or at the same time (i.e., integrated control barriers). Monte Carlo
simulations are performed to vary the quantitative scores assigned to vulnerabilities, threat
sources and physical impacts, and conduct a sensitivity analysis to illustrate the impact of
the scores on the cyber-physical risk.

This paper contributes to existing knowledge in the following ways. First, cyber-
physical characteristics, that have not been previously considered in the aspect of threat
source profile (e.g., terrorism experience), all associated with an IoT enabled transportation
infrastructure, are integrated in the cyber-physical risk assessment approach, minimizing
the knowledge gap between civil and security engineering domain. Second, this paper
describes and uses a realistic case study of a cyber-physical attack scenario that takes place
in the sensing area of an IoT enabled transportation infrastructure. Third, the role of control
barriers, which could be activated in the sensing layer, is introduced, and considered in the
approach, to inform assessors towards the cyber-physical risk reduction. The remainder
of the paper is as follows: Section 2 presents the related work; Section 3 describes the
proposed cyber-physical risk assessment approach; Section 4 illustrates the case study and
presents the results; Section 5 includes a description of the results and limitations of the
approach; and Section 6 concludes the paper.

2. Related Work

A review of related work within the areas of security risk and critical infrastructure,
mainly focusing on the transportation sector, is presented in this section. The related work
is divided into two domains, namely, international standards or frameworks, used by
organizations and research studies.

International Standards. International standards or frameworks exist in cyber do-
main and have been widely used in critical infrastructure risk domain, due to the increasing
severity of cyberattacks. As mentioned in Section 1, NIST has released standards that
assist organizations towards the cyber risk management such as the qualitative impact-
likelihood matrix in NIST SP800-30 [25]. NIST’s Cyber Security Framework for Critical
Infrastructure [33], targets to assist stakeholders within critical infrastructure domain, into
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management of cybersecurity related risk and cyber resilience. It builds on three core
structures, namely, framework core (i.e., discuss the management of cyber risk), implemen-
tation tiers (i.e., discuss the standards that more effectively suit organizations cybersecurity
program), and framework profile (i.e., discuss identified opportunities for improving or-
ganizations cybersecurity). NIST standards are mainly applicable to manage risks arising
from remote attacks (i.e., through the Internet) and insider attacks. Additionally, the stan-
dards provide guidance on how to protect valuable assets in cyber space (e.g., sensitive
data) by performing activities at the level of an organization (e.g., employees training).
Contrary to this, this approach presented in this paper rigorously focusses on cyber-attacks
at the sensing area (i.e., sensing layer), which result in physical impacts (i.e., cyber-physical
attacks) and emerge from the exposure of IoT devices at physical space. Furthermore,
the discussed control barriers originate from the engineering domain (e.g., motion detec-
tors) and aim to protect the IoT enabled transportation infrastructure. NIST 8228 internal
report [34], aims to inform federal agencies and organizations on how to manage IoT cyber-
security and privacy risks. The report identifies high level considerations that may affect
the management of cybersecurity and privacy risks for IoT devices (e.g., interaction with
physical systems) as compared to conventional IT devices. Although the report provides
valuable information about cyber security risks determined by the use of IoT devices, it
does not provide a method to assess these risks. Common Vulnerability Scoring System
(CVSS) [35], is an open framework that assists organizations to assess and prioritize their
vulnerability management processes.. Although it focuses on measuring the severity of se-
curity vulnerabilities, it has been widely integrated in risk assessment procedures [36]. For
example, the exploitability metrics of Base Score (e.g., Attack vector), which are considered
in this approach, represent the intrinsic characteristics of a vulnerability that are constant
over time and across user environments. The Base metric produces a score that ranges from
zero to ten to measure the severity of vulnerability, based on human judgement. CVSS [35]
is only applicable for measuring the severity of vulnerabilities, rather than assessing the
risks that emerge from their exploitation.

Research Studies. Studies in the transportation sector have focused on security is-
sues of advanced transportation elements (e.g., vehicles) that communicate wirelessly (i.e.,
vehicle-to-vehicle and vehicle-to-infrastructure communication), rather than considering
harm that these elements can cause to the transportation infrastructure [37–39]. A risk as-
sessment process for policymakers and engineers was presented by Kelarestaghi et al. [40],
to raise security awareness of exploitable in-vehicle network security vulnerabilities. Due
to the lack of statistical data in cyber-attacks, a qualitative impact-likelihood matrix, that
follows the guidelines of NIST SP800-30 standards [25] was applied. The process synthe-
sizes security incidents from the current literature and real-world cyber events, to visualize
a risk matrix, related to safety, operation, reliability, and security issues that emerged from
in-vehicle network security vulnerabilities. The maritime transportation sector includes
crucial activities (export and import of goods) that face security threats. Gunes et al. [41]
applied previously proposed cyber security risk assessment approaches (i.e., [42]) to a real
case study of a container port. Stakeholders (e.g., port staff, IT managers) were actively
involved in the approach by participating in interviews and questionnaires to assess cy-
ber risk under different attack scenarios. Cyber risk was calculated as a summation of
likelihood and impact, based on stakeholders’ answers, while mitigation strategies (e.g.,
use of stronger passwords) were briefly discussed when risk values were not acceptable.
ENISA released a report [43] to outline good practices for cybersecurity in the maritime
sector, providing a list of security threats (e.g., social engineering) and measures (e.g.,
security awareness raising program) in relation to critical operations. Kandasamy et al. [44]
highlight that existing cyber risk frameworks alone, are unable to address new threats that
are arising in IoT-based systems. Indeed, current cybersecurity assessment methods alone
cannot directly address the needs of IoT-based smart environments [45]. To address this
gap, Stellios et al. [46] proposed an approach that enables decision makers in critical sys-
tems (e.g., healthcare sector), to identify and assess cyber-physical attack paths, rather than
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the risks that emerge from them, due to the existence of IoT devices. The method, which
was tested in the healthcare sector, relies on qualitative and quantitative scales and builds
on attack trees topologies [47], a recursive algorithm and exploitability metrics of CVSS [35].
The enablement of cyber-physical attack paths due to the existence of IoT devices was
highlighted by Agadakos et al. [48]. They proposed an approach to identify unexpected
chains of events and subsequent potential impacts due to addition or removal of a device
to/from an existing network, mainly applicable for industrial IoT applications (i.e., smart
homes). The application of the approach was demonstrated, using a language and tool for
relational models (i.e., Alloy [49]) in realistic IoT use cases (i.e., smart home devices).

Although research studies succeed in raising security awareness in the transportation
sector, they have certain limitations. Firstly, they focus on the protection of interactive
transportation elements (i.e., vehicles) from cyber-attacks, rather than the critical transporta-
tion infrastructure itself [40]. Existing research studies have not considered cyber-attacks
that take place in the sensing area of a critical transportation infrastructure and impact
physical space, but rather focus on remote cyber-attacks. Additionally, studies that ground
their risk calculation on attacker profiles have only considered a limited number of profile
characteristics. For example, in [41,46] only a limited numbers of profile characteristics
(e.g., skills of an attacker) were considered to calculate the likelihood of an attack. However,
as critical transportation infrastructure can also be the target of terrorist activities, other
characteristics should also be considered. For example, attacker motives (e.g., ideology,
political) could substantially affect the targets of an attack and the effort that the attacker
will put to achieve their objectives. In the approach presented in this paper, a detailed
attacker (also referred to as threat source) profile is considered based on the literature
(i.e., latent content analysis) and the cyber-physical perspective of an IoT enabled trans-
portation infrastructure. Finally, in comparison with previous studies that treat all threat
source profile characteristic equally, we weigh the characteristics using importance indexes
determined using expert judgement.

3. Cyber-Physical Risk Assessment Approach

Due to the complex nature of critical infrastructure domain, risk assessment methods
should be adapted to each sector (e.g., maritime, transportation) individually [41]. Thus,
the cyber-physical risk assessment approach presented in this paper focuses on critical
transportation infrastructure and can be performed by stakeholders who act as assessors
(i.e., operators, security, and civil engineers). Similarly to existing risk assessment methods,
this approach is based on the identification and assessment of vulnerability, threat, and
impact [50]. As shown in Figure 1, this approach incudes six activities.
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The first activity, as shown in Figure 1 (Identification of vulnerabilities in the wireless sensor
network protocol), includes the identification of vulnerabilities that are present in the wireless
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network protocol used by the IoT devices to communicate. This activity can be facilitated by
the use of public vulnerability databases (e.g., Common Vulnerabilities and Exposures [51])
as well as research [52] and experimental studies [53]. The identified vulnerabilities are used
in the second activity to identify potential cyber-physical attack scenarios (Identification of
cyber-physical attack scenarios), that enable their exploitation. Identification of cyber-physical
attack scenarios necessitates the role of stakeholders who have bespoke knowledge of
their system [42]. Indeed, the preparation of cyber-physical attack scenarios requires the
consideration of weaknesses not only in cyber space but also in the physical space (e.g.,
deficient physical protection). The main attack scenarios against IoT devices (e.g., battery
drainage, eavesdropping etc) that can be used in this approach, have been discussed in
detail in the literature [54]. The second activity (refer to Figure 1) can be further facilitated
with the use of publicly available catalogues of common attack patterns (e.g., CAPEC [55])
that describes how specific parts of an attack are designed and executed based on real
world examples, as well as experimental studies [56].

Cyber-physical attack scenarios identify how vulnerability in the IoT network can be
exploited by a threat source to damage physical space. The third, fourth and fifth activities
revolve on the assessment of the vulnerabilities that can be exploited in a cyber-physical
attack scenario, the threat source who attempts to exploit them, and the adversarial physical
impact that can be caused by the successful exploitation of vulnerability. As shown in
Table 1, the assessment of vulnerabilities and threat source requires assessors to assign a
numerical score: (i) in the decision scale (Xi), that describes the level of their characteristics
with respect to the considered IoT based WSN; and (ii) in the importance index (Wi),
that describe the importance of their characteristics with respect to their effect on the
completion of cyber-physical attack scenario. More precisely, in Activity 3 assessors define
the level of vulnerability characteristics and their importance: Attack vector (XAV, WAV),
Attack complexity (XAC, WAC), User interaction (XUI, WUI), Privileges required (XPR, WPR),
and Interoperability (XIO, WIO). These characteristics are similar to those considered in
CVSS [35]. The overall assessment of vulnerability is computed as the weighted average
of the level of vulnerability characteristics. In Activity 4 assessors define the level of
threat source characteristics and their importance: Knowledge (XKN, WKN), Resources (XRE,
WRE), Psychology (XPS, WPS), and Terrorism experience (XTe, WTe). These characteristics
reflect the potential of a threat source to exploit the vulnerabilities considered in the
cyber-physical attack scenarios generated in Activity 2. The overall assessment of a threat
source is computed as the weighted average of the level of threat source characteristics.
In Activity 5 the types of physical impact (XPI) are assessed: User safety, Economic losses,
Social and Political impact, which can arise from the attack scenarios generated in Activity 2.
Assessment of physical impact can be accomplished by considering each type of physical
impact individually, resulting in a different risk level for each type of physical impact.
Alternatively, physical impacts can be assessed jointly, for example, when a successful
attack scenario can lead to both casualties and economic losses [32]. Activity 4 depends
on the outcome of Activity 3. For example, if the exploitation of a cyber vulnerability has
high attack complexity (XAC) then the importance of the knowledge of the threat source
(WKN) should also be high. Activity 5 also depends on the outcomes of Activities 3–4. For
example, if a vulnerability has a higher attack vector and it is exploited by a threat source
that has high knowledge (XKN) and terrorism experience (XTe), it can potentially lead to a
high physical impact (XPI).

Table 1. Levels and scores of decision scale and importance index.

Level Decision Scale Scores, Xi Importance Index Scores, Wi

Very Low 0–1 0–0.20
Low 2–4 0.21–0.40

Medium 5–7 0.41–0.60
High 8–9 0.61–0.80

Very High 10 0.81–1.0
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In Activity 6 assessors compute the cyber-physical risk following Equation (1), based
on the outcomes of Activities 3–5. The cyber-physical risk is computed as the product of
the overall assessment of vulnerability, threat source and impact. The numerical result of
Equation (1) allows identifying a corresponding risk level as shown in Table 2.

Table 2. Cyber-physical risk levels.

Cyber-Physical
Risk Level

Quantitative
Ranges Description

High 344–1000 Failure of IoT enabled transportation infrastructure.
Control barriers need to be enabled immediately.

Medium 65–343
Partial operation of IoT enabled transportation

infrastructure. Control barriers need to be enabled as
soon as possible.

Low 0–64
Operation of IoT enabled transportation infrastructure

will continue. Control barriers to be determined as
proactive measures.

The use of different ranges of levels and scores enables a qualitative (i.e., Low) and
quantitative (i.e., 0–1) guide for stakeholders to aid the computation of risk, following the
structure of NIST SP800-30 [25], which has been widely used by security engineers.

Risk = WAV×XAV+WAC×XAC+WUI×XUI+WPR×XPR+WIO×XIO
WAV+WAC+WUI+WPR+WIO

×WKN×XKN+WRE×XRE+WPS×XPS+WTe×XTe
WKN+WRE+WPS+WTe

× XPI

(1)

The symbols of Xi, Wi in Equation (1), indicate the level and the importance of Attack
vector (XAV, WAV), Attack complexity (XAC, WAC), User interaction (XUI, WUI), Privileges
required (XPR, WPR), Interoperability (XIO, WIO), Knowledge (XKN, WKN), Resources (XRE,
WRE), Psychology (XPS, WPS), and Terrorism experience (XTe, WTe) and type of physical impact
(XPI). In order to expand the established calculation of risk from the assessment of generic
terms such as vulnerability, threat source and impact [50], Equation (1) was developed. This
equation includes the assessment of particular characteristics in vulnerability, threat source
and impact that assist stakeholders to achieve a more detailed and realistic risk computation.
Risk assessment approaches suggest that risk levels have to be determined prior to the
risk assessment based on stakeholders needs [41]. As indicated by NIST SP800-30 [25], the
determined risk levels can be used as a starting point with appropriate tailoring to adjust
for any specific conditions. Specifically, it divides the risk scales (i.e., Low, Medium etc.)
based on the product of the individual levels of likelihood and impact. For example, a Low
risk level is a product of a Low level likelihood and impact. Appropriate control barriers
should be implemented depending on the level of cyber-physical risk [42]. Therefore, for
the purpose of this paper, the following cyber-physical risk levels have been determined,
based on NIST SP800-30 guidelines, as described in Table 2, namely Low (0–64) when the
overall assessment of vulnerability, threat source and physical impact does not exceed 4,
High (344–1000) when the overall assessment of vulnerability, threat source and physical
impact is at least equal to 7 and Medium (65–343), otherwise.

3.1. Vulnerability Characteristics

The vulnerability characteristics that are considered in this approach are based on the
exploitability metrics of CVSS 3.1 framework [35] and the access points brought by differ-
ent IoT devices [57,58]. The vulnerability characteristics are namely Attack vector, Attack
complexity, User interaction Privileges required and Interoperability. Attack vector describes
the context in terms of level of access, by which vulnerability exploitation is possible (i.e.,
Network, Adjacent, Local, Physical). Differently from CVSS where the more remote the
attacker (i.e., Network) the greater the vulnerability metric, this is not always the case for
an IoT based WSN. The exposure of IoT devices to physical space (i.e., sensing layer) offer
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the opportunity to a threat source to exploit vulnerabilities in the WSN protocol, that can
be accomplished by gaining physical access or through local network of the IoT based
WSN [59]. Thus, XAV, should be assigned a High or a Very high level not only when a
vulnerability can be exploited remotely, but also when the conditions of IoT based WSN
(e.g., absence of physical control barriers) facilitates the required access. XAV should be
determined case by case, depending on the cyber-physical attack scenario. Attack complexity
reflects how many steps a threat source should perform to exploit the vulnerability, which
can depend on the presence of advanced control barriers. Attacks with low complexity
should be reflected in a greater XAC, while attacks having high complexity should result in a
lower XAC. User interaction describes whether a user other than the threat source is required
(i.e., the more interaction required, the lower XUI) to exploit the vulnerability, such as an
administrator who clicks a specially crafted link provided by the attacker and discloses
sensitive information (e.g., WSN encryption password). Privileges required describes the
level of privileges (i.e., No privileges, Low or High) the threat source should have before
being able to exploit the vulnerability successfully. If the exploitation requires no or low
privileges (i.e., vulnerability can be exploited by unauthorized attacker) then the level of
XPR will be high or very high. As outlined by Nawaratne et al. [60] and Desai et al. [58],
Interoperability in IoT environments is a key characteristic of IoT technology. It describes
the ability of an IoT system to effectively communicate with other IoT systems. An IoT
enabled transportation infrastructure has a high level of Interoperability when it is connected
with other heterogenous IoT devices. Interoperability can increase the access points to
IoT devices and can be seen as a more appealing target for a threat source who seeks for
extended disruption to more than one IoT system. For example, IoT devices of two IoT
applications can operate in the same IoT based WSN providing different services (e.g.,
traffic and structural integrity monitoring) and share data between them. Thus, assessors
should assign a high or very high level to XIO when the IoT WSN has high Interoperability.

3.2. Threat Source Characteristics

The threat source characteristics that are considered in this approach are based on
attacker’s attributes proposed in the literature and by considering that an IoT based WSN
operates in both cyber and physical space. The broader lack of access to organizational
information related to cyber-attacks, has led to the adoption of a generic threat source de-
scription that cannot sufficiently describe an attacker profile and affect risk assessment [61].
The lack of detailed characteristics and knowledge gap with respect to the threat source
profile has been highlighted by Rocchetto et al. [62]. Therefore, a latent content analysis of
the existing literature was performed in this paper to identify the fundamental characteris-
tics of threat sources. The identified characteristics are mainly based on the outcomes of the
detailed research by Rocchetto et al. [62], which describes a set of attacker profiles based
on different dimensions, namely Knowledge, Resources and Psychology. Knowledge describes
the level of expertise, related to cyber skills (e.g., attack methods, attack patterns) and of
understanding of the exploitable vulnerability that is under attack. The more complex the
exploitation of a vulnerability, the more expertise the threat source needs to have, thus
WKN should be greater. The higher the level of Knowledge determined by the assessors, the
greater the level of XKN. Resources describe the level of: (i) manpower, indicating whether
the threat source acts alone, in small or larger groups; (ii) tools/ability, indicating whether
the threat source has access to the means necessary for the attack; and (iii) financial sup-
port, indicating the budget available to the threat source. A cyber-physical attack scenario
that requires access to manpower, tools and financial support should be assigned a high
importance index (WRE). Assessors should determine at what level a threat source has
manpower, tools/ability and financial support to assign a level to XRE. Psychology describes
the motivation of the threat source. Motivation indicates the motives (e.g., ideology, reli-
gious) that drive the threat source to accomplish their goal and affect the effort put in the
performed attack. A cyber-physical attack scenario that requires strong motives and effort
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to be accomplished, should be assigned a greater WPS importance index. Assessors should
determine the level motivation of the threat source to assign a score to XPS.

However, all the aforementioned characteristics described originate from cyber-attacks.
In this risk assessment approach, Terrorism experience originating from the physical space
is also considered. This characteristic has not been considered in previous work. Critical
transportation infrastructure has always been an appealing target due its value to terrorist
organizations [63]. However, a significant number of remote cyber-attacks have been
conducted against critical infrastructure by terrorist organizations, indicating an expansion
of malicious activities to cyber space [64,65]. The exposure of IoT devices in the sensing
area of an IoT enabled transportation infrastructure will offer them new opportunities to
impact the physical space by exploiting cyber vulnerability (i.e., cyber-physical attack).
Terrorism experience refers to the experience of threat source to remain undetected in
public secured areas (e.g., where the IoT based WSN is located) and the ability of the threat
source to access valuable information (e.g., sensitive national data) to detect critical targets
related to highly exploitable vulnerabilities that can harm the physical transportation
infrastructure. A level should be assigned to XTe by the assessors depending on these
aforementioned characteristics. The value of WTe will be high or very high if performing a
cyber-physical attack requires the ability of the threat source to detect critical targets and
remain undetected during the infiltration to a physical area.

3.3. Types of Physical Impact

Physical impacts caused by disruption of a critical infrastructure are hard to quantify
due to their inherent unmeasurable nature (e.g., social impact) and to different terminolo-
gies, in terms of risk, used by critical infrastructure stakeholders [32]. The problem is
amplified when security issues of data breach and their impacts are considered, which
are mainly based on economic losses [66,67]. However, a disruption of an IoT enabled
transportation infrastructure due to vulnerability exploitation, will result in identical types
of physical impacts as for a critical transportation infrastructure due to natural hazards
or man-made attacks. Therefore, the following types of physical impact are considered:
User safety, Economic losses, Social and political impact as suggested by risk assessment poli-
cies within EU member states [32], individual national risk guidelines [68] and physical
impacts from previous cyber events (e.g., casualties, economic losses) [11,12]. User safety
describes the number of casualties. Assessors should consider the occupancy capacity of
their transportation infrastructure during the cyber-physical attack scenario. Economic losses
(monetary loss) describe the economic losses. Assessors should consider direct and indirect
losses coming from the construction and repair/replacement costs of IoT application, dis-
ruption of primary services for hours or days, and due to business disruption. Social and
political impact describes the number of people affected by the cyber-physical attack, due to
violation of public security, sense of fear and outrage within people, unstable environment
etc. The assessment of physical impact (XPI) should be accomplished based on the sets of
criteria established by stakeholders [68]. For the purposes of this approach, Table 3 presents
the criteria, according to which physical impacts can be assessed following the suggestions
of Canadian risk guidelines applicable for Critical Infrastructure Protection and Emergency
Preparedness [69].

Table 3. Types of physical impacts (adapted to this study from [69]).

Level/Score (XPI)
Type of Impacts

User Safety Economic
Losses

Social and Political
Impact

Very Low/
0–1

Slight
injuries No losses No impact

Low/
2–4

Less than 100
people

Under $10 million,
Closure for hours

Public perceives low
impact
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Table 3. Cont.

Level/Score (XPI)
Type of Impacts

User Safety Economic
Losses

Social and Political
Impact

Medium/
5–7

Between 100
and 1000 people

Between $10 to $100 million,
Closure for days, weeks

Public perceives moderate
impact

High/
8–9

Between 1000
and 10,000

Between $100 million to $1 billion,
Closure for months

Public perceives high
national risk

Very High/
10

More than
10,000 people

More than $1 billion,
Closure for more than a year

Public perceives very high
national risk

The criteria, according to which physical impacts can be assessed, as shown in Table 3,
can be modified according to the guidelines of individual national risk guidelines, as
adapted in this study following the suggestions of Canadian risk guidelines applicable for
Critical Infrastructure Protection and Emergency Preparedness [69].

4. Case Study of an IoT Enabled Bridge

An illustrative and realistic case study of an IoT enabled bridge with wireless structural
monitoring capabilities is presented in this section, as shown in Figure 2. The IoT enabled
bridge is deployed into three layers. The sensing layer includes the IoT based WSN, which
comprises IoT devices responsible for collecting and transmitting sensed data. Zigbee
is a wireless technology used as a communication protocol among the IoT devices. It is
based on the based on IEEE 802.15.4 standard [52,53] and has been demonstrated to be a
reliable technology for monitoring purposes in civil engineering infrastructure [70]. Indeed,
previous experimental studies [43,44,71,72], have successfully instrumented a wireless
monitoring system for bridges, demonstrating the capabilities of ZigBee technology. ZigBee
protocol stack includes the following layers: application (i.e., data transmission and security
services); network (i.e., routing, security, and configuration of new devices); MAC (i.e.,
interface between physical and network layer); and physical (i.e., functions related to
ZigBee hardware). The ZigBee mesh topology is based on a coordinator that governs the
network, routers that establish connection from the coordinator to other routers or from
a router to end devices, and end devices that collect information. In this case study we
assume that the IoT enabled bridge is the target of an energy depletion attack, which is a
cyber-physical attack targeting the IoT based WSN.
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4.1. Cyber-Physical Attack Scenarios against the IoT Based WSN

ZigBee devices are prone to cyber-physical attacks, due to inherent vulnerabilities
of their protocol stack. A common cyber-physical attack against ZigBee technology is
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the energy depletion attack [56,73]. If the threat source has sufficient physical proximity
to the end devices in the ZigBee WSN, it can exploit vulnerability in the MAC layer to
victimize such devices by sending them bogus messages until their energy is depleted. The
cyber-physical attack scenario identified during Activity 2 in Figure 1 should include the
following steps of: (a) Reconnaissance; (b) Infiltration; and (c) Conclusion, as shown in
Figure 3.
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Reconnaissance. This step is performed before an attack takes place. The threat source
is motivated to launch a cyber-physical attack against the IoT based WSN. The gathering
of information is accomplished by performing physical and remote activities. The threat
source can physically visit the IoT based WSN to evaluate the level of physical security, in
terms of existence of physical control barriers that could restrict their moves (e.g., cameras)
and collect information of the integrated IoT technology. The threat source can also remotely
use their laptop to gather information about the ZigBee technology. Information about
ZigBee and IoT technology allows a threat source to identify exploitable vulnerabilities in
order to instrument the attack methods and supply the necessary tools to conduct the attack.
Public databases and criminal cyber communities (e.g., Dark Web) provide information on
exploitable vulnerabilities [51,74]. The threat source can act alone or increase the manpower
by acting as part of larger groups.

Infiltration. The threat source infiltrates the physical area of the IoT based WSN to
broadcast bogus signals. To achieve this aim, the threat source should use module with
sufficient storage and computation capabilities. The threat source crafts bogus messages
that do not pass the integrity check (i.e., a message integrity code verification standard in
MAC layer) of the ZigBee protocol stack. The admission process of messages performed in
the ZigBee devices consume an amount of energy. However, the victimized ZigBee devices,
are unable to develop blacklists (i.e., a protocol stack vulnerability) and inform the network
or the operator about unidentified malicious devices, attempting to join the network, and
therefore prevent threat source from sending bogus messages. The threat source exploits
this vulnerability and sends a significant number of bogus messages to enforce victim
ZigBee devices running unforeseen computations and therefore consuming a significant
amount of energy. The threat source sends the bogus messages either at different times or
by victimizing other IoT devices to avoid being caught. In this case study, the IoT based
WSN operates under one IoT system.

Conclusion. Finally, the threat source consumes the energy of ZigBee devices and can
fully disrupt the IoT based WSN through a DoS attack and unavailability of data or loss of
data packets due to network congestion.
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The abovementioned cyber-physical attack is composed of four scenarios, that reflect
the application of different control barriers in cyber and physical space in the IoT enabled
bridge sensing area. The existence of control barriers reduces the decision score of Attack
vector (XAV) and Attack complexity (XAC). The control barriers are applied to prevent,
detect or respond to the energy depletion attack.

Scenario 1—No control barriers. The threat source infiltrates the physical area of
the IoT based WSN, launching the attack against the victim ZigBee devices. Physical
accessibility to the IoT WSN increases the score of XAV. Due to the lack of control barriers in
cyber space, the threat source can consume the energy of ZigBee devices without carrying
out additional steps. This increases the score of XAC.

Scenario 2—Physical control barriers only. Physical control barriers, such as intelligent
video-surveillance systems, motion detectors or line crossing [75,76], can detect or prevent
physical access of the threat source to the IoT based WSN. The presence of such control
barriers should reduce the score assigned to XAV. However, if the threat source has sufficient
knowledge, motivation, resources, and terrorism experience to overcome the physical
control barriers, energy of IoT devices can still be depleted.

Scenario 3—Cyber control barriers only. The threat source can infiltrate the physical
area of the IoT based WSN, as discussed in Scenario 1. Cyber control barriers increase the
steps that should be carried out by the threat source to exploit the vulnerability and reduce
the level of Attack complexity (XAC). An example of the cyber control barrier that could
prevent the threat source from sending bogus messages is the development of a blacklist of
misbehaving devices [56]. A cyber control barrier that could detect the energy depletion
attack is the application called Intrusion Detection Systems, which could detect known and
new types of attacks against ZigBee devices and alert operators when malicious actions are
detected [77].

Scenario 4—Integrated Control barriers (ICBs). These control barriers are a combina-
tion of the physical and cyber control barriers described in Scenarios 2 and 3, respectively.

4.2. Assessment of Vulnerability, Threat Source and Physical Impact

The assessment of the individual characteristics of vulnerability (i.e., Attack vector
(XAV, WAV), Attack complexity (XAC, WAC), User interaction (XUI, WUI), Privileges required
(XPR, WPR), Interoperability (XIO, WIO)), threat source (i.e., Knowledge (XKN, WKN), Resources
(XRE, WRE), Psychology (XPS, WPS), and Terrorism experience (XTe, WTe)) and type of physical
impact (XPI) are based on the description of the experimental study as presented in [56].

Concerning the assessment of the MAC layer vulnerability, the exploitation of this
vulnerability based on the identified cyber-physical attack scenario, does not require the
threat source to interact with any other user (User interaction), to have any privileges
(Privileges required), or to gain access to other interacting IoT devices (Interoperability).
Thus, assessors can assign WUI, WPR, WIO a score in [0–0.20] corresponding to a Very low
level. The threat source exploits the MAC layer vulnerability without the need to interact
with other users, without requiring additional privileges, and without the need to gain
entry point through another IoT device, since the IoT based WSN operates under one IoT
application. Thus, assessors can assign XUI and XPR a score corresponding to a High or
Very High level (i.e., 8–10). They can also assign XIO a score corresponding to a Very low
level (0–1). To perpetrate the energy depletion attack successfully, the threat source needs
to have a sufficient level of physical proximity with the IoT devices and act without being
identified as a malicious sender, in order to send bogus messages targeting the Zigbee
protocol. Thus, assessors should assign both WAV, WAC values corresponding to a Very
High level in [0.81, 1]. In Scenario 1 (i.e., No control barriers), the threat source can be in close
proximity to the ZigBee device without performing any additional step to communicate
with them. Thus, assessors can assign XAV, XAC scores corresponding to High or Very
high levels. In Scenario 2, the existence of control barriers in physical space only and the
lack of control barriers in cyber space reduce XAV that should be assigned a score ranging
from Very low to Low level. In Scenario 3, the existence of control barriers in cyber space
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only, can eliminate the MAC layer vulnerability and thus reduces XAC that now should be
assigned a score corresponding to a Very low level. As Scenario 4 combines control barriers
in both cyber and physical spaces, XAV should be assigned a score ranging from Very Low
to Low level and XAC should be assigned a score corresponding to a Low level.

Regarding assessment of the threat source, the exploitation of the MAC layer vulner-
ability does require a moderate level of knowledge in the three steps, although it does
not necessitate resources (e.g., advanced computational modules) or manpower. Thus,
assessors should assign WKN a value in [0.61, 1.0] corresponding to a High to Very high
level. They should also assign WRE a value in [0, 0.4] corresponding to a Very low or Low
level. Additionally, the exploitation of the MAC layer vulnerability requires strong motives
and terrorism experience. Thus, assessors should assign WPS and WTe a value in [0.81, 1.0]
corresponding to a Very high level. While critical transportation infrastructure has always
been a target for attackers involved into terrorism activities, we assume that the threat
source has a sufficient level of knowledge, access to resources, strong motives and terrorism
experience. Thus, we assign XKN, XRE, XPS, XTe a decision score corresponding at least to a
Medium level (between 5 and 10).

Regarding the assessment of physical impact for the four scenarios, successful ex-
ploitation of the vulnerability can result in closure of the IoT enabled bridge for days or
weeks (i.e., economic losses) until restoration services take place. Thus, assessors should
assign XPI a decision score comprised between five and seven corresponding to a Medium
level (i.e., 5–7). The scores assigned to the characteristics and weights of the vulnerability
and threat source and the physical impact are shown in Table 4.

Table 4. Assigned scores to vulnerability, threat source and physical impact per scenario.

Scenarios Vulnerability
(Wi)/(Xi)

Threat Source
(Wi)/(Xi)

Physical Impact
(XPI)

1. No control barriers
AV, AC: (VH)/(H to VH)
UI, PR: (VL)/(H to VH)

IO: (VL)/(VL)
KN: (H-VH)/(M-VH)
RE: (VL-L)/(M-VH)
PS: (VH)/(M-VH)
Te: (VH)/(M-VH)

Economic losses
M

2. Physical control barriers only

AV: (VH)/(VL TO L)
AC: (VH)/(H to VH)

UI, PR: (VL)/(H to VH)
IO: (VL)/(VL)

3. Cyber control barriers only

AV: (VH)/(H to VH)
AC: (VH)/(VL)

UI, PR: (VL)/(H to VH)
IO: (VL)/(VL)

4. ICBs (both cyber and physical
control barriers)

AV: (VH)/(VL TO L)
AC: (VH)/(VL)

UI, PR: (VL)/(H to VH)
IO: (VL)/(VL)

AV: Attack vector, AC: Attack complexity, UI: User Interaction, PR: Privileges required, IO: Interoperability,
KN: Knowledge, RE: Resources, PS: Psychology, Te: Terrorism experience; Xi:VL: Very Low (0–1), L: Low (2–4),
M: Medium (5–7), H: High (8–9), VH: Very High (10); Wi: VL: (0–0.20), L: (0.21–0.40), M: (0.41–0.60), H: (0.61–0.80),
VH: (0.81–1.0).

The assigned ranges of scores as presented in Table 4, following the description of the
experimental study in [56], will be used as the parameters for the Monte Carlo simulations
(see Section 4.3).

4.3. Analysis and Results

This section provides the results obtained performing Monte Carlo simulations and
a sensitivity analysis, using as variables the values in the ranges shown in Table 4. Five
thousand Monte Carlo simulations were performed for each scenario using random num-
ber generators uniformly distributed. For the output (i.e., cyber-physical risk), the basic
statistical measures of mean, maximum, minimum and coefficient of variation were consid-
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ered [78]. Simulation results that represent the cyber-physical risk for each scenario using
the inputs from Table 4 are presented in Figure 4. It can be seen in Figure 4 that a signifi-
cant reduction occurs in the cyber-physical risk when ICBs operate together (Scenario 4).
Comparing Scenario 1 (i.e., No barriers) and Scenario 4 (i.e., ICBs), it was possible to obtain
a decrease in risk of 62.16% in maximum values and of 71.8% in mean values.
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The coefficient of variation, as the relative dispersion of data points around the mean
values, ranges from 15% to 18.7% for Scenarios 1, 2 and 3 indicating a smaller dispersion
and greater reliability of the mean as statistical measure, as compared to 30.6% for Scenario
4. The Monte Carlo outputs in Figure 5 demonstrate the frequency of occurrence in the
determined risk boundaries (see Table 2) for each scenario. Results from Figure 5 illustrate
that the cyber-physical attack against the IoT based WSN can result in conditions of High
Risk (i.e., risk greater than 343) occurring 76.6% in Scenario 1 (no barriers) whilst including
any control barrier in the cyber and/or physical space completely eliminates completely
the High risk (3.2% in Scenario 2 and 0% in Scenarios 3 and 4).
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The inclusion of the importance indexes contributes towards the accurate calculation
of cyber-physical risk, in terms of the importance of certain characteristics. Other studies
or standards do not take the importance index into consideration. The influence of the
importance index is investigated from the Monte Carlo simulations using the input scores
from Table 4, when Wi = 1 for every characteristic. The results are illustrated in Figure 6.
Results from Figure 6 demonstrate that ignoring the importance indexes, can result in a
significant underestimation of cyber-physical risk. When results in Figure 4 are compared
to Figure 6, the greatest deviation is depicted in Scenario 1, with an underestimation of
cyber-physical risk of 15.1% in mean values (i.e., 387.2 in Figure 4 and 328.8 in Figure 6),
and in Scenario 4 with an overestimation of cyber-physical risk of 73.3% in mean values
(i.e., 109.1 in Figure 4 and 189.1 in Figure 6).
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Finally, a sensitivity analysis for the proposed threat source characteristic of Terrorism
experience, in the Monte Carlo simulations was undertaken to demonstrate the relevance
of the decision score of this characteristic. By keeping constant all the inputs (i.e., Xi, Wi)
from Scenario 1, as in Table 4, three categories of threat source related to intensity score of
Terrorism experience are considered. The specific categories capture real examples from a
threat source and its potential association with terrorist organizations that target critical
infrastructure as described by Gunes et al. [38]. Specifically, the threat source could either
have no terrorism experience, (XTe is assigned a Low level) or being manipulated online
using social media or online communities (XTe is assigned a Medium level), or is a terrorist
organization (XTe is assigned a Very high level). Results for the cyber-physical attack, as
shown in Figure 7, indicate an increase of 58.05% in mean values of cyber-physical risk,
when they are undertaken by a terrorist organization in comparison to threat sources with
no previous terrorism experience.
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5. Discussion

The results of the cyber-physical risk assessment of the illustrative attack on the IoT
based WSN, indicate that IoT enabled transportation infrastructure is susceptible to cyber-
physical attacks that can be conducted on the sensing area. The proposed cyber-physical risk
assessment approach was developed to assist stakeholders who act as assessors towards the
assessment of their own system against cyber-physical attacks, but also improve existing
risk assessment approaches by incorporating fundamental characteristics of vulnerability
and threat source from cyber and physical space. The identification and proposal of cyber-
physical characteristics associated with the security and civil engineering domain (i.e.,
Terrorism experience) and the inclusion of types of physical impacts, target to bridge the
gap between cyber and physical space. To the best of the author’s knowledge, while
most studies focus on different aspects of IoT applications in transportation domain (e.g.,
reliability of data), this is the first study that considers a cyber-physical attack against an
IoT based WSN as a part of an IoT enabled transportation infrastructure. The proposed
approach contributes to existing studies (see Section 2) that mainly focus on remote attacks
against infrastructure, through the internet [20] or on other interacting smart elements (e.g.,
smart vehicles) [19]. The results of the risk analysis undertaken in this paper demonstrate
that if the threat source enables a sufficient attack path (Attack vector) and perform a few
steps (Attack complexity) then cyber-physical risk will be significant (i.e., 76.6% of attack
scenarios, see Figure 5) and thus cyber-physical attacks against IoT based WSN should not
be neglected. Control barriers as described in Section 4.1 should be considered to reduce
cyber-physical risk (refer to Figure 4). The inclusion of integrated control barriers can
eliminate High risk levels (refer to Figure 5) completely.

Additionally, the cyber-physical risk assessment approach is based on both identified
and proposed cyber-physical characteristics and their importance (see Equation (1)). The
risk simulations suggest that risk can be underestimated and overestimated when generic
or simplistic threat profiles are used. For example, in comparison to other studies, such
as [26], that adopt a more generic threat profile, or standards [31] that do not consider
the importance indexes, outcomes of the approach indicate an underestimation of risk
(comparison of Figure 4 with Figure 6). This can be very challenging as importance of
specific characteristics can affect the risk calculations. It is acknowledged that the structure
of the cyber-physical risk assessment approach (refer to Figure 1) necessitates the role of
stakeholders, who act as assessors. Experts’ opinion is needed as there is still significant
underreporting of incidence and a lack of scientifically verified data on cyber-physical
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attacks. For example, as shown in Figure 7, the assignment of score in threat source
characteristics (i.e., Terrorism experience) could affect the cyber-physical risk.

It is acknowledged that such challenges around the selection of certain ranges or
scores could affect the risk approach, which is based on expert judgment and the rational
considerations about the cyber-physical attack scenario. Therefore, an inventory of the
assessment of vulnerability, threat source and physical impact in different scenarios would
be beneficial to guide the expert judgement in performing the risk assessment. The latter
(i.e., inventory) along with the development of datasets that include training data related
to cyber-attacks against transportation infrastructure, would resolve one of the main
challenges of machine learning methods (i.e., lack of training data) in the detection of
cyber-attacks.

Additionally, the role of stakeholders in the assessment process should be clearly dis-
tinguished. For example, security engineers should be actively involved in the assessment
of vulnerability, while they should collaboratively be involved in the assessment of threat
source along with civil engineers. Operators that have bespoke knowledge of their system
should be actively involved in the assessment of physical impact.

6. Conclusions

Critical transportation infrastructure implemented with IoT technology can be tar-
geted by multiple threats due its cyber-physical nature. The knowledge gap between
security and civil engineering domain, a lack of statistical data related to cyber-attacks and
emerging threats from cyber and physical space make the assessment of risk more difficult.
Additionally, the exposure of IoT devices in physical areas brings new opportunities for at-
tackers, which have been previously overlooked. To address this gap, in this paper a novel
cyber-physical risk assessment approach is proposed. This is based on cyber-physical char-
acteristics of threat sources, vulnerabilities, and types of physical impacts. The approach
utilizes a decision scale and importance indexes, to assist stakeholders in the assessment of
the level of vulnerability, threat source and physical impact. To overcome the lack of data
and the premature level of IoT adoption in transportation infrastructure, an illustrative but
realistic case study of an IoT enabled bridge subjected to a cyber-physical attack in the phys-
ical space was presented. Results from Monte Carlo simulations, indicate that IoT enabled
transportation infrastructure is susceptible to cyber-physical attacks when the threat source
can physically access IoT devices that have limited physical and cyber control barriers,
resulting in high risk levels in a significant number of cases. Control barriers that operate
in both cyber and physical space, individually or combined, resulted in the reduction in
cyber-physical risk. Comparison with other studies that do not thoroughly consider the
importance of characteristics, led to an underestimation of cyber-physical risk. Overall, this
risk assessment approach can constitute a valuable resource towards the future assessment
of IoT enabled transportation infrastructure under its cyber-physical perspective.
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