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ABSTRACT Due to recent increase in deployment of Cyber-Physical Industrial Control Systems in different

critical infrastructures, addressing cyber-security challenges of these systems is vital for assuring their

reliability and secure operation in presence of malicious cyber attacks. Towards this end, developing a testbed

to generate real-time data-sets for critical infrastructure that would be utilized for validation of real-time

attack detection algorithms are indeed highly needed. This paper investigates and proposes the design and

implementation of a cyber-physical industrial control system testbedwhere the Tennessee Eastman process is

simulated in real-time on a PC and the closed-loop controllers are implemented on the Siemens PLCs. False

data injection cyber attacks are injected to the developed testbed through the man-in-the-middle structure

where the malicious hackers can in real-time modify the sensor measurements that are sent to the PLCs.

Furthermore, various cyber attack detection algorithms are developed and implemented in real-time on the

testbed and their performance and capabilities are compared and evaluated.

INDEX TERMS Industrial control systems, cyber attack, attack detection algorithm, man-in-the-middle

attack, hybrid testbed.

I. INTRODUCTION

Recent technological advances in control, computing, and

communications have generated intense interest in develop-

ment of new generation of highly interconnected and sen-

sor rich systems that is known as critical Cyber-Physical

Systems (CPS) infrastructure with application to variety

of engineering domains such as process and automation

systems, smart grid and smart cities, and healthcare sys-

tems. These complex systems are becoming more distributed

and computer networked that have necessitated the devel-

opment of novel monitoring, diagnostics, and distributed

control technologies. Supervisory Control And Data Acqui-

sition (SCADA) systems, Wireless Sensor Networks (WSN),

The associate editor coordinating the review of this manuscript and

approving it for publication was Wentao Fan .

and PLCs, are now established paradigms that are utilized in

many critical CPS infrastructure.

On the other hand, the envisaged complex CPS infrastruc-

ture do more than ever require development of novel and

proactive security technologies, as these systems are con-

tinuously being targeted by cyber attacks and intrusions by

intelligent malicious adversaries. The adversaries are capable

of attacking core control systems that are employed in all key

cyber-physical systems infrastructure. These scenarios do not

exist and are not possible or similar to security challenges that

are present in traditional IT systems. Therefore, there exists

an urgent need to study the vulnerabilities, analyze the risks,

and develop defensive and mitigation mechanisms for critical

CPS infrastructure.

Due to sensitivity and high importance of the safety critical

systems in real life, any research activity that is directly

applied to the physical infrastructure can lead to disruption,
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unexpected damages or losses, and hence development of

testbeds that mimic behavior of CPS in a small-scale fashion

is highly essential for development of various cyber-security

technologies. In this paper, a hybrid cyber-physical testbed

for industrial control systems is developed and various

types of real cyber attack scenarios are injected and imple-

mented. Moreover, online real-time cyber attack detection

algorithms are proposed to provide a comprehensive solu-

tion to the cyber-security of cyber-physical industrial control

systems (ICS).

ICS testbeds generally consist of two main components,

namely the physical process and the field devices such as

PLC, HMI, RTU, etc. Depending on implementation meth-

ods, ICS testbeds are classified into three main categories as

follows [1]: I) simulation testbed in which both components

of the ICS are solely based on computer simulation [2],

II) physical testbed where real physical parts are used in

both components [3], and III) hybrid testbed in which a

combination of simulation and physical testbed is considered

where some components of the testbed such as the physical

process is simulated and the rest are based on actual physical

parts [4], [5].

In this paper, the hybrid testbed architecture is selected

for development of the ICS testbed, where the Tennessee

Eastman (TE) plant is simulated inside a PC and the remain-

ing parts are implemented using actual industrial hardware.

The TE plant is selected as the industrial process for our

developed cyber-security testbed due to the following rea-

sons. First, the TE model is a well-known chemical process

that is used in control systems research and its dynamics

are well-understood. Second, it should be properly controlled

otherwise small disturbances will drive the system towards

an unsafe and unstable operation. The inherent unstable

open-loop property of the TE process presents a real-world

scenario in which a cyber attack could correspond to a real

risk to human safety, environmental safety, and economic

viability. Third, the TE process is complex, coupled and

highly nonlinear, and has many degrees of freedom by which

to control and perturb the dynamics of the process. Finally,

various simulations of the TE process have been developed

with readily available reusable code design by Ricker [6].

Finally, from the anomaly detection perspectives, the cyber

attack detection algorithms can be divided into fivemain cate-

gories, namely: linear, proximity-based, probabilistic, outlier

ensembles, and neural networks approaches [7]. Therefore,

in order to have a comprehensive comparison for cyber attack

detection approaches that fit the TE process, the following

algorithms have been chosen from various categories such

as: Principal Component Analysis (PCA), One-Class Sup-

port Vector Machines (OCSVM), Local Outlier Factor (LOF)

k-Nearest-Neighbors (kNN), and Isolation Forest (IF). Com-

parative studies are conducted based on the cyber attack

detection time and the confusion matrix performance metrics

where subsequently, the OCSVM and kNN are demonstrated

to yield promising performance for accomplishing the cyber

attack detection objective.

A. BACKGROUND

Cyber attacks on TE processes are also investigated in

the literature. In [8], an integrity attack is injected on the

manipulated variable signals and the corresponding sen-

sor measurements are observed by correlation-based clus-

tering algorithm. Different studies have been conducted

on finding the optimal time to launch the Denial of

Service (DoS) attack on either the sensor or actuator sig-

nals in the TE process [9]–[11]. Several cyber attack detec-

tion methods such as model-based approaches [12], [13],

clustering-based approaches [14], Gaussian mixture mod-

els [15], and RNN-based approaches [16] are developed for

detection of different cyber attacks on the TE process. How-

ever, all of the above work are based on the simulated TE

process and cyber attacks are mainly emulated inside the

simulation file.

Furthermore, several recent ICS testbeds for investigating

cyber security are developed in the literature and Table 1

presents comparisons among these testbeds for diverse range

of applications that are based on TYPE (simulation (S),

physical (P), real ICS (R), and hybrid (H)), Process, Data

Type (network data (NET) and process data (PR)),Detection

Method, Attacks, Attack Type (emulation (E) and physi-

cal (P)). As shown in this table, in [17]–[25] cyber-physical

testbeds are developed for the physical water system and

different case studies in terms of data type, communica-

tion and attack injection/detection are presented. In [17],

a model-based detection approach is developed to detect three

different attacks by using network data. Also, a physics-

based detection approach is presented in [18] in order to

detect stealthy vulnerability by using the process data. In

[19], an Intrusion Detection System (IDS) approach is devel-

oped to detect four various attacks by using network data.

In [20], different data-driven intrusion detection algorithms

are developed using the network data from the Modbus com-

munication protocol. In [21]–[25], water system testbeds are

developed based on the Ethernet/IP as the communication

protocol.

A power system testbed is designed and implemented in

[26]–[28]. A simulation testbed is used in [26] and in [27] a

physical testbed is developed and different attack detection

algorithms are developed by using both the network and

the process data. In [29], [30], a simplified version of the

Tennessee Eastman process is utilized as the physical plant

in the testbed and model-based attack detection algorithms

are proposed for the simulation-based testbeds without con-

sidering any physical hardware in the simulator.

B. CONTRIBUTIONS

In this paper, a full version of the nonlinear chemical process

of the Tennessee Eastman process is used as the physical

process in the developed hybrid testbed. Moreover, based on

the structure and features of PROFINET as the industrial field

bus that is used in the Siemens distributed I/O, the actual

real-time false data injection cyber attack is implemented
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TABLE 1. Overview of the existing testbeds for cyber-security study.

through the man-in-the-middle (MITM) architecture on the

developed testbed. This is achieved by utilizing Address

Resolution Protocol such that the cyber hacker acts as the

MITM in the closed-loop system and modifies the sensor

measurements sent to the PLC or the actuator commands that

are sent to the distributed I/O. Furthermore, various real-time

online cyber attack detection algorithms are developed and

implemented on the testbed and their performance capabili-

ties are compared and evaluated. Consequently, this is the first

work in the literature that completely simulates a full-version

of the Tennessee Eastman Process using a hybrid testbed.

In other words, this work provides a comprehensive solution

for the cyber-security of ICS enabled with the following main

contributions:

1) A hybrid testbed is developed by using the simulated

full-version of the Tennessee Eastman Process as a non-

linear unstable process and the Siemens field devices

such as PLC and distributed I/O, whereas the previous

work in [29], [30] only considered the simplified ver-

sion of TE without having any actual hardware in the

testbed.

2) Real-time false data injection cyber attacks are imple-

mented by compromising the PROFINET field-bus

protocol for the first time in the literature, where as

shown in Table 1, all of the previous works are based

on either the Modbus or the Ethernet communication

protocols.

3) Several online cyber attack detection methodologies

such as PCA, OCSVM, LOF, KNN, and IF are devel-

oped and implemented for real-time detection of cyber

attacks in the supervisory level of the testbed. In con-

trast, in most of the previous work in the literature

the detection algorithms are implemented off-line after

collecting the data from the testbed.

The remainder of this paper is organized as follows.

In Section II, the developed hybrid ICS testbed is presented.

Section III provides details on PROFINET field bus protocol

that is used in the testbed and in Section IV, the implemen-

tation of false data injection cyber attack is described and

introduced. Section V presents the proposed cyber attack

detection methodologies and in Section VI their per-

formances are quantitatively demonstrated, validated, and

verified subject to various cyber attack scenarios. Finally,

in Section VII, conclusions and future work are provided.

II. HYBRID ICS TESTBED

The cyber-physical ICS includes three main components

namely, a physical plant to be controlled, an embedded

system for implementing the controller, and a communica-

tion network for exchanging the information between the
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controller and the plant. In the developed testbed, these

components are all considered where the plant is simulated

inside a PC, the controller is implemented on an actual hard-

ware (PLCs) and finally the communication is established by

using the industrial protocol namely, PROFINET.

As shown in Fig. 1, the developed testbed is partitioned

into four layers: (1) the Tennessee Eastman plant that is

simulated by a PC, (2) the field devices that are emulated by

using DAQ and the Siemens distributed I/O, (3) the control

layer implementation using the Siemens PLCs, and (4) the

supervisory layer using additional Siemens PLC and web-

server. Moreover, the mathematical model of the TE process

is implemented and simulated in Matlab/Simulink environ-

ment and the controllers are implemented by using the PLCs.

The interface between the plant simulation and the PLCs is

accomplished by using the DAQ boards and the distributed

I/O modules. The DAQ boards generate voltages that are

proportional to various plant variables and also acquire the

input voltages as the actuator command signals from the

controller. Hence, by using the DAQs, different sensors and

actuators inside the plant are emulated in the testbed. The

distributed I/O modules provide the interface between the

plant sensors/actuators and the PLCs. Consequently, the DAQ

boards and the distributed I/O modules emulate the layer 1

within the industrial automation hierarchy, namely the field

layer.

FIGURE 1. The developed hybrid ICS testbed.

A. TENNESSEE EASTMAN (TE) PROCESS SIMULATION

The TE process is first described by Down and Vogel in 1993

[6], [31] and is modeled through fifty (50) nonlinear and

coupled differential equations [32]. It consists of five major

operational units, namely: (1) chemical reactor, (2) product

condenser, (3) recycle compressor, (4) vapor-liquid separator,

and (5) product stripper. Two liquid products (G, H ) are

produced by using A, C , D, and E gaseous reactants with

B and F as inert and byproduct, respectively. The chemical

reactions are irreversible and can be presented as follows:

A(g) + C(g) + D(g) → G(l), Product 1,

A(g) + C(g) + E(g) → H (l), Product 2,

A(g) + E(g) → F(l), Byproduct,

3D(g) → 2F(l), Byproduct.

The TE process is a nonlinear open-loop unstable process

which reaches its shutdown constraints in less than 2 hours.

Accordingly, a controller is required to maintain the system

in the steady state and the process variables at desired values,

and to enforce hard constraints on the process variables such

as the reactor pressure, the reactor level, the reactor tempera-

ture, among others [31], [33].

The TE process has 12 manipulated variables (XMVs),

41 measured variables (XMEAS), and 20 different process

disturbances (IDVs) which can be chosen by the user [6].

The output measurements (XMEAS) of the plant are divided

into 22 continuous-time and 19 discrete-time measure-

ments. In the developed testbed in this work, only 9 inputs

and 16 continuous-time outputs are used as specified in

Tables 2 and 3, respectively. It should be noted that the time

unit of the original TE process model was in hours which is

not suitable for a real-time simulation. Thus, in order to make

the process real-time, the model is modified accordingly by

changing the state dynamics of the system and correspond-

ingly the controller gains.

TABLE 2. Manipulated variables used in the testbed.

TABLE 3. Process measurements used in the testbed.

B. FIELD DEVICE AND CONTROL LAYERS

In the developed ICS testbed, the Siemens S7-1200 PLCCPU

and the SIMATIC EP 200SP distributed I/O modules are
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used. For establishing the interface between the simulated

process on the PC, and PLCs and distributed modules,

MF644 and MF634 DAQ boards are used mainly due to a

high number of analog inputs/outputs and their compatibility

withMATLAB/Simulink. Each I/Omodule contains 4 analog

inputs and 2 analog outputs and in order to connect all PLCs

with all I/Os, the Siemens CSM 1277 switch modules are

used.

As shown in Fig. 1, DAQ boards convert sensor measure-

ments from the TE process (implemented by a PC) to analog

signals and feed them to the distributed I/O modules. At the

same time, DAQ boards receive the actuator signals from

the distributed I/Os and feed them back to the TE process

that is simulated by Simulink. All communications between

the distributed I/O modules and PLCs are based on the

PROFINET protocol which is an Open Real-time Industrial

Ethernet Standard Protocol which can be used for virtually

any function that is required in automation, namely: discrete,

process, motion, peer-to-peer integration, vertical integration,

and safety, among others.

As shown in Table 4, the closed-loop controller scheme

for the testbed contains 9 main Proportional-Integral (PI)

controllers on five PLCs that are regulating the flow rate

of each valve and the 8 internal PI loops for generating the

internal set-points and variables that are needed in the main

PI controllers. Accordingly, all the PI controllers’ gains have

been selected from the original paper in [31]. Subsequently,

in order to convert the process to a real-time process in terms

of process run time, all the Ti’s gains are multiplied by 3600.

The corresponding measurements and control inputs for each

I/Omodule and the corresponding PLC are specified in Fig. 2.

Moreover, as illustrated in this figure, XMEAS 17 and the

production rate (FP as the internal variable in the PLC1) are

also required by the other PLCs, which are implemented by

using the Siemens S7 communication protocol.

TABLE 4. Distribution of the TE control blocks in PLCs.

C. SUPERVISORY LAYER

As depicted in Fig 1, the supervisory layer that consists of

the PLC 6 is the last layer of the TE testbed. Each Siemens

S7-1200 contains internal memory that can be accessed

FIGURE 2. The TE process block diagram.

through aweb-server. In other words, the web-server provides

a local cloud that allows the user access and control over the

PLC internal memory, stop/run PLC and many other features

remotely (through the PLC static IP address). In the devel-

oped testbed as shown in Fig 2, by using the Siemens internal

communication protocol known as the S7 communication, all

measurements and actuator data of each PLC are transferred

to and are stored in the PLC 6 internal memory. Subsequently,

these data can be downloaded from the web-server for train-

ing or for online cyber attack detection purposes as will be

presented and described in Section V.

D. VULNERABILITIES AND CYBER ATTACK GATEWAYS

AND POINTS

Figure 2 illustrates the cyber attack gateways and points on

the testbed where the malicious hackers can gain access to

the communication link between the PLC and I/O modules.

By accessing each communication link, the malicious hack-

ers can inject different cyber attacks on the sensor mea-

surements as well as actuator commands corresponding to

that communication link. For example, as shown in Fig. 2

and Table 4, if the hacker accesses the communication link

between the PLC1 and the I/O module 1 (labeled as commu-

nication link #1), then the sensor measurements XMEASs 2,

3, 17 and 40 and the actuator commands XMVs 1 and 2 can

be compromised.

III. COMMUNICATION PROTOCOLS

A. PROFINET

Siemens S7-1200 utilizes the PROFINET protocol suite as

an industrial Ethernet standard and S7-communication pro-

tocol in order to communicate with other network nodes.

PROFINET protocol is the standard protocol which is being

facilitated heavily by Siemens as one of the main indus-

trial Ethernet communication protocols. It has inherited

its architecture from the native OSI model of TCP/IP for

cyclic and acyclic data and UDP/IP for context manage-

ment. A PROFINET architecture/system requires at least

three nodes to operate, namely: the IO Controller (PLC),

the IO Module (Sensor and Actuator), and the IO Supervisor
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(Engineering Station or HMI Device). Moreover, PROFINET

inherits variety of Information Technology protocols within

its substructure to establish and maintain connectivity, which

is susceptible to similar structure cyber attack surfaces that

are present in the standard Ethernet environments.

One of the main characteristics of the PROFINET protocol

suite that distinguishes itself from the other ICS protocols

is that it prioritizes the type of communication based on

real-time requirements. Consequently, as shown in Fig. 3, two

channels are being introduced as Real-Time (RT) and Non-

Real-Time (NRT) and both channels coexist in the Appli-

cation Relation (AR) between the IO Device and the IO

Controller. An Application Relation is a state which both

the IO Device and the IO Controller need to converge to,

in order to initialize the transmission of the Cyclic Data.

However, a handshake is a perquisite to this state which is

being conducted by the profinet Context-Manger (PN-CM).

FIGURE 3. PROFINET IO RT and the NRT Stack18.

In terms of the C.I.A security aspects (confidentiality,

integrity and availability) of the PROFINET protocol, it is

shown in this work that to compromise confidentiality of the

cyclic data, through an Address Resolution Protocol (ARP)-

compromising attack a hacker can read the data in the plain

text; to compromise integrity, the hacker can inject false data

through the network switch; and to compromise availability,

a port stealing attack would make the service temporarily

unavailable.

B. PROFINET IO REAL-TIME PROTOCOL STRUCTURE

In order to guarantee real-time synchronicity in data trans-

mission, certain layers of the OSI model have been omitted in

PROFINET IO (PNIO) as illustrated in Fig. 3, which results

in lower overhead communication flows. Hence, as shown

in Fig. 4, in the real-time structure the dissection of a frame

only consists of the Ethernet Header and the PROFINET

Application Layer and which is specified as follows:

a) Frame-ID: Indicates the type of the frame which is set

as 8, 000 for cyclic real-time data.

b) IO Data: Sensor measurements and actuator signals are

referred to as IO Data.

c) IO Data’s Status: Represents the status of a given vari-

able in the frame.

18Courtesy of profinetuniversity.com

FIGURE 4. PROFITNET IO real-time packet structure.

d) Cycle Counter: An incremental value, which is being

incremented from the source, with an error checking

purpose.

e) Data Status: Indicates the validity of the entire packet.

In the IO module, the data cycle update time, which is

denoted by dt , can be set based on the system require-

ments from 2 to 512 msec, which represents the rate of

data exchange between the IO module and the PLC. In the

developed testbed, given the slow behavior of the TE pro-

cess, this value is set to dt = 512 msec, which implies

that 4 data samples are communicated in each full cycle

(2 seconds). Fig. 5 shows the cycle counter corresponding to

dt = 512 msec.

FIGURE 5. Cycle counters corresponding to dt = 512 msec.

IV. CYBER ATTACK INJECTION

In this section, our methodology for injecting cyber attacks

on the developed testbed is presented. Generally, differ-

ent protocols enable various attack surfaces such as the

Data Integrity (DI) attack (e.g. manipulating sensor mea-

surements), and Denial-of-Service (DoS) which causes dis-

ruption of communication flow among entities. In an ICS

architecture, cyber attacks can be categorized into two gen-

eral types, namely as configuration and operational attacks.

In the configuration attack, the malicious hacker targets the

configuration protocols of the ICS, and consequently gets

access to full control of the system. On the other hand, in the

operational attacks, the malicious hacker mainly targets the

operational communication protocol such as the PROFINET

IO Real-time data, in which critical field data are transferred.

For this cyber attack to take place, it is assumed that:

(i) The hacker has a field level access to the IO Module

and PLCs.
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(ii) Hacker has knowledge of the physical system, implying

that, he/she is aware of what is being transmitted from

the sensors and what are being transferred to actuators.

In [34], the authors exploit a vulnerability of the

PROFINET Discovery and Basic Configuration Proto-

col (DCP) to inject DoS attacks through port stealing, against

the application relation between the IO Controller and the IO

Device. This type of cyber attack is not designed to be stealthy

and has a higher probability of detection. An early attempt for

false data injection through port stealing is presented in [35]

although the developed attacks are not implemented on a real

testbed.

In this paper, based on the structure and features of the

PROFINET, a false data attack is injected into the PROFINET

IO. Real-time data through the man-in-the-middle (MITM)

structure is also validated on the developed testbed. This is

mainly achieved by utilizing the ARP in which the port of

the victim on the shared medium (such as a switch) is stolen

and the hacker acts as a Man-in-the-Middle (MITM) in the

closed-loop system that can modify the sensor measurements

that are sent to the PLC.

The PROFINET IO devices do not have any endpoint secu-

rity functionality [36] which allows cyber attacks feasible

once a malicious hacker has a physical access to a device

or its network connections. One of the most effective and

damaging cyber attacks on the PROFINET IO devices is the

MITM cyber attack.

The MITM cyber attack will be implemented in our devel-

oped testbed, by utilizing the Port Stealing methodology.

In the Port Stealing attack, the switch MAC table is compro-

mised such that the hacker’s MAC address is registered in

place of the victim. Therefore, the intended port from the I/O

module is stolen by the hacker, and consequently he/she can

transmit false data to the PLCs.

Port Stealing is an active cyber attack which allows a

hacker to sniff packets in a switched network as well as mod-

ify packets by injecting new packets. This cyber attack targets

the Application Relationship between the IO Controllers and

the IO devices. Successful Port Stealing requires the hacker

to synchronize with the real-time data communication and

establish a race condition. The complete Port Stealing strat-

egy is developed as follows:

• ARP Flooding: First, an ARP packet is constructed by

setting the packet destination and source MAC address

to the hacker MAC and the victim MAC, respectively.

Subsequently, by injecting high flow rates of ARP pack-

ets into the switch, the intended port victim is stolen.

As shown in Figs. 6 and victim 7, the MAC table of the

switch is modified after the ARP flooding and the MAC

address of the hacker is set as the MAC address of the

IO module in the MAC address table.

• Receiving Data: In this step, the hacker receives data

from the victim andmodifies the sensor readings accord-

ing to his/her knowledge of the process. The data

received by the hacker is the raw IO data from the

PROFITNET IO real-time packet as depicted in Fig. 4.

FIGURE 6. Data exchange configuration before the ARP flooding.

FIGURE 7. Data exchange configuration after the ARP flooding.

Next, the hacker needs to map the raw IO data into

an actual sensor reading in order to be able to modify

it precisely so that it will result in a desired effect

to the system. Here the assumption is that the hacker

has knowledge of the physical process and the control

system, and therefore can map the raw IO data to the

actual sensor readings. Therefore, the hacker will be able

to choose values that are not easily detectable by the

operator, thus a stealth cyber attack will be realized and

accomplished.

• Forwarding the Manipulated Data: In this step, the

main MITM cyber attack is implemented whereby

the hacker re-crafts the received frames and forwards

the modified frames back to the victim. However, the

received frames cannot only be forwarded back to

the network due to existence of the cycle counter in

the frame. There exists a threshold for the number of

missing packets per cycle and its value can be set inside

the TIA portal tool. Therefore, in order to overcome

this issue, the re-crafted packets are sent in a full cycle.

Moreover, as the hacker and the IO modules are simul-

taneously sending the data to the PLC, a race condition

is established between them in which the behavior of

the system depends on the sequence or timing of events.

With respect to Fig. 5, the race condition occurs if

the hacker can send false data between the state tran-

sitions, therefore the false data crafted by the hacker

would arrive at the victim before the actual data. The

significance of the hacker to win the race condition is

that the hacker is capable of injecting false measurement

data to the system. However, this injection has to be
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sustained, at ideally every, or practically at most state

transitions, for the hacker to be successful in winning

the race condition. After winning the race condition,

the hacker can receive the RTC1 frames which contain

IO Data variables (process data). In order to increase

the success probability of the cyber attack, the PLC

should continually receive the mal-crafted data rather

than the original data, therefore the hacker should send

each mal-crafted data for more than one cycle.

Fig. 8 depicts the entire process of implementing the false

data injection cyber attack on the PROFINET. It should be

noted that due to precise timing and synchronicity which are

required in order to inject data into the PLC, we have used

the C language and libpcap put reference library in order to

make this methodology possible. The libpcap library works

by capturing all the frames that are coming out of the physical

medium into the data link layer. The alternative to using

libpcap library is to use a packet capture software such as

the Wireshark, however for our purposes this is not suitable

since Wireshark captures and saves packets offline.

FIGURE 8. False Data Injection (FDI) through the port stealing.

One important point regarding the implemented cyber

attack is that if the hacker continues the port stealing for a

long duration, this will disrupt the communication between

the PLC and the IO. In this case, the attack becomes a Denial-

of-Service (DoS) attack which can be easier to detect by

operators. By stopping the port stealing step after a given time

duration, such as 1 sec, the attacker is able to start the frame

manipulation without disrupting the communication.

V. CYBER ATTACK DETECTION (CAD) SCHEME

In order to detect cyber attacks in our developed testbed, sev-

eral machine learning-based detection strategies are proposed

and implemented. As shown in Fig. 9, the cyber detection

scheme is divided into three main steps, namely, (a) pre-

processing, (b) main scheme, and (c) post-processing.

A. PRE-PROCESSING

In order to have a dataset with zero mean and unit variance

(standardization), data normalization is performed. The key

feature of data normalization is that it will boost the learning

speed and optimizes the algorithm accordingly. Moreover,

there are several available techniques for data normalization,

based on the nature/requirement of the algorithms itself.

B. MAIN SCHEMES

Broadly speaking, anomaly detection schemes can be divided

into five main categories, namely (1) linear, (2) proximity-

based, (3) probabilistic, (4) outlier ensembles, and (5) neural

networks [7]. Consequently, in order to provide a comprehen-

sive comparative study and evaluation the following schemes

are chosen belonging to different categories:
• Linear: Principal Component Analysis (PCA) and

One-Class Support Vector Machines (OCSVM).

• Proximity-Based: Local Outlier Factor (LOF) and

k-Nearest-Neighbors (kNN).

• Outlier Ensembles: Isolation Forest (IF).

1) PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal Component Analysis (PCA) [37] is a method

widely used to determine dominant subspaces in datasets

based on eigenvectors of the covariance matrix that is des-

ignated as the principle components. An anomaly detection

technique can be developed based on variations from the

nominal dominant subspaces in the dataset. Generally, the use

of major components indicates global deviations from the

majority of results, whereas the use of minor components

may suggest smaller local deviations. Indeed, as illustrated

in Algorithm 1, by performing the Singular Value Decom-

position (SVD) over the normalized data, the eigenvalues

and eigenvectors can be determined.Moreover, by computing

the PCA-reconstructed representation from X̂ = XTT T,

the approximated value (X̂ ) can be obtained. Therefore,

by computing the maximum Euclidean distance between

the normalized training data and the approximated one in

the training set, threshold values can be determined. Conse-

quently, for the testing data point (D), if the distance between

the existing instance and the corresponding approximated

value of that instance is above a given threshold value, then

the instance can be considered and classified as a cyber attack.

2) ONE-CLASS SUPPORT VECTOR MACHINES (OCSVM)

In the one-class support vector machine as a semi-supervised

anomaly detection approach, the aim is to determine a hyper-

sphere in the feature space with the minimum radius that

contains all or most of the data points corresponding to the

healthy operation of the system [38]. The hypersphere has

two main parameters, namely the radius RT and its center

a which are obtained by solving an optimization problem

as explained in Algorithm 2. Once, these parameters are

obtained through the training stage, for each test data pointD,

one can obtain the distance between the data point and the

hypersphere center a and if this distance is greater than RT ,
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FIGURE 9. The proposed data-driven cyber attack detection methodology where r (t) denotes the decision flag
corresponding to the real-time data point x(t).

Algorithm 1 Principle Component Analysis (PCA)

Training:

Input: X - Training data, p - number of components to keep

for PCA transformation.

Output: Threshold Tr
1: Calculate SVD of the training data (X )

2: Construct the transformation matrix T by selecting the p

dominant eigenvectors

3: Calculate the PCA-reconstructed representation, X̂ =

XTT T

4: Find the Euclidean distance between X̂ and X , E =

distance(X̂ ,X )

5: Set the threshold as Tr = max(E)

Testing:

Input: D - test data, Tr .

Output: Test data flag r

1: Calculate the PCA-reconstructed representation of the

testing data, D̂ = DTT T

2: Calculate the Euclidean distance between D̂ and D, e =

distance(D̂,D)

3: if e < Tr then

4: D is normal, r = 1.

5: else

6: D is abnormal, r = 0.

7: end

then the point is classified as an anomaly, otherwise it is

assigned as a healthy data. The only two hyper-parameters for

the OCSVMareC and σ , whereC is controlling the influence

of slack variables in the optimization process, and can be

obtained from C = 1
νN

, where ν represents the trade-off

between the overfitting and the generalization accuracy, and

σ is the kernel coefficient.

3) k-NEAREST-NEIGHBORS (kNN)

The k-nearest-neighbor global unsupervised anomaly detec-

tion scheme is a simple way to determine irregularities for

not to be mistaken with the kNN classification scheme [39].

Algorithm 2 One-Class Support Vector Machine (OCSVM)

Algorithm

Training:

Input: xi - training data (i ∈ {1, 2, 3, . . . ,N }), C .

Output: The hypersphere centre a and its radius RT .

Optimize αi, i = 1, . . . ,N in

minL(α) =

N
∑

i,j=1

αiαjK (xi, xj) −

N
∑

i,j=1

αiK (xi, xi)

subject to 0 < αi < C and
∑N

i=1 αi = 1 where K (xi, xj) =

exp(
−||(xi−xj)||

2

σ 2 ).

Compute the centre (a) and the radius (RT ) of the hyper-

sphere from: a =
∑N

i=1 αixi and

R2T = max
k

K (xk , xk ) − 2

N
∑

i=1

αiK (xk , xi)

+

N
∑

i,j=1

αiαjK (xi, xj)

Testing:

Input: D - test data, the hypersphere centre a and its radius

RT .

Output: Test data flag r

Compute

R(D) = K (D,D) − 2
N
∑

i=1

αiK (D, xi) +
N
∑

i,j=1

αiαjK (xi, xj)

if R(D) > RT then

D is abnormal, r = 1.

else

D is normal, r = 0.

end

As the name suggests, it specializes on global anomalies and

is unable to identify local anomalies. In this approach, the

hyper-parameter k denote the number of nearest neighbors.
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During the training phase, the decision score ascore corre-

sponding to all the training points are computed as the Largest

distance to their k nearest neighbors [40] using the Ball-tree

algorithm. The maximum value of ascore corresponding to the

training data is set as the threshold Tr . Then, as illustrated in

Algorithm 3, for each test data point D, the decision score

ascore(D) is compared with the computed threshold to detect

a cyber attack.

Algorithm 3 Nearest-Neighbor Algorithm

Training:

Input: xi - training data (i ∈ {1, 2, 3, . . . ,N }), k ,

Output: Threshold Tr
1: for i = 1, . . . ,N do

2: Compute the k nearest neighbors of xi using the

Ball-tree algorithm.

3: Compute the decision score (ascore(xi)) as the largest

distance between xi and its nearest neighbors.

4: end

5: Set threshold as Tr = maxi(ascore(xi))

Testing:

Input: D - test data, xi - training data, Tr ,

Output: Test data flag r

1: Compute the k nearest neighbors ofD using the Ball-tree

algorithm.

2: Compute the decision score (ascore(D)) as the largest

distance between D and its nearest neighbors.

3: if ascore(D) > Tr then

4: D is abnormal, r = 1.

5: else

6: D is normal, r = 0.

7: end

4) LOCAL OUTLIER FACTOR (LOF)

The local outlier factor (LOF) approach [41] is the most

well-known local anomaly detection algorithm. In this algo-

rithm, the concept of local anomalies is utilized where the

LOF score is determined by matching the Local Reachability

Density (LRD) of the record with respect to the LRDs of

its k-nearest neighbors as illustrated in Algorithm 4. In this

approach, first for the test data pointD and the training setX ,

the k-distance Dk (D) is defined as Dk (D) = d(D, x), x ∈ X ,

where (a) there exist at least k data points x ′ ∈ X such

that d(D, x) ≤ d(D, x ′), and (b) there exist at most k − 1

data points x ′ ∈ X such that d(D, x) < d(D, x ′), with

d(D, x) denoting the distance between the point D and x that

can be found by using different norms. Next, the k-distance

neighborhood Nk (D) is defined as follows

Nk (D) = {x ∈ X |d(D, x) ≤ Dk (D)}.

It should be noted that the cardinality ofNk (D) that is denoted

by |Nk (D)| can be generally greater than k . Then, the reach-

ability distance of D with respect to x ∈ X is defined as

Rk (D, x) = max{d(D, x),Dk (x)}.

Algorithm 4 Local Outlier Factor (LOF) Algorithm

Input: xi - training data, k , D - testing data

Output: Test data flag r

1: Find the k-distance neighborhood Nk (D)

2: Compute the Local Reachability Density (LRD);

LRD(D) =
|Nk (D)|

∑

x∈Nk (D)
Rk (D, x)

3: Compute LOF(D) =

∑

x∈Nk (D)
LRD(x)

LRD(D)|Nk (D)|
4: if LOF(D) > threshold then

5: D is abnormal, r = 1.

6: else

7: D is normal, r = 0.

8: end

Next, the Local Reachability Density LRD(D) and the

Local Outiler Factor LOF(D) are obtained as explained in

Algorithm 4. Finally, the test data point is classified as abnor-

mal if LOF(D) > 1.

5) ISOLATION FOREST (IF)

The Isolation Forest (IF) scheme which is an unsupervised

machine learning technique [42], [43] is now used as the strat-

egy for performing the cyber attack detection objective. The

key advantage of IF with respect to other anomaly detection

schemes are as follows: (I) IF scheme does not utilize any

distance or densitymeasure to detect an anomaly, which elim-

inates a major computational cost of distance computations,

and (II) it has a linear time-complexity with a constant train-

ing time and a minimal memory requirement [44]. These are

two key features that are essential for online implementation

of the IF for a real-time cyber attack detection process in

industrial control systems.

Cyber attack detection using the IF is performed in

two stages, namely: (1) training, and (2) real-time testing.

In the training phase, isolation trees are constructed by using

the sub-samples of the normal healthy system operational

dataset. In the online testing phase, the real-time data are fed

to the trained IF for performing the cyber attack detection

objective.

In the training phase, given the training set X =

{x1, . . . , xN }, xi ∈ R
d corresponding to the normal operation

of the system, m different isolation trees Ti, i = 1, . . . ,m are

constructed by recursively splitting a sub-sample Xi ⊂ X

until all the data points in Xi are isolated. For each isola-

tion tree Ti, the sub-sample Xi is randomly selected without

replacement from X using two hyper-parameters, n as the

number of data-point used to train each tree, and f ≤ d

as the number of features that are selected for training that

isolation forest, i.e. Xi = {xi,1, . . . , xi,n}, xi,j ∈ R
f . Each tree

is specified by a set of nodes that are indexed by the pair (j, k),

where j denotes the depth of the node and k is the index of that

node in the given depth, where 0 ≤ k ≤ 2j − 1. Each internal
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node (j, k) has two children (j+1, 2k) and (j+1, 2k+1) and

the root node is denoted by (0, 0).

The isolation forest as shown in Algorithm 5 is operating

based on the concept of binary recursively splitting the feature

space Rd by each isolation tree Ti as well as with randomly

selecting a split feature q ∈ {1, . . . , f } and its split value p

within the selected feature range. The schemewill be initiated

with the root node (0, 0) and the training set Xi and the train-

ing set for each node, denoted by X
j,k
i is obtained recursively

as follows. At the node (j, k), the data-points are splitted into

two subsets X
j+1,2k
i = {xi,j ∈ X

j,k
i , j = 1, . . . , n|x

q
i,j < p}

and X
j+1,2k+1
i = {xi,j ∈ X

j,k
i , j = 1, . . . , n|x

q
i,j ≥ p}, until all

samples are isolated, where x
q
i,j corresponds to the qth element

of xi,j. In each splitting step at node (j, k), two children nodes

(j+1, 2k) and (j+1, 2k+1) with the corresponding training

datasets X
j+1,2k
i and X

j+1,2k+1
i are generated. These can be

an internal node if it is still possible to split the corresponding

subset or an external node corresponding to the last node in

the branch when the size of the data subset of that region

is 1, or the maximum tree depth is reached. In case of an

internal node, the data subsets X
j+1,2k
i and X

j+1,2k+1
i are

further splitted until an external node is reached.

Algorithm 5 Train Ti (Xi)

Input: Xi - input data

Output: an Ti
1: Initialization: The root node with index (0, 0) and the

training set X
0,0
i = Xi. Set j = k = 0.

2: if X
j,k
i cannot be divided then

3: The node (j, k) is designated as the external node and

no division will be performed for this node.

4: else

5: The node (j, k) is designated as the internal node

6: Randomly select a feature q ∈ {1, . . . , f }

7: Randomly select a splitting value p between the mini-

mum and the maximum values of the feature q in X j,k

8: Set X
j+1,2k
i = {xi,j ∈ X

j,k
i , j = 1, . . . , n|x

q
i,j < p}

9: Set X
j+1,2k+1
i = {xi,j ∈ X

j,k
i , j = 1, . . . , n|x

q
i,j ≥ p}

10: Recursion: Go to step 2 and continue splitting the

nodes (j+ 1, 2k) and (j+ 1, 2k + 1)

11: end

The general concept for the cyber attack detection strategy

by utilizing the IF is justified and rationalized by the fact that

in the process of splitting data, the cyber attacks are different

from the normal points and they can be isolated closer to

the root of the tree. Consequently, they have a shorter path

from the root. In the real-time cyber attack detection process,

for each new sample measurement D, the path length in the

ith tree Ti, as denoted by hi(D), is obtained by counting the

number of edges from the root node to an external node

as the sample D is splitted through the isolation tree Ti.

Consequently, the average path length of all trees is obtained

as follows:

havg(D) =
1

m

m
∑

i=1

hi(D), (1)

Next, a score value is assigned to the new sample measure-

ment D as

s(D) = 2−
havg(D)

H , (2)

whereH denotes the average expected path length of the trees

in the forest and is given by

H = 2 ln(n− 1) + 1.2 − 2(n− 1)/N , (3)

with N denoting as the total number of data-points in X .

Finally, the cyber attack is detected by using the detection

threshold ǫ as follows:

r =

{

0 if s(D) > ǫ

1 if s(D) ≤ ǫ.
(4)

C. POST-PROCESSING

As illustrated in Fig. 9, in the post-processing stage, an obser-

vation window of the last W data-points is used to perform

the cyber attack detection decisionmaking process. Specially,

if 80% (80% is chosen based on the mesh search) of W

flags r(τ ), τ ∈ [t − W , t] corresponding to the the last

W data points x(t) are isolated as anomaly by the anomaly

detection scheme, then the current data-point x(t) is identified

as a cyber attack. The main goal of the window-based post-

processing scheme is to reduce the number of false alarms

and to produce a smoother decision making process.

VI. PERFORMANCE EVALUATION AND ASSESSMENT

In this section, evaluation and validation of our proposed

cyber attack detection schemes are provided and demon-

strated for the developed TE testbed infrastructure.

A. DATASET

As previously indicated, the proposed methodologies of this

work are demonstrated by using the real datasets that are

generated from the implemented ICS testbed. The gener-

ated dataset consists of 25 variables such that 16 variables

are corresponding to the sensor measurements and 9 vari-

ables are corresponding to the actuator signals. Two types

of datasets are generated, where initially the testbed was

run for almost 72 hours under the normal condition (that is,

cyber attack free) for generating the training set of the size

(25 × 96827) (after removing the initial transient behavior),

i.e. N = 96827. Subsequently, the testbed was run several

times subject to different cyber attack scenarios and different

cyber attack gateways and points.

Towards this end, false data injection (FDI) cyber attacks

are injected in the communication channels between the I/O

modules and the corresponding PLC through online scaling

the sensor measurement data with the scaling factor λ. Four

different cyber attack scaling scenarios are considered as

VOLUME 9, 2021 16249



M. Noorizadeh et al.: Cyber-Security Methodology for a Cyber-Physical Industrial Control System Testbed

λ ∈ {0.98, 0.96, 0.94, 0.92}, with the cyber attack duration of

two hours. For instance, PLC 3 receives four measurements,

namely, y12, y14, y15, and y17 and the cyber attack on PLC

3 can be modeled as:

yia = yi × λ, i = 12, 14, 15, 17 (5)

where yia corresponds to the i-th measurement under cyber

attack. Figure 10 illustrates the FDI on y12 and y15 in PLC 3

for all the four scaling cyber attack scenarios. These four

cyber attack scenarios are repeated for all the five PLCs,

and hence 20 different cyber attack scenarios are injected.

Consequently, the test dataset with the size of (25× 128159)

has been generated such that 68113 out of 128159 correspond

to cyber attacks and the rest are healthy data. The sampling

time for data logging was 2 seconds for both datasets.

FIGURE 10. Measurements under cyber attacks for PLC3.

B. TRAINING OF PROPOSED METHODOLOGIES

The training of the proposed schemes and structures are

performed by using an open-sourceMachine Learning library

for the Python programming language, which is known as the

Scikit-learn library and PyOD toolbox [7], [45].

Furthermore, the training is performed by using an 8-fold

cross-validation such that each structure is trained 8 times.

Moreover, the hyper-parameters of each scheme are set

based on the mesh-search around the recommended values

in PyOD [7].

C. PERFORMANCE EVALUATION METRICS

The confusion matrix is a form of contingency table with

two dimensions identified as True and Predicted, and a set

of classes corresponding to both dimensions, as presented

in Table 5. The following detection and classification perfor-

mance metrics are derived from the confusion matrix [46] as

follows:

TABLE 5. The confusion matrix.

1) ACCURACY

Accuracy specifies the closeness of measurements to a spe-

cific category/class and it is computed as:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(6)

2) RECALL

Recall is the True Positive Rate (TPR) and is computed as:

TPR =
TP

TP+ FN
(7)

3) PRECISION

Precision is the Positive Predictive Value (PPV) and is com-

puted as:

PPV =
TP

TP+ FP
(8)

4) F1 SCORE

F1 Score is the harmonic average of the precision and recall,

where it is at its best at a value of 1, implying perfect precision

and recall and is computed by:

F1 = 2
PPV ∗ TPR

PPV + TPR
(9)

It should be noted that the main aim of this section is

to perform a quantitative comparison study of various cyber

attack detection schemes is presented using the real-time data

generated by the developed testbed.

D. COMPARATIVE TESTING AND VALIDATION RESULTS

In this subsection, a quantitative comparison study of various

cyber attack detection schemes is presented. As previously

indicated, the field data are collected in real-time from the

PLC’s local cloud. Therefore, by implementing the cyber

attack detection schemes on the process data in real time,

the status of the data can be determined online.

Table 6 provides the efficiency of the proposed schemes.

As illustrated is Table 6, the IF has the worst performance

over the provided datasets due to high oscillation in the

detection signal (high number of false negative alarms), while

it has the fastest training time (speed) in comparison with

the other techniques. Moreover, the OCSVM scheme has

achieved quite promising results as compared to other meth-

ods. In general, the training speed is directly proportional

to the characteristics of the scheme. For instance, the IF

infrastructure is based on combination of multiple decision

trees (binary) which leads to having a considerably fast train-

ing speed. On the other hand, OCSVM scheme calculates

the decision boundaries about the data points, and hence

its training speed is slow. Table 7 shows the cyber attack

detection time (DT) corresponding to various cyber attack

scenarios. Overall, as expected from Table 6, the OCSVM

and kNN have the fastest detection times and by increasing

the cyber attack severity (λ), the cyber attack detection times

are generally improved. However, for the IF algorithm, due

TABLE 6. Performance of the proposed schemes.
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TABLE 7. The cyber attack detection time (DT).

FIGURE 11. Cyber attack detection of the PLC3.

to high oscillations in the original signal and effects of post

processing algorithm, by increasing λ the detection times are

not improved.

Figures 11 and 12 depict the performance of various cyber

attack detection schemes for the scenarios of PLC3 and

PLC5, respectively, where the flag ‘‘0’’ represents the healthy

data and the flag ‘‘1’’ represents the cyber attack data. The

scaling factors in these figures are λ = 0.98, 0.96, 0.94 and

λ = 0.92, respectively. It should be noted that PLC 5 is the

least sensitive one in terms of cyber attack detection due to

low number of direct measurements as provided in Table 4.

As shown in Figure 12, this fact leads to false negative alarms

generation using IF while the other algorithms can still detect

the attacks on PLC 5 without any false negative alarm.

FIGURE 12. Cyber attack detection of the PLC5.

E. THE COMPUTATIONAL COMPLEXITY

The computational complexity analysis of machine learn-

ing algorithms can be generally performed by computing

the O-notion of each algorithm, which, represents the rate

of the growth or the decline of the algorithm computa-

tional complexity. In case of the nearest-neighbor based

algorithms, the computational complexity of identifying the

nearest-neighbors is O(N 2) (where N is the number of sam-

ples) and the remaining computations, such as density or the

LOF computations, can be ignored in the operations (less

than 1% of the runtime). The complexity of the single-class

SVM-based scheme is difficult to compute since it depends

on the number of support vectors and therefore on the data

properties and characteristics of the results. Furthermore,

the σ tuning of the SVMs that are used has a significant

effect on the runtime as the computations have quadratic com-

plexity. Nevertheless, the complexity of the OCSVM scheme

can be scaled between O(dN 2) to O(dN 3), where d denotes

the number of features. The computational complexity of the

PCA scheme is O(d2 N + d3), and thus it relies strongly on

the number of measurements. If the number of dimensions

is low, the scheme in practice represent as among the fastest

algorithms in our studies. Finally, the complexity of the IF

scheme can be obtained to be O(tNlogN ), where t denotes

the number of trees [42].

VII. DISCUSSION AND CONCLUSION

In this paper, a hybrid testbed is developed and implemented

for an industrial control system (ICS) through real-time sim-

ulating the Tennessee Eastman (TE) process as the physi-

cal component of the testbed and implementing the other

layers of the ICS using Siemens modules, such as PLC

and distributed I/O. Due to various security aspects of ICS,

there are many constraints and challenges in obtaining actual
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field data. Therefore, by generating and logging the data

from the physical part of the proposed testbed, a dataset as

close as possible to the real field data is generated. Accord-

ingly, by using this dataset, the impact of various real-time

cyber attacks on the system and the corresponding proposed

online detection approaches are studied. The Man-In-The-

Middle (MITM) cyber attacks are directly implemented on

the PROFINET communication protocols such that the mali-

cious hacker can modify the sensor measurements that are

sent to the PLC. Subsequently, several cyber attack detection

approaches have been developed and implemented in real-

time. Table 6 shows the overall performance of each cyber

attack detection methodology under various malicious attack

scenarios. Furthermore, Table 7 provides the cyber attack

detection time for each scheme. Although, all the evaluated

schemes have been able to detect the cyber attacks before

shut-downing of the plant, however, the OCSVM scheme

shows the best performance for this particular application.

This study that is based on the proposed testbed can aid

in determining the optimum approach for a particular ICS

process that is based on specified constraints (e.g. the plant

shutdown condition) and requirements (e.g. the plant produc-

tion rate).

It should be emphasized that none of the previous works

in the literature have considered the full Tennessee Eastman

process in their developed testbed. Also, to the best of the

authors’ knowledge, none of the previous work have worked

on the PROFINET protocol for injecting real-time cyber

attacks. Moreover, in most of the previous work, the cyber

attack detection algorithms are implemented off-line after

collecting the data from the testbed where as in this work,

the cyber attack detection schemes are implemented all in

real-time in the supervisory level of the testbed. Hence, in this

work the online performance for our proposed cyber attack

detection schemes are demonstrated and provided.

Future work will involve the implementation of more com-

plex multi-point cyber attacks on the testbed and evaluation

of the performance of cyber attack detection and mitigation

schemes in real-time on the testbed.
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