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Abstract We deal with the scheduling of processes on a
multi-product chemical batch production plant. Such a plant
contains a number of multi-purpose processing units and
storage facilities of limited capacity. Given primary require-
ments for the final products, the problem consists in divid-
ing the net requirements for the final and the intermediate
products into batches and scheduling the processing of these
batches. Due to the computational intractability of the prob-
lem, the monolithic MILP models proposed in the literature
can generally not be used for solving large-scale problem in-
stances. The cyclic solution approach presented in this paper
starts from the decomposition of the problem into a batching
and a batch-scheduling problem. The complete production
schedule is obtained by computing a cyclic subschedule,
which is then repeated several times. In this way, good fea-
sible schedules for large-scale problem instances are found
within a short CPU time.

Keywords Applications · Large-scale scheduling · Process
scheduling · Production scheduling

1 Introduction

In a chemical production plant, value is added to materials
by successive transformation tasks such as mixing, separat-
ing, forming, or chemical reactions. We consider the case
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of batch production on multi-purpose equipment, which is
usually chosen in make-to-order production when the prod-
uct range spans over different product families with rela-
tively small demand rates. As each product family requires
a specific plant configuration, a high resource utilization and
short customer lead times can only be achieved by minimiz-
ing the production makespan.

To process a batch, the inputs are first loaded into a
processing unit, then the task is executed, and finally the
output is unloaded from the processing unit; if subsequently
a different task is executed in the processing unit, it needs to
be cleaned before. Since the batch sizes are limited by the
capacities of the processing units, each task is generally ex-
ecuted several times. The storage space, the availability, and
sometimes also the shelf life of the intermediate products
are limited. Given the primary requirements for a set of final
products from the same product family, the short-term plan-
ning problem studied in this paper consists in computing a
feasible production schedule with minimum makespan. As
it has been noted by Honkomp et al. (2000), the size of in-
dustrial process scheduling problems is often a challenging
issue for commercial scheduling systems. Therefore, we fo-
cus on problem instances comprising several thousands of
task executions (called operations in what follows).

In this paper, we propose a cyclic approach that con-
sists of the three phases of cyclic batching, cyclic batch-
scheduling, and concatenation. In the cyclic batching phase,
the set of operations belonging to one cycle together with the
respective batch sizes and input and output proportions, and
the number of cycles needed to satisfy the given primary re-
quirements are determined. In order to keep the scheduling
problem tractable, the total number of operations per cycle
is limited. We formulate this cyclic batching problem as a
mixed-integer nonlinear program whose size is independent
of the primary requirements and for which locally optimal
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solutions can be determined using standard software. In the
cyclic batch-scheduling phase, we compute a subschedule
by allocating the processing units, intermediates, and stor-
age facilities over time to the operations belonging to one
cycle. We present a new priority-rule based method for this
problem. In the concatenation phase, a complete production
schedule is generated by concatenating the cyclic subsched-
ules. We show how to extract feasibility-preserving prece-
dence relationships among the operations from the cyclic
subschedule and how to generate the complete schedule in
polynomial time by exploiting these relationships.

Each of the three phases of the method is performed only
once. In practice, the hardness of a process scheduling prob-
lem is essentially determined by the number of operations to
be scheduled, whereas the numbers of tasks, products, and
processing units are typically rather small. Since the size of
the cyclic batching problem is independent of the primary
requirements and hence independent of the number of op-
erations and because we can explicitly limit the size of the
cyclic batch-scheduling problem to be solved, only the con-
catenation phase is affected by the primary requirements.
Since the concatenation can be performed very efficiently,
the cyclic approach enables us to shift the high dimensional
part of the problem from the NP-hard scheduling problem to
the polynomially solvable concatenation problem. In total,
a relatively short computation time is required, and we are
able to efficiently cope with large-scale problem instances.
In an experimental performance analysis, we applied this
cyclic approach to a set of 70 test instances, including in-
stances with more than 3000 operations. For each instance,
we obtained a better feasible solution within much less CPU
time than the method of Gentner et al. (2004), which is the
only reference in the open literature reporting on tests with
instances of the latter dimension. From a theoretical point
of view, the cyclic approach operates on a set of produc-
tion schedules that is a proper subset of the set of all fea-
sible schedules. This is due to the required cyclicity of the
subschedule and the concatenation structure of the complete
schedule. Our computational experience with the method in-
dicates that the limitation to cyclic schedules only induces a
minor loss of generality. The reason is that the cyclic batch-
ing problem is formulated in a flexible way allowing tasks
to be executed a variable number of times in each cycle. On
the other hand, the cyclic approach provides a framework
within which large-scale process scheduling problems be-
come tractable.

The remainder of this paper is organized as follows. The
short-term planning problem discussed in this paper is in-
troduced in Sect. 2. In Sect. 3, we review the related litera-
ture. In Sect. 4, the cyclic batching problem is formulated
as a mixed-integer nonlinear program, and in Sect. 5 we
present a conceptual model of the batch-scheduling prob-
lem. In Sect. 6, we explain how we construct the cyclic

subschedule and how we compute the complete production
schedule by concatenating flexible copies of this subsched-
ule. The results of the experimental performance analysis
are discussed in Sect. 7. Section 8 is devoted to concluding
remarks and directions for further research.

2 Short-term planning in chemical batch production

In Sect. 2.1, we review the particular characteristics of
chemical batch production on multi-product plants. In
Sect. 2.2, we state the short-term planning problem. Sec-
tion 2.3 introduces a practical example of a chemical batch
production plant that has been provided by Kallrath (2002).

2.1 Chemical batch production on multi-product plants

A multi-product plant consists of multi-purpose processing
units like heaters, filters, and reactors and storage facilities
such as tanks, silos, or cooling houses. The final products
are produced through a sequence of tasks on the processing
units. The duration of a task is generally considered to be in-
dependent of the batch size. For executing a task, several al-
ternative processing units may be available. In this case, the
processing time of the operation may depend on the process-
ing unit used. A multi-purpose processing unit can operate
several tasks, but only one operation at a time. Between con-
secutive operations performed on the same processing unit,
a cleaning with sequence-dependent duration may be neces-
sary.

Each task consumes and produces one or several prod-
ucts. The proportions of the input products and the propor-
tions of the output products of a task may be either fixed or
variable within prescribed bounds. Certain substances, like
chemically instable intermediates, are perishable and must
be consumed immediately after production. Material flows
can be linear, divergent, convergent, or general, including
the case of recycling flows. The minimum and maximum
filling levels of the processing unit used give rise to lower
and upper bounds on the batch size. That is why in differ-
ence to continuous production, in batch production a task
generally has to be executed several times to obtain a de-
sired amount of output products.

A multi-purpose batch plant is often able to produce fi-
nal products belonging to different product families. Each
product family, however, requires a specific configuration of
the plant. During a re-configuration of the plant, it is not
possible to process any operation. Hence, it is important to
achieve a small production makespan for the processing of
the products of each family to ensure a high resource utiliza-
tion and short customer lead times. The short-term planning
problem considered in the following refers to the processing
of one product family on a plant with a given configuration.
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For simplicity, we assume that the nonperishable intermedi-
ate products are stocked in dedicated storages and that the
storage capacities for the final products allow for stocking
the total production amount of one product family.

2.2 Short-term planning problem

The short-term planning problem can be stated as follows.
Given primary requirements for the final products, we must
determine (1) the batch size, the input and the output pro-
portions, and the number of executions for each task, (2) an
assignment of the corresponding operations to the process-
ing units, and (3) the start times of the operations in such a
way that

– the given primary requirements for the final products are
satisfied,

– the prescribed intervals for the batch sizes and the input
and output proportions are observed,

– no processing unit executes more than one operation at a
time,

– the processing units are cleaned between consecutive op-
erations if necessary,

– a sufficient amount of each input product is available at
the start of each operation,

– sufficient storage space for each output product is avail-
able at the completion of each operation,

– all perishable intermediates are consumed immediately
after production, and

– the makespan is minimized.

2.3 Sample production process

In this section we describe the chemical batch production
process of the case study presented by Kallrath (2002),
which is based on an existing plant. For the representation
we use the state-task network (STN) concept that has been
introduced by Kondili et al. (1993). An STN is a bipartite
directed graph which comprises three types of elements:

1. State nodes represent the raw materials, intermediates,
and final products. They are drawn as ellipses labeled
with the respective state number.

2. Task nodes are identified with the tasks transforming one
or more input states into one or more output states. Task
nodes are represented by rectangles indicating the task
number.

3. Arcs correspond to the flow of material. If more than one
input product is consumed or more than one output prod-
uct is produced, the arcs are labeled with the feasible val-
ues of the input or output proportions.

Figure 1 shows the STN for the Kallrath case study with 19
products, 17 tasks, and 9 processing units.

Fig. 1 State-task network of the sample production process

Table 1 lists the initial and maximum stocks of the prod-
ucts. Some of the intermediate products cannot be stocked,
which is indicated by a maximum stock of 0. The value ∞
for the initial or maximum stock means that there is suffi-
cient initial stock or storage capacity available.

Table 2 provides the intervals of feasible batch sizes for
each processing unit. Table 3 displays the processing units
in which the tasks can be executed and the corresponding
processing times. Alternative processing units are available
for executing tasks 10 to 14, 16, and 17.

The tasks are numbered in the order of their quality re-
quirements. In order to guarantee the purity of the final prod-
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Table 1 Initial and maximum stocks

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19

Initial stock ∞ 20 20 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Maximum stock ∞ 30 30 15 30 0 10 10 10 0 0 10 0 10 ∞ ∞ ∞ ∞ ∞

Table 2 Minimum and
maximum batch sizes U1 U2 U3 U4 U5 U6 U7 U8 U9

Minimum batch size 3 5 4 4 4 3 3 4 4

Maximum batch size 10 20 10 10 10 7 7 12 12

Table 3 Processing units and processing times

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17

Processing units U1 U2 U3 U4 U4 U4 U4 U5 U5 U6/U7 U6/U7 U6/U7 U8/U9 U8/U9 U8 U8/U9 U8/U9

Processing times 4 8 4 8 8 8 8 12 12 8/10 10/12 12/12 8/12 8/12 8 12/12 12/12

ucts, each processing unit must be cleaned before passing to
an operation with a higher task index. The time needed for
cleaning a processing unit equals one half of the processing
time of the preceding operation.

3 Related literature

In the context of supply chain management, the time-phased
primary requirements to be produced in the production net-
work are determined on the mid-term campaign planning
level. Campaign planning aims at using the procurement,
production, storage, and transportation facilities in the sup-
ply chain efficiently by coordinating the material flows in
the network. Mixed-integer linear programming models for
campaign planning can for example be found in Timpe and
Kallrath (2000) and Grunow et al. (2002).

The short-term planning problem described in Sect. 2.2
has been widely discussed in the chemical engineering lit-
erature. An overview of state-of-the-art models and meth-
ods can be found in the survey papers of Floudas and Lin
(2004), Burkard and Hatzl (2005), and Méndez et al. (2006).
Roughly speaking, monolithic approaches (cf. Sect. 3.1)
and decomposition approaches (cf. Sect. 3.2) can be distin-
guished.

3.1 Monolithic approaches

The monolithic solution approaches address the short-term
planning problem as a whole, starting from a formulation
as a mixed-integer linear program. The time horizon is di-
vided into a given number of time intervals. In the so-called
discrete-time formulations (see, e.g., Kondili et al. 1993),

each interval corresponds to a time period of fixed length. In
contrast, in the so-called continuous-time formulations (see,
e.g., Ierapetritou and Floudas 1998 or Castro et al. 2001),
the period length is chosen implicitly during the solution of
the mixed-integer linear program.

The main disadvantage of all these monolithic ap-
proaches is that the CPU time required for solving real-
world problems tends to be prohibitively large (cf. Mar-
avelias and Grossmann 2004). To overcome this difficulty,
Shah et al. (1993a), Blömer and Günther (2000), and others
have developed different heuristics that aim at reducing the
number of variables. Nevertheless, the computational bur-
den for solving real-world problems with more than 50 op-
erations is still very high. Whereas the case studies consid-
ered in the chemical engineering literature generally contain
less than 100 operations, industrial process scheduling sys-
tems have to cope with problem instances comprising sev-
eral thousands of operations.

Shah et al. (1993b), Castro et al. (2003), and Wu and Ier-
apetitrou (2004) address a related, but less complex process
scheduling problem, where a cyclic schedule is computed,
which is constantly repeated within a planning horizon of
given length. The problem of determining the cyclic sched-
ule and the number of its repetitions is tackled by mono-
lithic approaches that are similar to the approaches men-
tioned above.

3.2 Decomposition approaches

Promising alternative approaches are based on decomposing
the short-term planning problem into interdependent sub-
problems. Decomposition methods have for example been
proposed by Brucker and Hurink (2000), Neumann et al.
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(2002), Gentner et al. (2004), and Maravelias and Gross-
mann (2004).

In the procedure of Brucker and Hurink (2000), the num-
bers and the sizes of the batches are computed using a con-
structive algorithm, and the operations are scheduled on the
processing units with a tabu search procedure. The authors
do not consider all of the constraints mentioned in Sect. 2.1.
In particular, they assume that the capacities of the storage
facilities are unlimited and that each task can only be exe-
cuted on one dedicated processing unit.

Maravelias and Grossmann (2004) propose to compute
the numbers of batches by solving the LP relaxation of a
monolithic continuous-time formulation of the short-term
planning problem. For given numbers of batches, the batch
sizes and the start times of the operations are determined
by a branch-and-bound algorithm that uses constraint-
propagation techniques.

Similarly to the approach by Brucker and Hurink, Neu-
mann et al. (2002) decompose the problem hierarchically
into a batching problem and a batch-scheduling problem.
The solution of the batching problem, which can be for-
mulated as a mixed-integer nonlinear program, provides the
numbers and the sizes of all batches needed to satisfy the pri-
mary requirements. The batch-scheduling problem consists
in allocating the processing units, intermediates, and storage
facilities over time to the processing of the operations arising
from the batching step. Neumann et al. (2002) and Schwindt
and Trautmann (2004) present a branch-and-bound method
and a two-phase priority-rule based method, respectively, for
solving the batch-scheduling problem. A new single-phase
priority-rule based method is described in Schwindt et al.
(2007). The main features of the latter method are explained
in Sect. 6.1. Within a reasonable amount of computation
time, good feasible solutions to problem instances with up
to 100 operations can be computed with all three scheduling
methods.

Gentner et al. (2004) devise a decomposition of the
batch-scheduling problem which partitions the set of all
batches into a sequence of subsets. The assignment of the
batches to the individual subsets is determined stepwise by
solving a binary linear program in each iteration. Gentner et
al. (2004) and Gentner (2005) computed feasible solutions
to batch-scheduling instances with several thousand opera-
tions. To the best of our knowledge, their method is the only
one available so far for solving such large-scale short-term
planning problems. However, the required computation time
still considerably increases with growing primary require-
ments.

The cyclic approach to be discussed in the following sec-
tions is capable to cope with large-scale instances and runs
very fast and accurately. The good performance of the new
approach is due to the fact that first, the NP-hard scheduling
problem is tackled for a small subset of all operations only,

and second, the complete production schedule is constructed
in polynomial time based on the resulting subschedule. We
note that a preliminary version of our approach is described
in Schwindt and Trautmann (2006).

3.3 Related work in scheduling theory

In this paper, we deal with a cyclic approach to the schedul-
ing of batch processes on multi-purpose processing units
subject to constraints on the inventory levels of intermedi-
ate products. We complete this section by briefly reviewing
three concepts from classical scheduling theory that are re-
lated to our work: scheduling with batching, cyclic schedul-
ing, and scheduling with inventory constraints.

3.3.1 Scheduling with batching

In machine scheduling, a batch designates a set of jobs that
have to be executed jointly. The completion time of all jobs
in a batch are considered to be equal to the completion time
of the entire batch. Before processing a job, the machine has
to be set up, which requires a setup time that is independent
of the job sequence and the batches. Depending on the way
in which the duration of a batch is defined, one can distin-
guish between serial and parallel batching (s-batching and
p-batching) problems. We speak of an s-batching problem if
the duration of a batch arises from summing up the durations
of all jobs. Consequently, the jobs of a batch are executed
one after another. In a p-batching problem, the duration of
the batch equals the largest processing time of a job in that
batch, which means that all jobs of a batch are processed
in parallel. In this case, the machine is called a batching
machine. If the number of jobs in a batch is bounded from
above, the p-batching problem is called bounded. Potts and
Kovalyov (2000) provide a review on scheduling problems
involving batching decisions, with a special emphasis on the
design of efficient dynamic programming methods. Algo-
rithms and complexity results for a large variety of serial
and parallel single machine batching problems can be found
in Brucker (2004), Chap. 8.

Processing units are similar to batching machines in that
a processing unit can batchwise process a certain amount of
materials and the processing time of a batch is independent
of the batch size chosen. There are, however, fundamental
differences between the classical p-batching problem and
the batching problem occurring in short-term planning. The
combinatorial nature of the former problem arises from the
tradeoff between total setup and completion times. The lat-
ter batching problem essentially consists in deciding on the
optimum continuous input and output proportions and batch
sizes and in computing the required number of batches for
each task.
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3.3.2 Cyclic scheduling

Cyclic or periodic scheduling is concerned with steady state
scheduling problems where the schedule is to be repeated
over an infinite planning horizon. Cyclic schedules are typi-
cally implemented in repetitive manufacturing environments
like assembly lines in mass production where the primary re-
quirement rates are sufficiently stable over time. The objec-
tive usually consists in finding a cyclic schedule with mini-
mum cycle time. The cycle time is equal to the time between
the start of the first job in a cycle and the start of this job in
the next cycle, and when the schedule is repeated infinitely
many times, minimizing the cycle time is equivalent to max-
imizing the throughput rate. Compared to an acyclic sched-
ule, a cyclic schedule offers the advantage of an easier shop
floor control. That is why in practice, cyclic schedules are
sometimes even used as baseline schedules in build-to-order
production, from which order-dependent acyclic schedules
are obtained by allowing minor deviations (see Pinedo 2002,
Sect. 16.2). An overview of cyclic scheduling problems and
related complexity results is given by McCormick and Rao
(1994).

In our approach, we want to find a cyclic subschedule that
is executed a finite number of times such that given primary
requirements are satisfied and the makespan of the complete
production schedule is minimum. This means that we solve
an acyclic scheduling problem by constructing a cyclic sub-
schedule whose repetition is terminated after a certain time.
In this way, we combine the relative simplicity of computing
a small cyclic subschedule with the more realistic assump-
tions of an acyclic scheduling problem.

3.3.3 Scheduling with inventory constraints

One challenge of the scheduling problem considered in this
paper consists in the material-availability and the storage-
capacity constraints that have to be observed for the interme-
diate products. A special case of those inventory constraints
has been studied extensively in shop floor scheduling, where
scheduling problems with finite job buffers have been con-
sidered. When the buffer capacities are limited, it may hap-
pen that machines get blocked because their output buffers
are full. The storage facilities of a chemical production plant
can be viewed as limited buffers that are replenished and
depleted by general amounts of materials. Scheduling prob-
lems with general inventory constraints modeling material-
availability and storage-capacities conditions have been con-
sidered in the context of project scheduling (see, e.g., Beck
2002, Neumann and Schwindt 2002, and Laborie 2003). It
can be shown that the material-availability constraints can
be expressed as storage-capacity constraints and vice versa.
Furthermore, Neumann and Schwindt (2002) have shown by
transformation from 3-PARTITION that the problem of find-
ing a feasible schedule subject to inventory constraints and

chain precedence relations is NP-hard for the case of a single
storage facility. As a consequence, the feasibility variant of
the short-term planning problem under consideration is also
NP-hard and there does not exist any polynomial-time ap-
proximation algorithm with bounded performance ratio for
the problem unless P = N P .

4 Cyclic batching problem

In the batching phase of our cyclic approach, we translate
the given primary requirements into the set of operations
belonging to one cycle together with their respective batch
sizes and input and output proportions, and the number of
cycles needed to satisfy the given primary requirements.
Each task may be executed several times in a cycle, the
numbers of executions generally being different from task
to task. Moreover, in order to keep the scheduling problem
tractable, we impose an upper bound on the total number
of operations per cycle. To obtain a cyclic solution allowing
for executing the same subschedule an arbitrary number of
times, the amount of any intermediate produced within one
cycle must be equal to the amount consumed.

In the following, we assume that we assign the same
batch size and the same input and output proportions to all
operations belonging to the same task. Accordingly, four
types of quantities have to be determined:

– the batch size of each task,
– the input and output proportions of each task,
– the number of operations of each task in the cycle, and
– the number of replications of the cycle.

We formulate the batching problem as a mixed-integer
nonlinear program, which can be solved using standard soft-
ware for mathematical programming. The size of the model
only depends on the number of tasks and the number of
products and is consequently independent of the primary re-
quirements and the number of operations to be scheduled.
Let T be the set of all tasks and P be the set of all prod-
ucts under consideration. By P −

τ and P +
τ we denote the sets

of input and output products of task τ ∈ T . The input and
output proportions and the batch size of task τ are associ-
ated with the continuous decision variables ατπ and βτ , re-
spectively. We establish the convention that ατπ < 0 for all
input products π ∈ P −

τ and that ατπ > 0 for all output prod-
ucts π ∈ P +

τ of task τ . For each task τ ∈ T , the following
mass balance constraints ensure that the input products are
completely transformed into the output products and that the
output proportions sum up to 100 %:

−
∑

π∈P −
τ

ατπ =
∑

π∈P +
τ

ατπ = 1 (τ ∈ T ). (1)
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Now recall that proportions ατπ and batch sizes βτ have to
be chosen within prescribed intervals, say [ατπ ,ατπ ] and
[β

τ
,βτ ], which leads to inequalities

ατπ ≤ ατπ ≤ ατπ

(
τ ∈ T , π ∈ P −

τ ∪ P +
τ

)
(2)

and

β
τ

≤ βτ ≤ βτ (τ ∈ T ). (3)

Let T −
π and T +

π be the sets of all tasks consuming and pro-
ducing, respectively, product π ∈ P and let P p ⊂ P denote
the set of perishable products. Then equations

ατπβτ = −ατ ′πβτ ′
(
π ∈ P p, τ ∈ T +

π , τ ′ ∈ T −
π

)
(4)

guarantee that the amount of product π ∈ P p produced by
an operation of some task τ ∈ T +

π can immediately be con-
sumed by an operation of any task τ ′ ∈ T −

π consuming prod-
uct π . We note that depending on the bounds on the input
and output proportions and on the batch sizes, there may ex-
ist feasible production schedules for which constraint (4) is
not satisfied. In this case, however, several operations pro-
ducing product π have to be completed simultaneously or
several operations consuming π have to be started at the
same time. In general, the latter conditions would signifi-
cantly reduce the optimization space at the batch-scheduling
level.

Now let ετ be the integer decision variable providing for
task τ ∈ T the number of operations to be executed in one
cycle. By P i ⊂ P we denote the set of intermediates. In or-
der to obtain a cyclic solution, which allows us to execute the
same subschedule an arbitrary number of times, the amount
of an intermediate π produced within one cycle must be
equal to the amount of π consumed, i.e.,

∑

τ∈T −
π ∪T +

π

ατπβτ ετ = 0
(
π ∈ P i

)
. (5)

Moreover, we have to determine the number ξ ∈ Z≥0 of
cycles needed to satisfy the given primary requirements for
final products. Let ρπ be the primary requirement less the
initial stock of raw material or final product π ∈ P \ P i .
The final inventory of product π must be sufficiently large
to match the primary requirements for π , i.e.,

ξ
∑

τ∈T −
π ∪T +

π

ατπβτ ετ ≥ ρπ

(
π ∈ P \ P i

)
. (6)

The complexity of the resulting cyclic batch-scheduling
problem mainly depends on the number of operations to be
scheduled. To ensure that the problem remains tractable, the
following inequality imposes an upper bound ε on the total
number of operations per cycle:
∑

τ∈T
ετ ≤ ε. (7)

Eventually, we formulate the objective function. Recall
that our goal is to compute a feasible production schedule
with minimum makespan. Therefore, at the batching level,
we want to minimize the total workload ξ

∑
τ∈T pτ ετ to

be scheduled at the batch-scheduling level, where pτ de-
notes the mean processing time of task τ on the alternative
processing units. In sum, the cyclic batching problem (C-
BP) reads as follows:

(C-BP)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Minimize ξ
∑

τ∈T pτ ετ

subject to (1) to (7),

ετ ∈ Z≥0 (τ ∈ T ),

ξ ∈ Z≥0.

Problem (C-BP) represents a mixed-integer nonlinear
program with the integer decision variables ξ and ετ and the
continuous decision variables βτ and ατπ (τ ∈ T , π ∈ P ).
Thus, the total number of variables is independent of the
primary requirements and, for typical production processes,
rather small. For example, the instance of problem (C-BP)
belonging to the sample production process presented in
Sect. 2 contains 18 integer and 18 continuous decision vari-
ables. Computational experiments have shown that locally
optimal solutions can be determined using commercial stan-
dard software within short CPU times. By applying a trans-
formation described by Neumann et al. (2002), problem (C-
BP) can be converted into a mixed-binary linear program of
larger, but still moderate size.

5 Cyclic batch-scheduling problem

Solving the cyclic batching problem provides us with a set
O of n = ∑

τ∈T ετ operations i = 1, . . . , n belonging to one
cycle. The cyclic batch-scheduling problem then consists in

– selecting a processing unit and
– computing a feasible start time

for each operation such that the makespan of the cyclic sub-
schedule is minimized.

Let U be the set of all processing units and Ui be the set
of those alternative units on which operation i can be carried
out. For i ∈ O and k ∈ Ui , the binary decision variable xik

indicates whether or not operation i is assigned to unit k

(xik = 1 or xik = 0, respectively). Each operation i must be
executed on exactly one processing unit, i.e.,
∑

k∈Ui

xik = 1 (i ∈ O). (8)

Vector x = (xik)i∈O,k∈Ui
is referred to as an assignment of

operations i to processing units k.
Let Si ≥ 0 be the start time of operation i. The pair (S, x)

of start time vector S = (Si)i∈O and assignment x is called a
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(sub-)schedule. By pi(x) and cij (x) we denote the process-
ing time of operation i and the changeover time from op-
eration i to operation j given assignment x. Moreover, let
Ok(x) = {i ∈ O | xik = 1} designate the set of all operations
i being executed on unit k. Schedule (S, x) is called process-
feasible if no two operations i and j are executed in parallel
on a processing unit, i.e.,

[
Si, Si + pi(x) + cij (x)

[ ∩ [
Sj , Sj + pj (x) + cji(x)

[ = ∅
(
k ∈ U , i, j ∈ Ok(x) : i < j

)
. (9)

Now we turn to the storage facilities. We assume that
each product π ∈ P is stocked in a dedicated storage fa-
cility of capacity σπ , where σπ = 0 for the perishable prod-
ucts π ∈ P p , which cannot be stored. The demand ρiπ of
an operation i ∈ O belonging to some task τ ∈ T for stor-
age capacity is equal to ατπβτ . By O−

π = {i ∈ O | ρiπ < 0}
and O+

π = {i ∈ O | ρiπ > 0} we denote the sets of operations
consuming or producing, respectively, product π . Opera-
tions i ∈ O−

π deplete the inventory of product π at their start
time Si , whereas operations i ∈ O+

π replenish the inventory
of product π at their completion time Si + pi(x). Sched-
ule (S, x) is said to be storage-feasible if no operation is
started before all input products are available or completed
before the output products can be stocked in the storage fa-
cilities. With ρ0π denoting the initial stock of product π , the
material-availability and storage-capacity constraints can be
formulated as

0 ≤ ρ0π +
∑

i∈O+
π :Si+pi(x)≤t

ρiπ +
∑

i∈O−
π :Si≤t

ρiπ ≤ σπ

(π ∈ P , t ≥ 0). (10)

A process- and storage-feasible schedule (S, x) satisfy-
ing (8) is called feasible. The cyclic batch-scheduling prob-
lem (C-BSP) consists in finding a feasible (sub-)schedule
(S, x) with minimum makespan:

(C-BSP)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Minimize maxi∈O(Si + pi(x))

subject to (8) to (10),

Si ≥ 0 (i ∈ O),

xik ∈ {0,1} (i ∈ O, k ∈ Ui ).

6 Generating the production schedule

The production schedule is generated in two steps. In the
first step, which is dealt with in Sect. 6.1, we compute
a cyclic subschedule solving the cyclic batch-scheduling
problem (C-BSP) defined in Sect. 5. In the second step,
based on the cyclic subschedule we efficiently construct a
complete production schedule for all cycles. This concate-
nation step is explained in Sect. 6.2.

6.1 Computation of the cyclic subschedule

In this section, we explain the main principle of the priority-
rule based method of Schwindt et al. (2007). In a preprocess-
ing phase of the algorithm, we at first construct an operation-
on-node network. Each operation i ∈ O corresponds to one
node of the network, and vice versa. The nodes are con-
nected by arcs representing temporal constraints between
the operations. Those temporal constraints arise from nec-
essary conditions that must be observed between operations
belonging to the same task or between operations produc-
ing and consuming the same intermediates. For example, as-
sume that we have arranged the operations of a task in some
arbitrary order. We define a minimum time lag between the
starts of any two consecutive operations in the sequence. If
the task can only be processed on one unit, the minimum
time lags coincide with the duration of the task. Otherwise,
the operations may overlap in time, and the minimum time
lags are chosen to be equal to zero. Further temporal con-
straints can be generated by exploiting the input-output re-
lationships between the tasks. If an intermediate is produced
by exactly one task, we can identify minimum time lags that
are necessary to the timely availability of the input materi-
als. To this end, we separately consider each task consum-
ing the intermediate. Starting with the first operation of this
task, we calculate how many operations of the producing
task must be completed before a sufficient amount of the in-
termediate is available to start the consuming operation. We
then add a minimum time lag between the last required pro-
ducing operation and the consuming operation, the time lag
being equal to the duration of the producing operation. Tak-
ing into account the residual stock of the intermediate, we
proceed analogously with the remaining operations of the
consuming task. If an intermediate is consumed by exactly
one task, we can add temporal constraints to avoid capacity
overflows in a similar way, where perishable products are
associated with a fictitious storage facility of capacity zero.
The last step of the preprocessing phase consists in comput-
ing the set of all strong components of the network. Since
any two nodes of a strong component are mutually linked
by temporal constraints, it proves advantageous to schedule
all operations belonging to the same strong component con-
secutively.

The basic principle of the scheduling method is as fol-
lows. In each iteration we schedule one eligible operation i,
which is selected based on some priority values. The oper-
ations of a strong component are eligible to be scheduled
if (1) all of those operations’ predecessors in the network
outside the strong component have already been scheduled,
(2) there is enough input material available to process all op-
erations of the strong component, and (3) there is no other
strong component for which some but not all operations
have been scheduled. Condition (3) ensures that all opera-
tions of a strong component are added to the schedule in
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successive iterations. For the selected operation i we then
determine the earliest point in time t for which the tempo-
ral constraints of the network are satisfied, the operation and
the necessary changeovers can be performed on one of the
alternative processing units k ∈ Ui , and a sufficient amount
of input materials is available. Then, operation i is sched-
uled at time t on processing unit k, i.e., we put xik := 1 and
Si := t . The storage-capacity constraints are considered via
capacity-driven provisional latest start times. At the com-
pletion time t ′ = Si + pi(x) of operation i it may happen
that the inventory of some output product π of operation i

exceeds the respective storage capacity σπ . In this case, in
the next iterations we temporarily force eligible operations
consuming product π to start no later than time t ′. These
capacity-driven latest start times are maintained until the ca-
pacity overflow has been removed. As a consequence it may
happen that an eligible operation can no longer be sched-
uled because the capacity-driven latest start time is smaller
than the earliest feasible start time. If no eligible operation
can be selected, the current partial schedule (S, x) cannot be
expanded to a feasible schedule. To break such a deadlock,
we perform an unscheduling step by introducing a release
date ri := t ′ − pi(x) for the operation i that caused the ca-
pacity overflow and restart the priority-rule based method
from scratch. The new release date ensures that in the next
pass of the algorithm, operation i is scheduled at a time
Si ≥ ri that does not prevent all eligible operations j from
being started at a time Sj ≥ t ′. If a given maximum num-
ber of unscheduling steps were performed without having
found a feasible solution, the method is terminated. Oth-
erwise, we obtain a feasible schedule after a finite number
of iterations. The unscheduling step may generate unneces-
sary idle times, which are removed from the schedule in a
postprocessing phase, where we compute the earliest sched-
ule satisfying all the schedule-induced precedence relation-
ships. By randomly varying the priority values of the opera-
tions, the priority-rule based method can be used as a multi-
pass procedure providing a set of feasible subschedules.

6.2 Construction of the production schedule

In the concatenation phase, the complete production sched-
ule is generated in the following way. The computed sub-
schedule (S, x) for executing the operations of one cycle
defines a partial ordering among those operations. We rep-
resent this ordering by precedence relationships between the
operations. Moreover, the last operations in a cycle give rise
to release dates for the first operations of the next cycle. The
start and completion times for the operations in the first cy-
cle equal those of the subschedule computed in the cyclic
batch-scheduling phase. To determine the start and comple-
tion times of the operations in the next cycle, we compute an
earliest schedule for these operations subject to the prece-
dence relationships between and the release dates for the

operations. This temporal scheduling problem represents a
longest path problem, which can be solved efficiently by a
standard label-correcting algorithm. Thus, the concatenation
of the cyclic subschedules forming the complete production
schedule can be performed in polynomial time.

In detail, we proceed as follows. The subschedule (S, x)

computed by the priority-rule based method induces prece-
dence relationships between the operations i, j of one cycle
being executed on the same processing unit or producing
and consuming the same product. Those precedence rela-
tionships are translated into minimum start-to-start time lags
δij defining the temporal constraints

Sj − Si ≥ δij . (11)

Inequalities (11) ensure that the schedule remains feasible
when left- or right-shifting the operations. More precisely,
for each pair of operations (i, j) with Sj ≥ Si + pi(x) +
cij (x) and xik = xjk = 1 for some k ∈ U we introduce the
time lag δij = pi(x) + cij (x), which prevents the overlap-
ping of i and j . For each pair (i, j) with Sj ≥ Si + pi(x)

and ρiπ > 0, ρjπ < 0 for some π ∈ P , we add the time lag
δij = pi(x), which guarantees that at any point in time a
sufficient amount of intermediate π is available. Finally, we
define the time lag δij = −pj (x) for each pair (i, j) with
Sj + pj (x) ≥ Si and ρiπ < 0, ρjπ > 0 for some π ∈ P , to
avoid any excess of the storage capacity of product π .

Moreover, the completion time of the last operation i that
is executed on a processing unit defines a release date rj =
Si + pi(x) + cij (x) for the first operation j in that unit in
the next execution of the subschedule. Analogously, the last
change in the inventory level of an intermediate π , say at
time t , gives rise to a release date rj for the first operation
j that subsequently produces or consumes units of π , where
rj = t if j ∈ O−

π and rj = t − pj (x) if j ∈ O+
π . The release

dates rj can easily be transformed into temporal constraints
of type (11) by introducing a fictitious operation i = 0 for
the production start with S0 = 0 and putting δ0j := rj .

The operations of each cycle are assigned to the process-
ing units according to the assignment x of subschedule
(S, x). The start times of the operations in the first cycle
equal those of subschedule (S, x). The start times of the op-
erations in the next cycle are obtained by solving a temporal
scheduling problem which consists in calculating an earli-
est schedule for these operations subject to the schedule-
induced precedence relationships and the release dates intro-
duced. As it is well-known (see, e.g., Neumann et al. 2003,
Sect. 1.3), this temporal scheduling problem can be solved
efficiently by longest path calculations in the operation-on-
node network belonging to the corresponding temporal con-
straints (11). By iteratively concatenating the ξ cycles in this
way, we finally obtain the complete production schedule.

Eventually we show that the production schedule is fea-
sible. At first we notice that, since the same assignment x of
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operations to processing units is applied to each cycle, the
minimum time lags and release dates introduced ensure that
no two operations are executed in parallel on a processing
unit and that the necessary cleaning times are observed. By
construction of subschedule (S, x), the material-availability
and storage capacity constraints are satisfied for the first cy-
cle. From condition (5) of problem (C-BP), it follows that
after the execution of the subschedule, the inventory levels
of all intermediates coincide with the respective initial in-
ventory levels. The minimum time lags and release dates
defined between the operations producing or consuming a
common product imply that the sequence of start and com-
pletion times of those operations remain unchanged in all
cycles. As a consequence, for each intermediate the maxi-
mum and the minimum inventory levels over time coincide
in each cycle, which shows that the complete schedule also
respects the material-availability and storage-capacity con-
ditions.

7 Experimental performance analysis

We compared our cyclic approach to the decomposition
method devised by Gentner et al. (2004). To evaluate the
impact of the cyclic formulation of the batching problem
we also included a variant of the procedure of Neumann
et al. (2002) where like for the cyclic approach the batch
scheduling is performed with the priority-rule based method
of Sect. 6.1. For our tests, we used a test set introduced
by Gentner (2005), which consists of 70 instances gener-
ated by varying the primary requirements for the final prod-
ucts in the example presented in Sect. 2.3. For each in-
stance we computed a feasible solution to the cyclic batch-
ing problem using Frontline Systems’ Solver package. We
performed the tests on an 3.4 GHz Pentium IV PC. The
results for the method of Gentner et al. were taken from
Gentner (2005) and refer to a 1.4 GHz Pentium IV PC. The
priority-rule based method was stopped after 60 seconds of
CPU time.

The results obtained for the 70 problem instances are
shown in Table 4, where “Cmax” stands for the best make-
span found, “tcpu” is the CPU time in seconds, and “# op.’s”
designates the number of operations in the complete produc-
tion schedule obtained with the cyclic method. When com-
pared to the method of Gentner, the new method is able to
find a markedly better solution for each problem instance.
In addition, especially for large-scale problem instances,
the required computation time is significantly smaller. Hav-
ing prescribed an upper bound of ε = 150 batches, be-
tween 14 and 583 seconds are required for solving the
cyclic batching problem. The concatenation always takes
less than one second of CPU time. The results obtained for
the method of Neumann et al. demonstrate the usefulness

of the cyclic decomposition. For the smallest instances the
Neumann method is able to find the schedules with the best
makespans. This is due to the fact that in difference to the
cyclic model, the initial inventories are available to be con-
sumed. With increasing size of the instances, however, the
quality of the schedules found decreases, and for the larger
instances the priority-rule based method is no longer able to
find any feasible schedule within the time limit of 60 sec-
onds.

8 Conclusions

In this paper, we have presented a cyclic approach to short-
term planning in chemical batch production. Our method
starts from the decomposition of the short-term planning
into a batching level providing the set of operations to be ex-
ecuted and a batch-scheduling level at which the operations
are scheduled on the processing units subject to material-
availability and storage-capacity constraints. The main idea
of our cyclic approach consists in formulating the batching
problem as a cyclic model where the given primary require-
ments are produced through the repetitive execution of the
same set of operations. In this way, we ensure that the result-
ing batch-scheduling problem can be solved within a rea-
sonable amount of computation time by computing a sub-
schedule for the operations of one cycle and concatenating
the number of cycles needed to meet the primary require-
ments. The performance of the new method has been tested
on a test set involving instances with several thousands of
operations.

A further improvement of the cyclic method can be ob-
tained by treating the last cycle separately. From the cyclic
structure of the subschedule it follows that, at the comple-
tion of the last cycle, the inventory levels of the interme-
diates coincide with the initial levels. In order to make use
of the initial inventories, the cyclic batching problem can
be expanded by decision variables for the input and output
proportions, the batch sizes, and the numbers of task exe-
cutions of the last cycle. This variant of the cyclic method
would prove advantageous in cases where the initial inven-
tories could meet a significant part of the total requirements.

An important area of our future research will be the adap-
tation of the cyclic approach to continuous process schedul-
ing problems where tasks are executed at constant produc-
tion rates. In addition, we are developing predictive-reactive
methods for the short-term planning of chemical produc-
tion plants when processing times, resource availabilities,
or production yields are subject to uncertainty. The different
short-term planning methods will be integrated with deci-
sion models for mid-term multi-site campaign planning in
the chemical industry.
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Table 4 Computational results

Instance G. (2005) N. et al. (2002)This paper

Cmax tcpu Cmax tcpu # op.’s Cmax tcpu

WeKa0_0 178 18 122 61 88 128 116

WeKa0_1 352 38 235 62 176 252 113

WeKa0_2 474 53 388 62 264 376 118

WeKa0_3 612 120 – – 352 500 119

WeKa0_4 738 209 – – 440 624 115

WeKa0_5 906 178 – – 528 748 122

WeKa0_6 1046 215 – – 616 872 119

WeKa0_7 1199 323 – – 704 996 121

WeKa0_8 1334 281 – – 792 1120 117

WeKa0_9 1548 399 – – 880 1244 128

WeKa0_10 1740 431 – – 968 1368 100

WeKa0_15 2123 644 – – 1408 1988 97

WeKa0_20 2899 1500 – – 1848 2608 97

WeKa0_30 4416 5235 – – 2728 3884 77

WeKa19_0 238 19 162 62 105 166 80

WeKa19_1 436 165 343 61 210 316 81

WeKa19_2 618 59 – – 315 466 79

WeKa19_3 818 97 – – 420 616 80

WeKa19_4 1004 179 – – 525 766 81

WeKa19_5 1184 232 – – 630 916 80

WeKa19_6 1384 330 – – 735 1066 83

WeKa19_7 1570 474 – – 840 1216 81

WeKa19_8 1806 442 – – 945 1366 81

WeKa19_9 1946 568 – – 1050 1516 80

WeKa19_10 2135 570 – – 1155 1666 83

WeKa19_15 2848 1322 – – 1680 2416 79

WeKa19_20 3811 1911 – – 2205 3166 78

WeKa19_30 5896 6610 – – 3255 4666 76

WeKa20_0 168 34 134 64 89 138 86

WeKa20_1 336 50 282 64 178 264 87

WeKa20_2 590 72 446 61 267 390 90

WeKa20_3 750 76 640 62 356 516 100

WeKa20_4 896 93 – – 445 642 98

WeKa20_5 990 126 – – 534 768 100

WeKa20_6 1138 184 – – 623 894 95

WeKa20_7 1294 215 – – 712 1020 95

WeKa20_8 1547 200 – – 801 1146 96

WeKa20_9 1816 327 – – 890 1272 94

WeKa20_10 1920 448 – – 979 1398 94

WeKa20_15 2386 421 – – 1424 2028 96

WeKa20_20 3604 969 – – 1869 2658 96

WeKa20_30 5194 3255 – – 2759 3918 75

WeKa21_0 210 17 136 61 98 144 103

WeKa21_1 382 127 – – 196 284 100

WeKa21_2 555 67 482 61 294 424 95

WeKa21_3 728 97 640 60 392 564 91

WeKa21_4 868 152 – – 490 704 86

Table 4 (Continued)

Instance G. (2005) N. et al. (2002)This paper

Cmax tcpu Cmax tcpu # op.’s Cmax tcpu

WeKa21_5 1082 226 – – 588 844 86

WeKa21_6 1224 250 – – 686 984 83

WeKa21_7 1420 240 – – 784 1124 82

WeKa21_8 1554 291 – – 882 1264 85

WeKa21_9 1701 475 – – 980 1404 85

WeKa21_10 1916 469 – – 1078 1544 82

WeKa21_15 2545 771 – – 1568 2244 81

WeKa21_20 3398 1415 – – 2058 2944 82

WeKa21_30 5091 5957 – – 3038 4344 89

WeKa22_0 190 192 144 61 102 152 327

WeKa22_1 376 85 – – 204 290 644

WeKa22_2 558 102 – – 306 428 298

WeKa22_3 722 120 – – 408 566 155

WeKa22_4 930 249 – – 510 704 239

WeKa22_5 1024 239 – – 612 842 324

WeKa22_6 1298 255 – – 714 980 270

WeKa22_7 1488 341 – – 816 1118 150

WeKa22_8 1520 439 – – 918 1256 276

WeKa22_9 1779 427 – – 1020 1394 149

WeKa22_10 1786 647 – – 1122 1532 221

WeKa22_15 2586 704 – – 1632 2222 171

WeKa22_20 3172 1598 – – 2142 2912 206

WeKa22_30 5375 7563 – – 3162 4292 271
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