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A cyclic sum S(x)~ΣxJ(xi+1+xi+2) is formed with the N
components of a rector x, where xN+1=xί9 %N+2~X29 and
where all denominators are positive and all numerators non-
negative. It is known that the inequality S(x)^N/2 does
not hold for even i\Π^14; this result is derived in a uniform
manner by considering a related algebraic eigenvalue pro-
blem. Numerical evidence is presented for the conjecture
that this cyclic inequality is true for even N^12 and odd

The corresponding cyclic inequality, namely the question for
what value of N

S(x) ^ N/2

holds, has been investigated by many mathematicians (cf. Mitrinovic
[7] and the references given there). In §1 we prove in a unified
manner that the inequality does not hold for even N ^ 14. The
method is based on the idea used first by Lighthill for N = 20 [4]
and then by several other authors. The argument indicates why
the case N = 12 remains still unresolved. Some properties of this
type of solution are described in § 2. Section 3 deals with numeri-
cal results that strongly suggest that the inequality is valid for
N = 12 and, if N is odd, for N — 23. These numerical results def-
initely represent stationary values of the cyclic sum, and we are
inclined to believe that they are indeed global minima. A connec-
tion between the inequality above and a related inequality with
indices reversed is considered in the last section. In the Appendix
some examples are listed for N = 14, 25 and 27.

1* The linear cyclic inequality* By considering the cyclic
sumS(ac) it is obvious that for any N there exists a vector for
which

S(x) = N/2

holds, namely χi: = 1 for i = 1, 2, , N. If N is even, there exists
also a wider class of "nominal" vectors,

f(l + a)β for i odd
(1.1) x\ = ' . 0 ^ a <, 1 ,

((1 — α:)/2 for % even
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for which S(x°) = N/2. Vectors of this type seem to form the
basis in the reported solutions for even N where the inequality
does not hold, in particular, in Zulauf's solution [7, p. 133] for the
important case iV = 14.

If N is odd, the situation is much more difficult to understand.
Indeed, while only N = 12 is unresolved for even JV, for odd N
the answer is still unknown for N = 11,13, , 23. A simple nom-
inal vector of the form (1.1) exists for odd N only if a == 0.

We now show in a uniform manner that the cyclic inequality
is violated for even N ^ 14. (In the remainder of this section, N
is understood to be even.) We proceed by writing the vector x as
x = χ° + e and expanding the cyclic sum S(x) in terms of the com-
ponents of the vector e. If S can be made smaller than N/2 for
small e, the inequality is clearly violated.

By including quadratic terms in the expansion—the contribution
of the linear terms vanishes—we obtain

S* = JV/2 + Σ el - ekek+2 + (-l)kaekek+ι = N/2 + eτAe/2

where again eN+1 — elf eN+2 — e2 and where A is the symmetric
matrix

A =

I 2
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- 1

- 1
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— a
2
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- 1

— 1
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- 1

—a - 1

- 1 - α 2

— 1 α

- 1

- 1 a'

a

2

— α

- 1

- 1

— a

2;

In order to minimize S* we must minimize eτAewith eτe kept con-
stant. The corresponding eigenvalue problem (A — XI)e = 0 has the
known solution, which can be easily verified,

(1.2)
α sin tk

— α cos £Λ

for k odd

for k even

where tk = t0 + (fc — 1)Λ; the amplitude α > 0 and the phase ί0 are
arbitrary, and

Λ = 2πj/N , j = 1,2, , N .

The N corresponding eigenvalues are

λ = 2 sin h (2 sin h — a)
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they are, with the exception of at most two of them, all double
eigenvalues. We may choose ί0 = 0 so that the e-vector becomes

e = α(0, —cos h, sin 2h, —cos 3fe, , sin (N — 2)h, —cos (N — ϊ)h) .

Now, at the stationary values of S* we have

S* - N/2 + Xeτe/2 .

Hence, S* is smaller than JV/2 if there exists at least one negative
eigenvalue λ. This means that we must require that 0 < 2sinfc <
a < 1, i.e., 0 < sin (2πj/N) < 1/2, 2πj/N < ττ/6, or finally N > 12j.
The case where 5ττ/6 < 2πj/N < π can be excluded since it leads to
the indentical result for x and S*. For N > 12, the condition N >
12j can indeed always be satisfied. We conclude that vectors of
this kind with S* < N/2, and therefore also for the full cyclic in-
equality with S < NJ2, are always possible for N ^ 14, but not
possible for N <ί 12 (cf. also [10]). This concludes the main argu-
ment.

However, these considerations do not resolve the open case
N = 12. The inequality holds in the neighborhood of a nominal
vector x0. Consequently, if a vector x exists that violates the
inequality, then it cannot be obtained by a perturbation of a
nominal vector x°.

2. The minimum of the linear cyclic sum* It seems worth-
while to elaborate on the vectors formed with (1.2) and add a few
remarks.

First, we note that λ = 4 sin2 h Ξ> 0 for a = 0. This means that
for odd Nf where the only simple nominal vector x° is furnished
by a = 0, the eigenvalues are all nonnegative, so that the argument
given above cannot be applied to odd N. Furthermore, higher
order terms in the e-expansion do not alter this conclusion.

For N ^ 14 there exists a negative eigenvalue, namely exactly
one for 14 ^ N £ 24. If 24 < N ^ 36 both j = 1 and j = 2 furnish
negative eigenvalues, and similarly for larger N values, where for
each increase of N by 12 a "higher harmonic" is added. The Figure
1 shows the eigenvectors for N = 26, j = 1 and j = 2. The values
of the full (i.e., not linearized) cyclic sum for these vectors are
S - 13-0.01913 and S - 13-0.0000787.

Since all xk are required to be nonnegative, the amplitude a
must be chosen sufficiently small, namely

(1.3) a ^ (1 - α)/2 .

In some cases, a can be chosen slightly larger, e.g., for N = 14



220 J. L. SEARCY AND B. A. TRODSCH

1.0 H-

5. 9 13 17 21 25

1 . 0 0 -

and j = 1,

(1.4)

1 5 9: 13 17 21 25
i

FIGURE 1. Eigenvectors for JV=26, j=l,2.

a :g (1 — ά)/2 cos ft ,

since the trigonometric functions in (1.2) are evaluated only at
discrete points.

The sum S* is computable in closed form and gives, for the
cases of interest,

S* - N(2 + λα2)/4

or, using the (nearly) largest admissible α,

S*(α) = N(2 - —(1 - af sin h(a - 2 sin h) )U .

For a = 1 and α = 2 sin ft, we obtain S* = JV/2, and S* attains its
minimum value (for either (1.3) or (1.4)) at

a0 = (1 + 4 sin ft)/3 ,
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namely

(1.5) S* = N(l - — sin Λ(l - 2 sin hf \J2 .

The linearized sum S* has of course a different minimum than
the full cyclic sum. As an example, we choose JV — 14, j — 1.
From (1.5) we obtain for a — (1 — a)β

S* = 7 - 0.000260 ,

and it can be shown that for a = (1 — α)/2 cos Λ (1.5) gives

S* = 7 - 0.000320 ,

while the full cyclic sum for this vector is

S = 7 - 0.000323 .

On the other hand, a numerical minimization of the full cyclic sum
furnishes

S = 7 - 0.000347 .

It is not difficult to include tire cubic terms in the e-expansion.
It turns out that in order to obtain this sum, let us call it S>**,
one only needs to increase the amplitude α. However, the amplitude
is in general restricted to a <; (1 — α)/2. Hence, it seems reasonable
to increase α, except that those xk which would become negative
are replaced by zero. A computation then leads to the result

S** = 7 - 0.000331 .

One might expect that for large JV where more than one nega-
tive eigenvalue occurs, the eigenvalue for j = 1 would give the
smallest sum S*. However, (1.5) shows that for JV ^ 74 this is not
the case.

3. The cases JV = 12 and N = 23* By considering the numer-
ical minimization for N ^ 14 (cf. Figure 2 and Table 1) we are led
to the conjecture that for the still open case N = 12 the inequality
is indeed satisfied. But it should be kept in mind that these numer-
ical results have not been shown to be global minima.

Similarly, for JV odd and larger than 23, the numerical results
indicate that the inequality is valid for JV = 23. Here the solution
for JV = 23 which is similar in structure to the solutions for JV^25
is also listed, although in this case the vector xk = 1, for all k,
furnishes the lower value JV/2. The same conclusion has been
reached by Malcolm [6] who solved the problem for JV = 25 by
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S-N/2 -0.010

- 0 . 0 0 5 -

22

FIGURE 2. Extrapolation of the minimum cyclic sum to N=12 and AΓ=23.

TABLE 1

Extrapolation of the minimum of the cyclic sum S to N=12 and N=2S.

N
14
16

18
20

22

S-N/2

-.000347303
-.002004523

-.005287982

-.010062465
-.015979281

N
2S

25
27

29
31

S-NI2

+ .011689438

-.001514765
-.014469580

-.027056111
-.039127154

convincing numerical minimization and by Daykin [1] who also
lists a solution in integer values for the xt.

Additional numerical results are discussed in the Appendix.

4* The cyclic inequality with indices reversed* The solutions
listed above exhibit an interesting general property. We define a
vector 6 by setting

(4.1a)

and introduce also

(4.2a)

6, = Xi! xi+2y

Tt = 6,7(6,-! + 6,_2)
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as a counterpart to

(4.2b) Si = Xi/(xi+1 + xi+2) .

At the stationary values of S(x) for admissible vectors x, either
Xi = 0 or dS/dXi = 0. This leads readily to the relations that either

(xi+1 + ίc£+2)(δί_1 + δi_2) = 1 or a?, = 6( = 0 ,

and hence,

(4.1b) *'= bJQb^ + btΛ ,

rt = bt(xi+ι + xi+2) = «<(&<_! + 6,_8) = Si

and

for all i.
Clearly then, for any stationary solution x{ί) another stationary

solution x{2) can be formed, namely the vector b read in reverse
order. Both solutions lead to the same stationary sum S = Σst —
Σrt. Therefore, if the minimum of S is unique, the two vectors
must be equivalent, i.e., x{2) must be constant multiple of ^(1) The
computation of many minima for both even and odd N showed that
in all cases indeed, x(2) — cx{1). As an example we list in the
Appendix, Table 4, the results for JV = 25 where x{1) has been nor-
malized so that c = 1, i.e., bt = xN+2-i a n ( i s% = SN+2-Ϊ'

This means that for all computed minima (including the result
in [6]) the vector s exhibits a symmetry, and it might be of inte-
rest to prove this property, if indeed it holds in general.

Since the difficult cases where the cyclic inequality holds, namely
N = 8 [3] and N = 10 [8], have been proved by discussing all rele-
vant possibilities in turn, the symmetry in s might just restrict
the number of cases sufficiently to make N = 12 amenable to a
proof.

Appendix* Miscellaneous numerical results* In this appendix
we present examples and computational results for the cyclic in-
equality.

The approach described in § 1 enables us to obtain vectors x
for which S(x) < N/2 without requiring an extensive search on a
computer. In Table 2 we present the results for the vector xz [7,
p. 133], xH [5], and the vector x suggested by (1.2). For the ex-
pansion for small e, one obtains S(x) = N/2 — qe2 + 0(e3). The mini-
mum of the cyclic sum for these vectors is also listed; the comparison
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TABLE 2

Vectors x with S(x)<N/2 for small e. N=U.

Xyz=z(\~\~1β 7β
β —(Λ-L. \Qβ 7β

v — (Λ -1-11 P Rp

l+4e,
l+8e,
l+8e,

6e,
lOe,
lOe,

1+e,
l+3e,
l+3e,

5e,
lOe,
8e,

1,
l-2e,
1,

2e,
5e,
3e,

1 + e,
l-2e,
l+2e,

0,
0,
0,

l+4e,
1,
l+6e,

e,
0,
0,

l+6e,
l+8e,
1+lOe

4e)
3e)

, 4e)

vector

Xz

XII

X

Q

2
3

11

minimum
of
- 0
- 0
- 0

S-N/2
.0000215
.0000028
.0002661

at e =

0.0059
0.0017
0.0093

between xz and xπ shows that a larger q need not lead to a smaller
minimum.

The expansion in small e is not available for odd N. Convinc-
ing examples for S(x) < N/2 are then furnished by vectors with
nonnegative integers as components. Table 3 lists examples for
N = 14, 25, 27. Clearly, there is a limit on how small the largest
integer component can be chosen. We believe that the examples
are quite close to optimal in this respect. The vector xD for N =

TABLE 3

Vectors x with integer components and S(x)<NJ2.

a?i = ( 0

£ 2 = (0,

XD = &,

Xs = (3,

4^
44
6,
5,

vector

^2

Table 4,

XD

^ 3

is"

, %
, 2,
2,
2,

I t

42, 4,
44, 4,

6, 1, 6,
5, 1, 5,

N

14
14
25
25
27
27
27

41
43,
0,
0,

5
5,
7,
6,

39,
41,
0,

0, '

4, 38,
4, 40,

8, 0, 9,
7, 0, 8,

Largest Xi

42
44
35
35
12
11
11

2,
0,
0

38
40,
10,
9

0

0,

. o,
0

40)
42)
11, 1, 12, 3, 11, 5, 9, 6, 7, 6, 5, 6)

10, 1, 11, 3, 10, 5, 8, 5, 6, 5, 4, 5)

S-NI2

-151/28938140 = - 0.00000522

- 217/ 4280760 = - 0.00005069

= -0.00013752

- 691 /80013480 = - 0.00000863

- 5 3 / 55440 =-0.00095599

- 8 / 3465=-0.00230880

- 1 / 126=-0.00079365

1 5 9 17 21 25

FIGURE 3. The numerical minimization of S. ---. , and an example with
integer components a?* •— for iV=27.
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TABLE 4

The numerical minimization of S(x) for JV=25 and a case a?int with integer

components.

Xl=bi= .8448196

X2 — * 2 δ — •"

Xz = 624 = 1.0

X i =b2z= .0

#5 =622=1.1836847

Xΰ = δ 2 1 = = .1924932

α7 =620 = 1.2086162

x8 =b1Q= .4498554

XQ =6iβ = 1.0861416

#10 = 617 = .5837685

a?i i=δ l β = .8075051

#12=615= .6074671

x13=bu = .6019168

aj M =δi8= .5833803

α? 1 5 =δi 2 = .4323827

ίc16 = δn = .5520990

#17 = 610= .2915714

#18 = 69 = .5352959

# i 9 = δ 8 = .1714317

X2Q=b7 = .5473341

χ2ί=bβ = .0699841

#22=65 = .6029648

# 2 3 = δ 4 = .0

Xu=b3 = .7137202

#25 = 6 2 = .0

s

.8448196

.0

.8448196

.0

.8448196

.1160666

.8133369

.2777040

.7447432

.4125654

.6676996

.5125019

.5925761

.5925761

.5125019

.6676996

.4125654

.7447432

.2777040

.8133369

.1160666

.8448196

.0

.8448196

.0

25

0

29

0

34

5

35

13

30

17

24

18

18

17

13

16

9

16

5

16

2

18

0

21

0

S(x) = 12.498485

27 is published in [2], and the vector xlnt is a slight modification
of the vector given in [9] (the authors were unaware of the results
in [1] and [6]) and is listed in Table 4. The vector xB for n = 27
is strongly suggested by the numerical minimization as Figure 3
shows, so that only a very limited search is required. We have
also added vectors with the most pleasing fractions for S — N/2,
namely xfnt obtained from α5lnt by changing x9 to 31, and xζ by
changing the first 10 in #3 to an 11.

Table 4 lists the results of the numerical minimization and
exhibits to high accuracy the relations conjectured in § 4.

ACKNOWLEDGMENT. The authors wish to thank P. H. Diananda
for valuable information and suggestions.

REFERENCES

1. D. E. Daykin, Inequalities for functions of cyclic nature, J. London Math. Soc,

(2), 3 (1971), 453-462.

2. P. H. Diananda, On a cyclic sum, Proc. Glasgow Math. Assoc, 6 (1963), 11-13.



226 J. L. SEARCY AND B. A. TROESCH

3. D. Z. Djokovic, Sur une inegalite, Proc. Glasgow Math. Assoc, 6 (1963), 1-10.
4. C. V. Durell, Query, Math. Gaz., 40 (1956), 266.
5. M. Herschorn and J. E. L. Peck, Problem 4603, Amer. Math. Monthly, 67 (I960),
87-88.
6. M. A. Malcolm, Note on a conjecture of L. J. Mordell, Math. Comp., 25 (1971),
375-377.
7. D. S. Mitrinovic, Analytic Inequalities, (Springer-Verlag, New York 1970), 132-138.
8. P. Nowosad, Isoperimetric eigenvalue problems in algebra, Comm. Pure Appl.
Math., 2 1 (1968), 401-465.
9. J. L. Searcy and B. A. Troesch, The cyclic inequality, Notices Amer. Math. Soc,
2 3 (1976), A-604.
10. D. G. Thomas, On the definiteness of certain quadratic forms arising in a con-
jecture of L. J. Mordell, Amer. Math. Monthly, βS (1961), 472-473.

Received October 24, 1977 and in revised form October 24, 1978.

UNIVERSITY OF SOUTHERN CALIFORNIA

Los ANGELES, CA 90007



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor)

University of California
Los Angeles, California 90024

HUGO ROSSI

University of Utah
Salt Lake City, UT 84112

C. C. MOORE

University of California
Berkeley, CA 94720

J. DUGUNDJI

Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. F I N N AND J. MILGRAM

Stanford University
Stanford, California 94305

£. F. BECKENBACH

ASSOCIATE EDITORS

B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics
Vol. 81, No. 1 November, 1979

Thomas E. Armstrong, Simplicial subdivision of infinite-dimensional
compact cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Herbert Stanley Bear, Jr., Approximate identities and pointwise
convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Richard David Bourgin, Partial orderings for integral representations on
convex sets with the Radon-Nikodým property . . . . . . . . . . . . . . . . . . . . . . . 29

Alan Day, Herbert S. Gaskill and Werner Poguntke, Distributive lattices
with finite projective covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Heneri Amos Murima Dzinotyiweyi and Gerard L. G. Sleijpen, A note on
measures on foundation semigroups with weakly compact orbits . . . . . . 61

Ronald James Evans, Resolution of sign ambiguities in Jacobi and
Jacobsthal sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

John Albert Fridy, Tauberian theorems via block dominated matrices . . . . . . 81
Matthew Gould and Helen H. James, Automorphism groups retracting onto

symmetric groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Kurt Kreith, Nonlinear differential equations with monotone solutions . . . . . 101
Brian William McEnnis, Shifts on indefinite inner product spaces . . . . . . . . . . 113
Joseph B. Miles, On entire functions of infinite order with radially

distributed zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Janet E. Mills, The idempotents of a class of 0-simple inverse

semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Edward Jean Moulis, Jr., Generalizations of the Robertson functions . . . . . . . 167
Richard A. Moynihan and Berthold Schweizer, Betweenness relations in

probabilistic metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Stanley Ocken, Perturbing embeddings in codimension two . . . . . . . . . . . . . . . 197
Masilamani Sambandham, On the average number of real zeros of a class of

random algebraic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Jerry Searcy and B. Andreas Troesch, A cyclic inequality and a related

eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Roger R. Smith and Joseph Dinneen Ward, M-ideals in B(lp) . . . . . . . . . . . . . 227
Michel Talagrand, Deux généralisations d’un théorème de I. Namioka . . . . . 239
Jürgen Voigt, On Y -closed subspaces of X, for Banach spaces X ⊂ Y ;

existence of alternating elements in subspaces of C(J ) . . . . . . . . . . . . . . . 253
Sidney Martin Webster, On mapping an n-ball into an (n+ 1)-ball in

complex spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
David J. Winter, Triangulable subalgebras of Lie p-algebras . . . . . . . . . . . . . . 273

Pacific
JournalofM

athem
atics

1979
Vol.81,N

o.1

http://dx.doi.org/10.2140/pjm.1979.81.1
http://dx.doi.org/10.2140/pjm.1979.81.1
http://dx.doi.org/10.2140/pjm.1979.81.17
http://dx.doi.org/10.2140/pjm.1979.81.17
http://dx.doi.org/10.2140/pjm.1979.81.29
http://dx.doi.org/10.2140/pjm.1979.81.29
http://dx.doi.org/10.2140/pjm.1979.81.45
http://dx.doi.org/10.2140/pjm.1979.81.45
http://dx.doi.org/10.2140/pjm.1979.81.61
http://dx.doi.org/10.2140/pjm.1979.81.61
http://dx.doi.org/10.2140/pjm.1979.81.71
http://dx.doi.org/10.2140/pjm.1979.81.71
http://dx.doi.org/10.2140/pjm.1979.81.81
http://dx.doi.org/10.2140/pjm.1979.81.93
http://dx.doi.org/10.2140/pjm.1979.81.93
http://dx.doi.org/10.2140/pjm.1979.81.101
http://dx.doi.org/10.2140/pjm.1979.81.113
http://dx.doi.org/10.2140/pjm.1979.81.131
http://dx.doi.org/10.2140/pjm.1979.81.131
http://dx.doi.org/10.2140/pjm.1979.81.159
http://dx.doi.org/10.2140/pjm.1979.81.159
http://dx.doi.org/10.2140/pjm.1979.81.167
http://dx.doi.org/10.2140/pjm.1979.81.175
http://dx.doi.org/10.2140/pjm.1979.81.175
http://dx.doi.org/10.2140/pjm.1979.81.197
http://dx.doi.org/10.2140/pjm.1979.81.207
http://dx.doi.org/10.2140/pjm.1979.81.207
http://dx.doi.org/10.2140/pjm.1979.81.227
http://dx.doi.org/10.2140/pjm.1979.81.239
http://dx.doi.org/10.2140/pjm.1979.81.253
http://dx.doi.org/10.2140/pjm.1979.81.253
http://dx.doi.org/10.2140/pjm.1979.81.267
http://dx.doi.org/10.2140/pjm.1979.81.267
http://dx.doi.org/10.2140/pjm.1979.81.273

