
Technische Universit�at ChemnitzSonderforschungsbereich 393Numerische Simulation auf massiv parallelen RechnernThilo PenzlA Cyclic Low Rank Smith Methodfor Large Sparse LyapunovEquations with Applications inModel Reduction and OptimalControlPreprint SFB393/98-6

Preprint-Reihe des Chemnitzer SFB 393SFB393/98-6 March 1998



Contents1 Introduction 12 Smith(l) { a generalization of the Smith method 53 LR-ADI and LR-Smith(l) { low rank versions of ADI and Smith(l) 74 A heuristic procedure for determining suboptimal ADI shift parameters 95 Applications I: model reduction 126 Applications II: optimal control 147 Numerical experiments 178 Conclusions 20
Author's address:Thilo PenzlTU ChemnitzFakult�at f�ur MathematikD-09107 ChemnitzGermanyEmail: tpenzl@mathematik.tu-chemnitz.de



A Cyclic Low Rank Smith Method for Large SparseLyapunov Equations with Applications in ModelReduction and Optimal Control�Thilo PenzlyMarch 18, 1998AbstractWe present a new method for the computation of low rank approximations to thesolution of large, sparse, stable Lyapunov equations. It is based on a generalizationof the classical Smith method and pro�ts by the usual low rank property of the righthand side matrix. The requirements of the method are moderate with respect toboth computational cost and memory. Hence, it provides a possibility to tackle largescale control problems. Besides the e�cient solution of the matrix equation itself,a thorough integration of the method into several control algorithms can improvetheir performance to a high degree. This is demonstrated for algorithms for modelreduction and optimal control. Furthermore, we propose a heuristic for determininga set of suboptimal ADI shift parameters. This heuristic, which is based on a pairof Arnoldi processes, does not require any a priori knowledge on the spectrum of thecoe�cient matrix of the Lyapunov equation. Numerical experiments show the e�-ciency of the iterative scheme combined with the heuristic for the ADI parameters.Key Words: ADI iteration, Smith method, iterative methods, Lyapunov equa-tion, matrix equation, model reduction, balanced truncation, optimal control, Riccatiequation, Newton method.AMS Subject Classi�cation: 65F30, 65F10, 15A24, 93C05.1 IntroductionThe Lyapunov matrix equation plays an important role in control theory. For example, itarises in stability analysis [LL61], the solution of Riccati matrix equations [Kle68], model�This work was supported by the Deutsche Forschungsgemeinschaft within the Sonderforschungsbereich393 \Numerische Simulation auf massiv parallelen Rechnern".yFakult�at f�ur Mathematik, Technische Universit�at Chemnitz, 09107 Chemnitz, Germany. E-mail:tpenzl@mathematik.tu-chemnitz.de 1



reduction [Moo81, SC89], and H1 optimal control [Fra87]. In this paper, we consider theLyapunov equation ATX +XA = �BBT ; (1)where the matrix A 2 Rn;n is stable, i.e., its eigenvalues are contained in C� , which denotesthe set of the complex numbers with negative real parts. Under this assumption a uniquesolution X 2 Rn;n exists, which is symmetric and positive semide�nite, e.g., [LT85]. Thereare a number of direct methods for solving the Lyapunov equation (1) numerically, themost important of which are the Bartels-Stewart method [BS72] and the Hammarlingmethod [Ham82]. Unfortunately, these methods, which are based on the QR algorithm,ignore any sparsity in the equation and are not very attractive for parallelization. A roughestimation of the complexity of the Bartels-Stewart method and the Hammarling methodgives about 25n3 ops and 3n2 words of memory. Note that we count one op as a singleoating point operation according to [GL96]. Although these methods should be consideredas standard methods for small, dense Lyapunov equations, their use is very limited whenlarge, sparse equations have to be solved. For example, dynamical systems arising from thediscretization of parabolic di�erential equations lead to large, sparse Lyapunov equations,e.g., [RW95]. It is important to note that the number of columns of the matrix B 2 Rn;m,which is related to the number of inputs and outputs of the underlying dynamical system,is usually very small and does not depend on the �neness of the discretization. This factis of importance for the method presented in Section 3.If large, sparse problems have to be solved, iterative schemes are often the methodof choice because they do not destroy sparsity. Mostly, they are much more suitable forparallelization than direct methods. In the sequel, we briey review two popular iterativemethods for Lyapunov equations which do not bene�t from the low rank property of theright hand side.The iterates XAi of the alternating direction implicit iteration (ADI) [PR55, Wac88b]are usually generated by the solution of two linear systems with multiple right hand sides(AT + piI)XAi�1=2 = �BBT �XAi�1(A� piI)(AT + piI)XAi T = �BBT �XAi�1=2T (A� piI); (2)where XA0 = 0 and the shift parameters p1; p2; p3; : : : are elements of C� . This pair ofequations is mathematically equivalent to the iteration stepXAi = (AT�piI)(AT+piI)�1XAi�1(A�piI)(A+piI)�1�2pi(AT+piI)�1BBT (A+piI)�1: (3)The error matrices Di = X �XAi obey the recursionDl = �rl(A)rl(�A)�1�T D0rl(A)rl(�A)�1; (4)where rl is the polynomial rl(t) = (t�p1)�: : :�(t�pl). The rate of convergence is dominatedby the spectral radius of the error transfer operator given by (4). The minimization of this2



spectral radius with respect to the shift parameters p1; : : : ; pl leads to the ADI minimaxproblem fp1; : : : ; plg = argminfp1;:::;plg�C� maxt2�(A) jrl(t)jjrl(�t)j; (5)which delivers criteria for the optimal and suboptimal choice of these parameters. Here�(A) denotes the spectrum of A. The minimax problem (5) is solved for equations withsymmetric matrices A, e.g., [Wac63]. Unfortunately, there is still a lack in theory for thegeneral case, where the eigenvalues of A are possibly not real. Contributions to the solutionof the complex ADI minimax problem can be found in [Bag69, CR96, EW91, LR93, Sta91,Sta92, Sta93, Wac88a, Wac90], for example.The Smith method [Smi68] is derived from the Stein equationX � STXS = T (6)with S = (A� pI)(A+ pI)�1 and T = �2p(A+ pI)�TBBT (A+ pI)�1; (7)which is equivalent to (1) for any real p < 0. Under this assumption the sequence fXSi g1i=0generated by XS0 = 0; XSi+1 = T + STXSi S (8)converges to the solution X and the iterates can be written asXSi = iXj=1 �Sj�1�T TSj�1: (9)The Smith method can be shown to be mathematically equivalent to ADI when p =p1 = p2 = : : :, but in general it converges much slower than ADI with nonconstant shiftparameters. Nevertheless, it has become quite popular since there exists an acceleratedversion, the so-called squared Smith method. This version is based on the recursionXS0 = 0; XS20 = T; XS2j+1 = XS2j + �S2j�T XS2jS2j ;which is derived from (9). Thus, the subsequence nXS2jo1j=0 can be obtained with linearcomputational cost. Despite the quadratic rate of convergence, one should be reluctant toapply the squared method to large, sparse equations. The matrices S2j , which have to besquared explicitly in each step of the iteration, are dense even if A is sparse.If the structure of the matrix A enables the e�cient solution of linear systems (AT +pI)x = y, e.g., when A is a banded matrix, both ADI and the standard Smith methodshould be considered as sparse matrix techniques. However, since the iterates are formedexplicitly in both methods, neither method can be applied when the dimension n becomesso large that dense n-�-n matrices cannot be stored in memory. There are only a few itera-tive methods which can really be used to solve very large, sparse Lyapunov equations, e.g.,3



[GL94, HP88, HPT96, HR92, JK94, Saa90]. These methods produce low rank approxima-tions to the solution X. The iterates are stored implicitly in factored form, which decreasesthe memory requirement signi�cantly. However, these methods often fail to determine ap-proximate solutions of high accuracy. Moreover, the rank of their approximations tends tobe relatively large. This is indicated by the numerical experiments reported in the originalreferences as well as in our own experiments with one of the classical low rank methodsintroduced in the sequel.The method we refer to as full orthogonalization method for Lyapunov equations (FOM-L) [HR92, JK94, Saa90] could be considered as an extension of FOM for systems of linearequations [Saa81] to matrix equations. Note that this method is frequently called Arnoldimethod or Galerkin method. FOM-L is based on the Arnoldi process (if m = 1) or theblock Arnoldi process (if m > 1) applied to the matrices AT and B. The purpose of thisprocess is to establish an orthonormal basis Vk 2 Rn;w (w � mk) in the Krylov subspaceKk(AT ; B) = range�� B ATB �AT�2B : : : �AT�k�1B �� :For details of the Arnoldi process or its block version see, e.g., [Arn51, GL96, Wil65]. TheFOM-L iterates XFk de�ned by XFk = Vk ~XkV Tkare required to ful�l the Galerkin conditionV Tk �ATXFk +XFk A+BBT� Vk = 0:Hence, ~Xk 2 Rw;w is given by the solution of the Lyapunov equationV Tk ATVk ~Xk + ~XkV Tk AVk = �V Tk BBTVk: (10)If the symmetric part of A is negative de�nite, it can be shown by Bendixon's theorem(e.g., [MM92]) that V Tk AVk is stable. Under this assumption the Lyapunov equation (10)has a unique solution and the matrices ~Xk and XFk are symmetric, positive semide�nite.If w is much smaller than n, this equation can be solved by direct standard methods. Theproblem with FOM-L is that it converges rather slowly in many cases, i.e., relatively largevalues of k and w are necessary to attain a quite accurate approximate solution. This inturn may cause problems because the dense n-�-w matrix Vk has to be stored in memory.The remainder of this paper is organized as follows. In Section 2 we introduce thecyclic Smith method, which is a fast converging generalization of the Smith method. It isrelated to the ADI iteration with cyclic shift parameters and yields a sequence of full rankiterates. Low rank versions of ADI and the cyclic Smith method are proposed in Section 3.For each of these methods a set of suboptimal ADI parameters is needed. In Section 4 wepropose a heuristic procedure for determining such parameters, which does not require anya priori knowledge of the spectrum of A. The cyclic low rank Smith method is not onlyan attractive means for solving large Lyapunov equations. It also enables us to improvethe e�ciency of some \outer" control algorithms. This is illustrated in Sections 5 and 6 by4



example algorithms for model reduction and optimal control. Numerical tests in Section 7demonstrate the e�ciency of the cyclic low rank Smith method combined with the heuristicprocedure for determining ADI shift parameters. Conclusions are provided in Section 8.2 Smith(l) { a generalization of the Smith methodIn this section we study the special case of the ADI iteration where l di�erent shift param-eters are applied in a cyclic manner. In other words, we require pi+jl = pi for j = 1; 2; : : :in (2). The practical importance of this special case is illustrated by an experiment withthe following medium scale example.Example 1 [HPT96] This example describes the boundary control of the heat ow ina thin rod. The discretization of the underlying parabolic di�erential equation by �nitedi�erences results in a dynamical system (18). This in turn leads to a Lyapunov equationof order n = 400. The matrices A 2 Rn;n and B 2 Rn;1 are de�ned asA = 2666666664 �1=h 1=h 0 � � � 01=h �2=h 1=h . . . ...0 1=h �2=h . . . 0... . . . . . . . . . 1=h0 � � � 0 1=h �2=h 3777777775 and B = 266666664 0......01=h 377777775with h = 1=(n + 1).We investigate the dependence of the convergence speed of ADI on l. To this end wedetermine the extremal eigenvalues of the symmetric matrix A. After that we computesets of optimal shift parameters for several values of l by an algorithm due to Wachspress[Wac63, Section 2].Table 1: ADI applied to Example 1. Numbers of iterations required to attain di�erentrelative residual norms depending on the number of di�erent shift parameters.relative residual norml 10�4 10�6 10�8 10�10 10�121 851 1368 1903 2448 30012 53 85 119 153 1874 17 29 41 53 658 15 23 31 39 4916 13 21 29 37 4132 13 21 29 33 41Table 1 shows the numbers of iterations required to attain di�erent relative residualnorms (i.e., ������ATXi +XiA+BBT ������F = ������BBT ������F � tol with tol = 10�4; 10�6; : : :). It reveals5



two facts. First, the convergence is very slow for l = 1, which corresponds to the Smithmethod, but a moderate increase of l (say l = 4) accelerates it to a high degree. Second, thespeed of convergence is hardly improved by a further increase of l. In fact, this experimentand a number of further tests not reported here indicate that a relatively small number ofdi�erent ADI parameters is su�cient to achieve rapid convergence of ADI.Although the speed of convergence of the Smith iteration is often unsatisfactory, thismethod has two algorithmic advantages over ADI. First, there exists a squared version ofthe Smith method. Second, the low rank version of the Smith method, which is presented ina generalized form in Section 3, is more e�cient with respect to the amount of computationthan that of ADI. This leads to the question whether there exists a generalization of theSmith method that is mathematically equivalent to the fast converging ADI with cyclicparameters. Indeed, such a generalization is easily derived from (4). If we extend theoriginal de�nition of the matrices S and T given in (7) toS = lYj=1(A� pjI)(A+ pjI)�1 and T = XAl ; (11)then (4) is equivalent to the Stein equation X �STXS = T , which has the same structureas (6). This Stein equation is the base for the generalized version of the Smith iterationwe refer to as cyclic Smith method (Smith(l)). The only essential di�erence between thestandard and the cyclic version is that the matrix T is given explicitly in the �rst case,whereas it is the result of l steps of the ADI iteration with shift parameters p1; : : : ; plapplied to (1) in the second. Analogous to (8), the Smith(l) iterates are generated by therecursion X0 = 0; X(i+1)l = T + STXilS: (12)For consistency we label these iterates by multiples of l. Note that, in contrast to ADI,standard Smith method, and FOM-L, the iterates of Smith(l) are not provided with anextra superscript. Using (4) and (11), it is easy to prove that Xil = XAil actually holdsfor i = 1; 2; : : :, if the ADI iterates XAil are generated by use of l-cyclic parameters. As aconsequence, Smith(1) is identical with the classical Smith method. In fact, the implemen-tation (12) of Smith(l) in not more favorable than that of the ADI iteration (2) if sparseLyapunov equations are to be solved. It should rather be considered as a preliminary stepfor deriving the low rank method LR-Smith(l) presented in the next section.The squared version of Smith(l), which is derived analogously to that of the standardSmith method, is not considered here because it involves dense n-�-n matrices in the com-putation. However, such a version may be of interest for large, dense Lyapunov equations.For l = 2 such a generalization of the squared Smith method has been proposed by Davisonand Man [DM68]. 6



3 LR-ADI and LR-Smith(l) { low rank versions ofADI and Smith(l)For the remaining part of this paper we assume m << n. This enables us to establish a lowrank version of the ADI we will refer to as LR-ADI. This iterative method again is neededto construct the cyclic low rank Smith method. The key idea is to substitute the ADI andSmith(l) iterates by productsXAi = ZAi ZAi T and Xil = ZilZTil ; (13)respectively. This is always possible because the iterates XAi and Xil can be shown recur-sively to be symmetric and positive semide�nite. Although a similar approach is pursued inseveral methods for Lyapunov equations, e.g., [AL93, BQO97, Ham82, HR92, JK94, Saa90],this has not been done in combination with ADI or Smith-like methods.LR-ADI is based on the ADI single sweep (3). Using (13) this formula can be rewrittenin terms of the matrices ZAi asZAi = h (AT � piI)(AT + piI)�1ZAi�1 p�2pi(AT + piI)�1B i (14)with ZA1 = q�2p1(AT + p1I)�1B:The number of columns in the matrices ZAi is enlarged by m in each step of the iterationand rank(XAi ) � mi. Although the memory requirement and the computational cost periteration are linearly raising, LR-ADI poses an e�cient iterative scheme for solving large,sparse Lyapunov equations since, in general, the number of ADI iterations is much smallerthan the dimension of the problem. In particular, LR-ADI is of interest if a sequencefpig1i=1 of di�erent shift parameters (e.g., [Bag69, Sta91, Sta93]) is available.If the number of di�erent ADI parameters is limited, the cyclic low rank Smith method(LR-Smith(l)) poses a more e�cient alternative to LR-ADI. The algorithm LR-Smith(l)consists of two stages. First, the l-th iterate ZAl of the LR-ADI method with the shiftparameters p1; : : : ; pl is computed. Analogous to (11), this matrix is used for the initial-ization Z(l) = ZAlZl = Z(l):Second, the actual LR-Smith(l) iteration is performed byZ((i+1)l) = STZ(il) (15)Z(i+1)l = h Zil Z((i+1)l) i ;where S is given by (11). Note that the computational cost per iteration step (15) isconstant, which is an important advantage of LR-Smith(l) over LR-ADI. It is straightfor-ward to prove that LR-Smith(l) is linked to Smith(l) by (13). Moreover, LR-Smith(l) and7



ADI are mathematically equivalent in the sense of ZilZTil = XAil , if the shift parametersp1; : : : ; pl are used cyclically in the ADI iteration. However, determining Zil by LR-Smith(l)is generally much more e�cient than computing Xil by ADI if n is large and m is small.Concerning the implementation of the low rank methods, a few remarks should bemade. Neither the matrices (AT + piI)�1 in LR-ADI nor the matrix S in LR-Smith(l) areformed explicitly. Instead, the sparse matrices AT + piI are factorized a priori (e.g., byLU factorizations) and the iterations (14) and (15) involve forward and backward substi-tutions. Of course, a certain amount of �ll-in is generally produced by these factorizations.Nevertheless, this procedure is much more e�cient than computing the inverses of AT+piIexplicitly when the matrix A is banded. Alternatively, iterative methods can be utilizedto solve sparse, linear systems of the type (AT + piI)x = y, e.g., [Saa96].Theoretically, a squared version of LR-Smith(l) can be derived as well. It requires toform the dense matrix S explicitly. Hence, such a method should not be applied to large,sparse Lyapunov equations since its memory requirement is O(n2) and the computationalcost is O(n3) even if A is sparse.In some algorithms in control theory only the product of X with a matrix V containinga few columns is sought instead of the solution matrix X itself. In this case LR-Smith(l)can be very e�cient with respect to the memory requirement because the iterates Zil neednot be stored. The product XV can be evaluated by accumulating the sum on the righthand side of XV = limi!1ZilZTil V = 1Xi=1 Z(il) �Z(il)TV � (16)in the course of the iteration (15). Such a procedure has been proposed in [Saa90, Section3] in a similar context.In general, it is not known a priori how many LR-Smith(l) steps are necessary to attaina prescribed accuracy of the approximate solution. Therefore, it is necessary to computerepeatedly the Frobenius norm of the current residual matrix. Unfortunately, this matrixcannot be formed explicitly if the dimension of the problem is large. In this case it isadvisable to compute the norm of the residual by������ATZilZTil + ZilZTilA+BBT ������F = ��������h ATZil Zil B i h Zil ATZil B iT ��������F= ������R1RT2 ������F ; (17)where R1 and R2 are the square, upper, triangular matrices resulting from the \economysize" QR decompositions Q1R1 = h ATZil Zil B i and Q2R2 = h Zil ATZil B i.There are a number of approaches to a parallelization of LR-Smith(l). The factorizationof the matrices AT +piI can be realized e�ciently in parallel using l processors. Moreover,in (15) the products of ST with the single columns of Z(il) can be computed simultaneously.The computational cost for realizing one step of (15) is proportional to m. If m > 1, theright hand side matrix of the Lyapunov equation (1) can be split up as�BBT = � mXj=1 bjbTj8



with B = h b1 : : : bm i, which has been proposed in [HR92, Section 5] in a similarfashion. For a parallel computer with m processors this o�ers an ideal parallelization,because the resulting m Lyapunov equations with right hand side matrices of rank 1 canbe solved simultaneously.4 A heuristic procedure for determining suboptimalADI shift parametersThe performance of the ADI-based methods described in the previous sections dependsstrongly on the choice of the shift parameters pi. The conventional approach to the com-putation of these parameters is to cover the spectrum of A by a domain 
 � C� and tosolve the ADI minimax problem (5) with respect to 
 instead of �(A). For a few shapes ofthe domain 
 (e.g., intervals, rectangles, circles, trapezoids) optimal or at least suboptimalshift parameters have been found, e.g., [Sta91, Wac66, Wac90]. Moreover, several proce-dures for constructing sequences of suboptimal ADI parameters for more general domainshave been proposed in [Bag69, Sta91, Sta93, CR96]. However, all these approaches, whichare based on approximation theory, require knowledge of certain bounds of the spectrum.In rare cases such bounds can be computed analytically, but mostly one has to determinebounds a priori by numerical methods. If A is a symmetric, banded matrix it is reasonableto compute the spectrum by the QR method. In the unsymmetric case the most simpleapproach might be to estimate the extreme eigenvalues of the symmetric and the skew-symmetric part of A by power iteration or inverse iteration, e.g., [GL96], which deliverbounds for the spectrum of A by Bendixon's theorem, e.g., [MM92]. Of course, this pro-cedure cannot be applied if the symmetric part of A is inde�nite, since the rectangularobtained in this way is not a subset of C� . Alternatively, estimates for the eigenvalues ofA can be obtained by the Arnoldi process. However, this method can fail in the inde�nitecase, too, because it may deliver estimates with nonnegative real parts.In this section, we propose a procedure for determining a set P of l di�erent suboptimalADI shift parameters without �rst �nding a superset 
 of the spectrum. The resulting al-gorithm is easy to implement. Although it relies more on heuristics than on approximationtheory, the numerical results are quite satisfactory. Our algorithm does not require any apriori knowledge of the spectrum of A. All information about this matrix is obtained bya pair of Arnoldi processes related to the matrix A itself and its inverse. We choose theinitial vector r of these processes at random. The integers k+ and k� denote the numbersof Arnoldi steps in the processes for the matrices A and A�1, respectively. Writing theresult of k = k+ Arnoldi steps w.r.t. the pair (A; r) as a matrix equation, we get (e.g.,[GL96]) AVk = Vk+1 ~Hkwith Vk 2 Rn;k, ~Hk 2 Rk+1;k, V1 2 spanfrg, V Tk+1Vk+1 = Ik+1, (Vk+1)(1:n;1:k) = Vk.Moreover, Hk := ( ~Hk)(1:k;1:k) = V Tk AVk9



is an upper Hessenberg matrix. This matrix and its eigenvalues are called Ritz matrixand Ritz values, respectively. It is well known that the set R+ := �(Hk) represents anapproximation of the spectrum of A [Arn51]. Repeating this procedure with the inverse ofA delivers the set R�, the elements of which approximate the eigenvalues of A�1. Conse-quently, the set R := R+ [ 1=R� can be considered as a guess of the spectrum of A. TheRitz values obtained by the Arnoldi process tend to be located near the \outer" eigenval-ues, i.e., the eigenvalues near the convex hull of the spectrum. In particular, eigenvaluesof large magnitude are usually approximated well. In contrast, the elements of R+ aregenerally poor approximations to the eigenvalues near the origin. Therefore, we involvethe set 1=R� to approximate these eigenvalues. In fact, this procedure can have a drasticimpact on the speed of convergence of the iteration, which is shown by an example at theend of this section.The key idea of our heuristic procedure is to replace �(A) by R in (5), provided thatR � C� . Moreover, we choose the suboptimal ADI parameters P := fp1; : : : ; plg amongthe elements of R because the functionsP(t) = jrl(t)jjrl(�t)j = j(t� p1) � : : : � (t� pl)jj(t+ p1) � : : : � (t+ pl)jbecomes small over �(A) if there is one of the shifts pi in the neighbourhood of eacheigenvalue. Since the Lyapunov equations to be solved are real, we require P = �P. Thisensures the approximations ZAilZAil T and ZilZilT to be real as well.Based on these considerations we determine the elements of P as follows. Firstly,we detect the element �i 2 R which minimizes the function sf�ig over R. The set P isinitialized by either f�ig or f�i; ��ig. Afterwards, we successively augment the set P by theelements or pairs of elements of R, for which the maximum of sP is attained. In otherwords, the maximum of sP with respect to the current set P is replaced by a zero in there�ned function sP . This strategy is summarized in the following algorithm. Note thatthe heuristic applied in Step 7 is related to an algorithm by Bagby [Bag69]. The notationcard(P) is used for the number of elements contained in the set P.Algorithm 1 (Suboptimal ADI parameters)INPUT: A, l0, k+, k�OUTPUT: P1. Choose r 2 Rn at random.2. Perform k+ steps of the Arnoldi process w.r.t. (A; r) and compute the set of Ritz valuesR+.3. Perform k� steps of the Arnoldi process w.r.t. (A�1; r) and compute the set of Ritzvalues R�.4. R = f�1; : : : ; �k++k�g := R+ [ (1=R�)5. IF R 6� C� , STOP 10



6. Detect i with maxt2R sf�ig(t) = min�2Rmaxt2R sf�g(t)and initialize P := ( f�ig : �i realf�i; ��ig : otherwise :WHILE card(P) < l07. Detect i with sP(�i) = maxt2R sP(t) and set P := ( P [ f�ig : �i realP [ f�i; ��ig : otherwise :END WHILEStep 5 can be omitted ifA+AT is negative de�nite. This enables us to prove that A�1+A�Tas well as the symmetric parts of the Ritz matrices w.r.t. A and A�1 are negative de�nite,too. Otherwise, this algorithm can fail, although this has never been observed in ournumerical experiments. However, it is possible to construct a starting vector r whichmakes it fail in the inde�nite case.If Algorithm 1 stops at Step 5, it can be restarted with a new random vector r orthe values of k+ or k� can be increased. The latter is motivated by the observation thatRitz values obtained by the Arnoldi process tend to approximate the spectrum of a matrixbetter if the number of Arnoldi steps is enlarged. More sophisticated approaches mayinvolve implicit restart techniques [Sor92] to purge the sets R+ and R� of elements withnonnegative real parts.In the remainder of this section we show the importance of employing the Ritz valuesw.r.t. A�1 in Algorithm 1. In Figure 1 we compare two runs of LR-Smith(10) applied toExample 1 given in Section 2 with di�erent sets of ADI shift parameters. For the �rst run weinclude the Ritz values w.r.t. A�1 in the computation of the shift parameters by Algorithm1. More precisely, we choose (k+; k�) = (20; 10). In contrast, we set (k+; k�) = (30; 0) fordetermining the parameter set P for the second run. In either case P consists of l = l0 = 10elements.Figure 1 shows that the convergence of LR-Smith(10) is fast and linear for the set Pobtained by use of the parameters (k+; k�) = (20; 10). In contrast, for (k+; k�) = (30; 0)the convergence is very fast in the �rst stage, but in the second stage it almost stagnates.This phenomenon can be explained as follows. There are a few eigenvalues which are poorlyapproximated by the set R. As a consequence, the function sP(t) delivered by Algorithm1 is almost 1 if t is equal to one of these eigenvalues, but it is relatively small if t belongsto the majority of eigenvalues which are approximated well. Thus, the component of theresidual related to the latter sort of eigenvalues is quickly damped in the �rst stage ofthe iteration, whereas the iteration is delayed in the second stage by a small number ofeigenvalues approximated poorly by R+. These eigenvalues, which are typically of smallmagnitute, are usually represented well by elements of 1=R�.11



Figure 1: Example 1. Convergence of the LR-Smith(10) iteration with two di�erent sets ofshift parameters. These sets are determined by Algorithm 1 with (k+; k�) = (20; 10) and(k+; k�) = (30; 0).
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(20,10)5 Applications I: model reductionLyapunov equations have to be solved in a number of control algorithms for the dynamicalsystem _x(� ) = Ax(� ) +Bu(� )x(0) = x0 (18)y(� ) = Cx(� );which is described by the matrix triplet (A;B;C) with A 2 Rn;n, B 2 Rn;m, and C 2 Rq;n.The entries of u, x, and y are called input, state, and output, respectively. If m and qare small and A is large, sparse, and stable, a thorough integration of LR-Smith(l) inthese control algorithms can improve their overall complexity by a high degree. This isdemonstrated for an established model reduction method.The purpose of model reduction is to replace the dynamical system (A;B;C) by areduced system (Â; B̂; Ĉ) with Â 2 Rk;k, B̂ 2 Rk;m, Ĉ 2 Rq;k, k < n, such that the input-output behavior of the reduced system approximates that of the original system in somesense. Here, we consider the implementation of the balanced truncation technique proposedby Safonov and Chiang [SC89], which requires to compute the reachability Gramian XBand the observability Gramian XC . See also [Moo81, Glo84] for details. The matrices XBand XC solve the Lyapunov equationsAXB +XBAT = �BBT (19)12



ATXC +XCA = �CTC (20)and it can be shown that the eigenvalues of the product XBXC are real and nonnega-tive [Moo81]. The standard implementation of the method is sketched in the followingalgorithm.Algorithm 2 (Sketch of the model reduction method by Safonov and Chiang)INPUT: A, B, C, kOUTPUT: Â, B̂, Ĉ1. Solve (19) and (20).2. Determine the k largest eigenvalues of XBXC and compute orthonormal bases VB; VC 2Rn;k of the corresponding right and left, invariant subspaces, respectively, by means ofordered Schur forms.3. UC�UTB := V TC VB (singular value decomposition)4. SC := VCUC��1=2; SB := VBUB��1=25. Â := STCASB; B̂ := STCB; Ĉ := CSBAssuming k << n it is obvious that the major part of the computational cost and thememory requirement are related to the �rst two steps. If m and q are very small, whichis actually the case in many applications, the Lyapunov equations in Step 1 can be solvede�ciently by LR-Smith(l). In general, this method produces quite accurate approximatesolutions, the rank of which is much less then the dimension n, provided that n is largeand the ADI shift parameters are chosen properly. Note for instance the results of thenumerical experiments with Example 2 given by Table 2 in Section 7. Here the solutionmatrix XB of order n = 10 000 is approximated very accurately by a matrix ZBZTB whichis only of rank rB = 100! What follows is a proposal for an implementation of Step 2 whichstrongly bene�ts from the low rank property of the solution matrices.Suppose that the application of LR-Smith(l) in Step 1 delivers a pair of (approximate)solutions in factored form as XB = ZBZTB and XC = ZCZTC , where ZB 2 Rn;rB, ZC 2 Rn;rC,and maxfrB; rCg << n. Taking the low rank structure into account, we determine a singularvalue decomposition (SVD) of the product XBXC . For this reason, we �rst compute\economy size" QR factorizations ZB =: QB1RB and ZC =: QC1RC with QB1 2 Rn;rB andQC1 2 Rn;rC. After that an \economy size" SVDRBZTBZCRTC =: QB2DQTC2with the nonsingular diagonal matrix D 2 Rr;r and r � minfrB; rCg << n is computed.De�ning QB := QB1QB2 and QC := QC1QC2, we �nally get the desired \economy size"SVD of XBXC byXBXC = ZBZTBZCZTC = QB1RBZTBZCRTCQTC1 = QBDQTC : (21)13



By means of this equation we will now compute an orthogonal basis for the right, domi-nant, invariant subspace of XBXC . Obviously, the right, invariant subspace related to thenonzero eigenvalues of XBXC coincides with the range of QB. Because ofXBXCQB = ZBZTBZCZTCQB = QBDQTCQB (22)all nonzero eigenvalues of XBXC are eigenvalues of the matrix DQTCQB as well. If r << n,the distinct merit of our approach is that we have to determine the dominant eigenvaluesof the r-�-r matrix DQTCQB instead of those of the n-�-n matrix XBXC itself. Moreprecisely, we compute an ordered Schur factorizationDQTCQB =: PMP T = h P1 P2 i " M11 M120 M22 # h P1 P2 iT ; (23)where the block M11 2 Rk;k (k � r) corresponds to the k largest eigenvalues of M . Thus,the desired orthonormal basis in the right, dominant, invariant subspace is formed by thecolumns of the matrix VB := QBP1 sinceXBXCVB = ZBZTBZCZTCQBP1 = QBDQTCQBP1 = QBP1M11 = VBM11;which is a consequence of (22) and (23). An orthonormal basis in the left, dominant,invariant subspace of XBXC is obtained by an analogous procedure.This realization of Step 2 requiresO(nmaxfr2B; r2Cg) ops and O(nmaxfrB; rCg) wordsof memory, whereas the conventional implementation has a complexity of O(n3) ops andO(n2) words of memory. Thus, if maxfrB; rCg << n, we expect a considerable gain ine�ciency.6 Applications II: optimal controlIn this section we consider the linear-quadratic optimal control problem where the costfunctional J (x0; u) = 12 Z 10 y(� )TQy(� ) + u(� )TRu(� )d� (24)with Q = QT � 0 and R = RT > 0 (25)is to be minimized and the dynamics (18) represents the constraints. The solution of thisproblem is determined by the linear feedbacku(� ) = �R�1BTPx(� ) =: �KTx(� ); (26)where P is the symmetric, positive semide�nite, stabilizing solution of the algebraic Riccatiequation (ARE) CTQC +ATP + PA� PBR�1BTP = 0; (27)14



e.g., [Meh91, Sim96]. A solution of this ARE is called stabilizing i� each eigenvalue of thematrix A � BR�1BTP has a negative real part. Under moderate assumptions a uniquestabilizing solution of (27) exists, e.g., [LR95].The Newton method proposed by Kleinman [Kle68] is one of the standard methods forcomputing the stabilizing solution of the ARE (27).Algorithm 3 (Newton method for the ARE (27))INPUT: A, B, C, Q, R, P0 (e.g., P0 = 0, if A is stable)OUTPUT: PFOR k = 1; 2; : : :1. Kk�1 := P Tk�1BR�12. Solve (A�BKTk�1)TPk + Pk(A�BKTk�1) = �CTQC �Kk�1RKTk�1 for Pk.END FOR3. P := P1If the initial guess P0 is stabilizing, which is for instance the case when P0 = 0, Algorithm3 yields a sequence of stabilizing iterates. The convergence of the Newton method isquadratic, e.g., [LR95].Due to (25) the matricesQ and R can be factored, e.g., by a Cholesky decomposition, asQ = ~Q ~QT and R = ~R ~RT , where the matrices ~Q and ~R have full rank. Thus the Lyapunovequations to be solved in Step 2 have the structure~ATkX +X ~Ak = � ~Bk ~BTkwith the stable matrix ~Ak = A � BKTk�1 and the matrix ~Bk = h CT ~Q Kk�1 ~R i. Notethat ~Bk contains at most m+ q columns. If m and q are very small, these equations can besolved by LR-Smith(l). The Lyapunov solutions pose approximate solutions of the ARE(27). Therefore, the combination of the Newton method and LR-Smith(l) can be utilizedto determine low rank solutions of Riccati equations. In fact, this approach enables thesolution of a class of large Riccati equations, where the explicit solution matrix is too largeto be stored in memory.A second merit, which is maybe more important in the context of the optimal controlproblem (18,24), relies on the fact that mostly the feedback matrix K is desired, insteadof the Riccati solution P . In the sequel, we propose a modi�cation of Algorithm 3 whichcomputes K without forming factored or explicit Riccati or Lyapunov iterates at all. Thebasic idea is to generate the matrix Kk itself in Step 2 instead of solving the Lyapunovequation and computing the product Kk = PkBR�1 afterwards. The matrix Kk is formedin the course of the \inner" iteration, i.e., the LR-Smith(l) iteration, as a series of type(16), where V is replaced by BR�1. Note that the partial sum of the �rst i terms ofthis series is denoted by Kk;i in Algorithm 4. Eventually, the desired matrix K is thelimit of the matrices Kk = Kk;1 for k ! 1. The result of this strategy is stated in the15



following algorithm, which is best understood as a version of Algorithm 3 with an innerloop consisting of interlaced sequences based on (15) and (16).Algorithm 4 (Computation of the optimal feedback K)INPUT: A, B, C, Q, R, K0 (such that A�BKT0 is stable; e.g. K0 = 0), k+, k�, l0OUTPUT: KFOR k = 1; 2; : : :1. Determine ADI shifts pk;1; : : : ; pk;l with respect to the matrix ~Ak = A�BKTk�1by Algorithm 1.2. ~Bk := h CT ~Q Kk�1 ~R i3. Z(l)k := ZAk;l, which denotes the l-th iterate of LR-ADI with shifts pk;1; : : : ; pk;lapplied to ~ATkX +X ~Ak = � ~Bk ~BTk .4. Kk;1 := Z(l)k �Z(l)k TBR�1�FOR i = 2; 3; : : :5. Z(il)k := STk Z((i�1)l)k with Sk = lQj=1( ~Ak � pk;jI)( ~Ak + pk;jI)�16. Kk;i := Kk;i�1 + Z(il)k �Z(il)k TBR�1�END FOR7. Kk := Kk;1END FOR8. K := K1For the remaining discussion in this section we assume that computing an LU factorizationof the sparse matrix A does not produce a large amount of �ll-in. In particular, this isguaranteed if A is a banded matrix, which is the case in many applications. Otherwise,it is often possible to transform a given matrix A into a matrix of such shape by severalreordering algorithms, e.g., [Cut72]. Under the assumption above, linear systems withcoe�cient matrices AT + pk;jI can be solved e�ciently. Dense matrices with the structureA�BKTk�1 or A�BKTk�1+pk;jI, which are involved in Steps 1, 3, and 5, are never formedexplicitly. Linear systems with these matrices are solved by application of the Sherman-Morrison formula, e.g., [GL96]. Concerning the complexity of Algorithm 4, it should benoted that except for A all matrices involved in the computation consist of a relativelysmall number of columns. More precisely, the matrices Kk;i and Kk contain m columnswhereas the matrix Z(il) has at most l(m + q) columns. We do not state an estimatefor the memory requirement since this quantity strongly depends on the amount of �ll-inproduced by the factorizations of the matrices A + pk;jI. Likewise, we do not give an16



estimate for the computational cost, because it is a�ected by several factors such as thespeed of convergence of the inner and outer iterations as well as the choice of the stoppingcriteria in both loops. Nevertheless, it is obvious that Algorithm 4 is favorable comparedto the conventional implementation if n is large and m, q, l are small.7 Numerical experimentsIn this section, we provide four examples of large scale Lyapunov equations. We displaythe results of numerical experiments with LR-Smith(l) applied to these examples. Forcomparison we also show the test results obtained by FOM-L. All experiments were carriedout using MATLAB 5.1 and IEEE double precision arithmetic (machine precision � �2:22�10�16) on an HP9000/800 workstation at the TU Chemnitz, Germany. We characterizethe performance of the iterative methods by both the number of iterations and the numberof ops required to attain prescribed tolerances for the accuracy, which is measured by therelative Frobenius norm of the residual������ATXi +XiA+BBT ������FjjBBT jjF ;where Xi denotes the i-th iterate of LR-Smith(l) or FOM-L. Note that for LR-Smith(l)each sweep of (15) is counted as l iterations. The residual norm is determined after eachof these sweeps. In our implementation the norms of the residual are computed by (17)since the dimensions of the examples are too large to form the residual matrix explicitly.We consider the following examples in our tests.Example 2 The structure of this example coincides with that of the medium scale Example1, but here the Lyapunov equation is of order n = 10 000.Example 3 [HPT96] This example corresponds to a second order model of dimensionn0 which is equivalent to a dynamical system (18) of dimension n = 2n0. The matricesA 2 Rn;n and B 2 Rn;1 are given asA = " 0n0 In0A21 �dIn0 # and B = 266664 0...01=h2 377775with A21 = 2666666664 �k=h2 k=h2 0 � � � 0k=h2 �2k=h2 k=h2 . . . ...0 k=h2 �2k=h2 . . . 0... . . . . . . . . . k=h20 � � � 0 k=h2 �2k=h2 3777777775 2 Rn0;n0 ;17



where n = 2n0 = 3000, h = 1=(n + 1), k = 10, and d = 1. For our numerical experimentsthis system has been reordered by applying the permutation (n0+1; 1; n0+2; 2; : : : ; 2n0; n0)to the columns and rows of A, such that it becomes a banded matrix with a very smallbandwidth.Example 4 This example describes a model of heat ow with convection in the domain
 = (0; 1)2. The underlying parabolic di�erential equation has the structure_x = �x� f1(�) @x@�1 � f2(�) @x@�2 + b(�)u(� )with x = x(�; � ), � = h �1 �2 iT 2 
, � 2 [0;1). The coe�cient functions in the con-vection term are de�ned as f1(�) = 10�1 and f2(�) = 1000�2. The di�erential equationis discretized by �nite di�erences using a grid with equidistant spacing and 50 � 50 gridpoints. The resulting sti�ness matrix A 2 R2500;2500 is sparse, stable and its bandwidth is50. The matrix B 2 R2500;1 is chosen at random.Example 5 This example originates from a nonlinear descriptor system arising in chro-matography. For more background information we refer to [KG97]. This descriptor systemhas been linearized in a working point and transformed into a dynamical system (18). Toreduce the bandwidth of the matrix A, we applied the reverse Cuthill-McKee algorithm,which is provided as build-in function in MATLAB. The reordered matrix has the band-width maxi;j:(A)ij 6=0 ji � jj = 31. It is stable, but its symmetric part is inde�nite. TheLyapunov equation is of order n = 3600. The underlying dynamical system has four in-puts (m = 4) and two outputs (q = 2). In our numerical experiment we used the �rstcolumn of the matrix B in (18) to create the right hand side of the Lyapunov equation.Thus, the computational cost for solving equation (19) is about four times the number ofops given in Table 3, whereas solving (20) requires about twice the cost displayed in thistable.In the sequel, we investigate the convergence speed of LR-Smith(l) applied to Examples2{5. It should be noted that these examples pose problems of very large scale. The prop-erties of these examples are not favorable for iterative methods. Whereas the matrix A issymmetric, but ill-conditioned in Example 2, it has an inde�nite symmetric part in Exam-ples 3{5. Note that we do not restrict ourself to examples with very small bandwidth forwhich our method is most e�ective. For all examples we determine the shift parametersby Algorithm 1, where the input parameters (k+; k�; l0) of this algorithm are chosen as(40,20,10) for Examples 2, 4, 5 and (60,0,20) for Example 3. The latter is one of the fewexamples where slightly better results are obtained by ignoring the Ritz values w.r.t. A�1in Algorithm 1. It is worth noting that this algorithm failed neither for Examples 2{5 norin any of our further numerical tests not reported here.Table 2 displays the numbers of iterations required by LR-Smith(l) to attain di�erentrelative residual norms. For each example, LR-Smith(l) delivers, with reasonable conver-gence speed, a solution of satisfactory accuracy. Consequently, the rank of the approximate18



solutions and the memory size needed to store them are comparably low. Table 3 showsthe computational costs in terms of the number of ops.Table 2: LR-Smith(l). Number of iterations required to attain di�erent relative residualnorms. relative residual normExample 10�4 10�6 10�8 10�10 10�122 30 50 60 80 1003 42 63 63 84 > 3154 50 60 80 90 1005 40 50 70 80 > 300Table 3: LR-Smith(l). Number of ops required to attain di�erent relative residual norms.relative residual normExample 10�4 10�6 10�8 10�10 10�122 9.5e+07 1.3e+08 1.5e+08 1.9e+08 2.2e+083 2.2e+08 3.4e+08 3.4e+08 4.6e+08 >1.8e+094 1.4e+09 1.7e+09 2.1e+09 2.3e+09 2.5e+095 7.0e+08 8.6e+08 1.2e+09 1.3e+09 >4.9e+09For comparison, we provide the results delivered by FOM-L in Table 4. In contrastto LR-Smith(l), FOM-L fails to compute accurate solutions within a reasonable numberof iterations in two cases. In Table 5 the corresponding numbers of ops are displayed.Furthermore, the last column of this table shows estimates for the expected computationalcost of the Bartels-Stewart method. Note that it was impossible to solve the large scaleLyapunov equations of Examples 2{5 by the Bartels-Stewart method due to extensivememory requirement of this method. However, even if the available memory was not thelimiting factor for the application of this method, a comparison of the op estimate forthe Bartels-Stewart method with the number of ops required by LR-Smith(l) shows thesuperiority of our low rank method.Table 4: FOM-L. Number of iterations required to attain di�erent relative residual norms.relative residual normExample 10�4 10�6 10�8 10�10 10�122 49 > 300 > 300 > 300 > 3003 61 95 203 > 300 > 3004 166 207 254 298 > 3005 > 300 > 300 > 300 > 300 > 30019



Table 5: FOM-L and Bartels-Stewart method. Number of ops required by FOM-L toattain di�erent relative residual norms. Estimates for the op count of the Bartels-Stewartmethod are shown in the last column.relative residual norm for FOM-L Bartels{Example 10�4 10�6 10�8 10�10 10�12 Stewart2 1.1e+08 >4.2e+09 >4.2e+09 >4.2e+09 >4.2e+09 2.5e+133 6.6e+07 1.8e+08 1.1e+09 >2.7e+09 >2.7e+09 6.8e+114 6.0e+08 1.0e+09 1.8e+09 2.7e+09 >2.7e+09 3.9e+115 >3.1e+09 >3.1e+09 >3.1e+09 >3.1e+09 >3.1e+09 1.2e+128 ConclusionsThis paper addresses the numerical solution of large, sparse, stable Lyapunov equationswith right hand side matrices of low rank. We have presented the iterativemethods LR-ADIand LR-Smith(l), which deliver low rank approximations to the solution matrix. LR-ADIand LR-Smith(l) are mathematically equivalent to the ADI iteration with a sequence ofarbitrary shift parameters or with a set of l cyclic shift parameters, respectively. In thispaper, LR-Smith(l) is of particular interest because the proper choice of l di�erent shift pa-rameters, where l is of moderate size (say l = 10), generally ensures a rapid convergence ofADI. The computational cost per iteration is constant for LR-Smith(l), but it is increasingfor LR-ADI. Furthermore, we have presented a heuristic algorithm for determining a setof l suboptimal ADI parameters. The heuristic algorithm is easy to implement and doesnot require any a priori knowledge about the spectrum of the matrix A. All informationabout this matrix is gained from a pair of Arnoldi processes. Thus, LR-Smith(l) combinedwith the algorithm for determining the ADI parameters can be considered as a \black box"solver for large, sparse, stable Lyapunov equations. In general, the computational costsof LR-Smith(l) and LR-ADI are much smaller than that of the classical implementationof the ADI iteration. In particular, if A is a banded matrix, the memory requirements ofboth methods are moderate because the low rank iterates are e�ciently stored in factoredform. This allows to solve Lyapunov equations the order of which is so large that theexplicit solution cannot be stored in computer memory. In general, LR-Smith(l) convergesfast compared to other low rank methods, such as FOM-L. As a consequence, it deliversapproximate solutions of very low rank. For instance, in Example 2, the largest of our testexamples, the solution matrix of order 10 000 is approximated quite accurately by a matrixof rank 100. Considering this example, a comparison of LR-Smith(l) with direct standardmethods, such as Bartels-Stewart method or Hammarling method, reveals the e�ciencyof the low rank method. The estimated computational and memory costs of the directstandard methods exceed those of LR-Smith(l) by factors 100 000 and 300, respectively!LR-Smith(l) is not only an e�cient means for solving an important class of Lyapunovequations, which arise in in a number of algorithms in control theory. Also, the thoroughintegration of this method into such \outer" algorithms can improve the overall complex-ity of these algorithms. This has been demonstrated using a model reduction method and20



an optimal control algorithm as examples. The model reduction method pro�ts from thelow rank property of the solution matrix. In contrast, only the product of the Lyapunovsolution with a matrix containing few columns is desired in the optimal control algorithm.Such products can be computed e�ciently by LR-Smith(l) without even forming approxi-mate solutions implicitly or explicitly. Whereas dense n-�-n matrices are involved in theconventional implementations of both example algorithms, this is avoided in the alterna-tive implementations presented in this paper. Hence, LR-Smith(l) o�ers an opportunityto apply these control algorithms to several large scale control problems for which thestandard implementations fail due to extensive computation or lack of memory. However,a prerequisite for involving LR-Smith(l) in these algorithms is that the numbers of inputsand outputs in the underlying dynamical system are small.Finally, we should point out two aspects of our low rank methods which can becomedisadvantageous in some situations. Both LR-ADI and LR-Smith(l) require the solutionof systems of linear equations (AT + pI)x = y. If the nonzero pattern of the matrix A isunfavorable, the solution of these systems as well as the algorithms itself may be expensivewith respect to both memory and computation. However, most sparse matrices arising inapplications are either banded matrices or matrices which can be reordered to achieve thisstructure. The second drawback of our method is the restriction to Lyapunov equationswith right hand side matrices of small rank. Nevertheless, if m >> 1, splitting up the righthand side matrix into a sum of low rank matrices enables an e�cient parallelization of ourmethod.References[AL93] F.A. Aliev and V.B. Larin. Construction of square root factor for solution of theLyapunov matrix equation. Sys. Control Lett., 20:109{112, 1993.[Arn51] W.E. Arnoldi. The principle of minimized iterations in the solution of the matrixeigenvalue problem. Quart. Appl. Math., 9:17{29, 1951.[Bag69] T. Bagby. On interpolation by rational functions. Duke J. Math., 36:95{104,1969.[BQO97] P. Benner and E. Quintana-Orti. Solving stable generalized Lyapunov equa-tions with the matrix sign function. Preprint SFB97-23, Technische Universit�atChemnitz, Chemnitz, Germany, 1997.[BS72] R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX+XB = C:Algorithm 432. Comm. ACM, 15:820{826, 1972.[CR96] D. Calvetti and L. Reichel. Application of ADI iterative methods to the restora-tion of noisy images. SIAM J. Matrix Anal. Appl., 17:165{186, 1996.21
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