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. ABSTRACT

A cyclic queueing network with two servers and a finite

number of customers is studied. The service times for server 1

form an EARMA(1,1) process (exponential mixed autoregressive

moving average process both of order 1) which is a sequence

of positively correlated exponential random variables; the

process in general is not Markovian. The service times for

the other server are independent with a common exponential

distribution. Limiting results for the number of customers

in queue and the virtual waiting time at server 1 are obtained.

Comparisons are made with the case of independent exponential

service times for server 1.
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1. INTRODUCTION

Relatively little is known about queues for which

interarrival times and/or service times are not independent;

some studies are available however (cf. Cinlar [1967],

Loynes [1962], Pearce [1967], Purdue [1975 ])

.

One reason for this seems to be the lack of tractable models

for dependent sequences of random variables. Recently, models

have been developed for sequences of dependent exponential

random variables (cf. Jacobs and Lewis [1977]). These models

are parametrically relatively simple and are in general not

Markovian. Fortunately, it seems to be easy to model various

types of dependence in queues using these sequences.

The dependent sequence of exponential random variables

is defined as follows. Let {e } be a sequence of independent

random variables each with an exponential distribution with

mean X , < A < °°. Let {J ) and {K } be independent
n n *

sequences of independent {0,l}-random variables such that

P{J = 1} = 1-3 and P{K =1} = 1-p where < 8 < 1 and
n n — —

<_ p < 1 are fixed constants. For n = 1,2,... put

(1.1) X = 8e + J A . ,n n n n-1

where

(1.2) A = pA + K e .

n n-1 n n

The sequence {X } is called an EARMA(1,1) process (exponential

mixed moving average autoregessive both of order 1) and A _

is called the autoregressive part of X .
^ c n
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We will always assume that A has an exponential

distribution with mean A independent of all the other random

variables. Under this assumption, Jacobs and Lewis [1977] have

shown that (X } is a stationary sequence with exponential

marginal distribution having mean A . Furthermore, the X 'sJ n

are positively correlated with

corr(X
n
,Xn+k ) = p

k" 1
(l-g) [B(l-p) + (1-3) p] , k > 1 .

If B = 1, or 6=0 and p = 0, then {X } is a

sequence of independent random variables. The process {X }

is in general not Markovian although it is if 3 = , in which

case it is called an EAR(l) process (exponential autoregressive

of order 1)

.

In this paper we will consider the simple case of a

closed queueing network with two servers and a fixed number of

cycling customers N. It is described as follows: when a customer

finishes service at server 1 he joins the end of the queue at

server 2; when he finishes service at server 2, he rejoins the

end of the queue at server 1; the service discipline is first-

in-first-out .

This closed queueing network has been used in computer

studies to model multiprogrammed computer systems (cf. Gaver

and Shedler [1971]) and one is interested in obtaining, for

example, the long run proportion of time one of the servers

is idle, the average expected busy period of one server, and

the average time it takes a customer to complete one cycle
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of the network. There is some indication (cf. Lewis and Shedler

[1973]) that the service times for one of the servers should

be correlated. One object of this paper is to show that

correlation of the service times does make a difference in the

limiting behavior of the network.

Let S (respectively X ) denote the nth service
n n

time for server 2 (respectively server 1) . There are many ways

in which to use EARMA(1,1) processes to model dependence within

each sequence of service times and cross correlation between

the two sequences. In this paper we will assume that {S }

is a sequence of independent random variables each with an

exponential distribution with mean p . < u < °° and {X }
n

is an EARMA (1,1) process independent of {S } with mean A ,

< A < °°, and parameters 3 and p. Other queueing models

using EARMA processes will be considered elsewhere.

Let Z(t) denote the number of customers both waiting

and being served by server 1 at time t. The process

Z = (Z(t); t _> 0} takes the values {0,1, ...,N>. Let W(t)

be the virtual waiting time at server 1 at time t; that is,

W(t) is the sum of the service times of the customers in queue

at server 1 at time t and the remaining service time of the

customer currently being served.

In the next two sections we will obtain limiting results

for Z(t) and W(t) as t -*• °° for the case N = 2. We will

show that the limiting distribution of Z (t) in the EARMA

case is the same as in the case in which the service times of

server 1 are independent; this result is also true for the case
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N = 1 and seems to be due to the constraints imposed on the

network by having only one or two customers. The long run

average virtual waiting time is then computed for the case

N = 2 and is found to be different from the independent case.

This is because the positive correlation between the service

times of server 1 tends to increase the virtual waiting time

.

In Section 4 we analyse the network for N > 2 customers

and show the existence of a limiting distribution for Z (t)

as t -* °°. We then present some simulation results for the

limiting distribution of Z(t) as t -*- °° for the case N = 5.

The results show that the correlated service times do make a

considerable difference in the limiting distribution.

2 . THE TWO CUSTOMER CYCLIC QUEUE

In this section we will study the process Z = {Z(t);t _> 0}

and obtain the limiting distribution of Z (t) as t + °° for

the queueing network of Section 1 with N = 2.

2 . 1 Preliminaries

We define here three sequences which will be needed

in the analysis. For concreteness we will always assume that

Z(0) =0. Let {T } be the increasing sequence of arrival and

departure times for server 1 that includes all departure times



and those arrival times at server 1 that occur when server 1

is idle. Let Y be the number of customers both waitinq
n 3

and being served just after time T . More precisely put

Y n = Z(0) =0 and T_= and define Y , T , n > 1

,

n n —

recursively as follows. If Y = 0. let
n

(2.1) T
n+1

= i„f{ t > T
n
:Z(t) = 1}, Y

n+1
= Z(T

n+1
+0) =1

If Y > 0, let
n

(2.2) T
n+1

= inf{t > T
n
:Z(t) < Z(t-)} , Y

n+1
= Z(T

n+1
+0)

For example, since Z(0) = 0, T, is the time of the first

arrival of a customer to server 1 and Y, is the number of

customers at server 1 just after time T which must be 1;

T is the time of completion of the first service for server 1

and Yp is the number of customers both waiting and being

served at server 1 just after time T„; the number could be

or 1 . In general, if Y > 0, then T , , is the time of^ n n+1

completion of the next service for server 1 after time T
n

and Y , , is the number of customers both waiting and being
n + 1

served at server 1 just after time T ... . If Y =0, then
n+1 n

T
,

, is the time of the next arrival to server 1 and Y , , = 1
n+1 n+1

Note that since we are considering the case in which N = 2,

Y can only take the values and 1.
n J

Let A denote the autoregressive part of the next
n n c

service to be completed after time T . More precisely, put

L n = and recursively define L, . = inf{n > L. :Y = 0};2 k+1 k n
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L, is the index of the kth time that Y =0. Then since
k n

Z(0) = 0, A n = A n , A
n

= A n and A = A . , for'0 1 n n-k-1

L(k) < n <_ L(k+1) .

Since the service times at server 1 are dependent random

variables, the dependence of {Z(t); t > T } on {Z(t); t < T }
n — n

is not only through Y but also through the service times that

were completed before time T . However, by (1.1) and (1.2),

(Z(t); t > T } is conditionally independent of (Z(t); t < T }
n — n

given (A ,Y ) . Further { (A ,Y ) } is a discrete time Markov^ n n n n

process with state space (3R x {0,1}, a (R_ x {0,1})) where

ZR = [0,°°], R denotes the Borel subsets of TR and

a (g x {0,1}) denotes the product o-algebra generated by R

and the subsets of {0,1}.

Let

P. .(x,B) = P{A ._ € B, Y ._ = j|A = x, Y = i}
ij n+1 n+1 J

' n n

and P(x,B) be the matrix whose i,j entry is P. . (x.B)
• j j.

id

for i, j $ {0,1}, x £ M
+

and B € B+ • The transition

probabilities, P. .(x,B) are easily derived. If Y =0,

then T , , is the time of the next arrival after time T
n+1 n

and hence Y ,, = 1 and A . = A . If Y =1 and there is
n+1 n+1 n n

an arrival during the service time T ,, - T , then Y ,, - 1

;

n+1 n n+1

if there is no arrival during the service time T , - - T ,n+1 n

then Y
, n

=0. Since {X } is an EARMA(l.l) process and
n+1 n '

{S } is a sequence of independent exponential random variables

with mean y we have the following matrix



(2.3) P(x,B) =

5
x
(B)

-yx -yX
E[e X

;A
1
€B|A =x] E[l-e L

;A
1
£B |

A

Q
=x]

where <5 (B) is 1 if x £ B and otherwise,
x

We will now define other processes related to {A ,Y ,T }
n n n

which will also be used in the analysis. For T < t < T ., ,n — n+1

let Y(t) = Y , A(t) = A , and U(t) = t-T . Note that Z(t)=0

if and only if Y(t) = 0; Z (t) =1 if and only if Y(t) = 1

and there is no arrival at server 1 in the time interval

(t-U(t),t]; and Z (t) =2 if and only if Y(t) = 1 and there

is an arrival in the interval (t-U(t),t]. Hence the limiting

behavior of Z (t) as t -*• °° is related to that of

(A (t) , Y (t) ,U( t) ) . Furthermore, the limiting behavior of

(A(t) ,Y(t) ,U(t) ) depends on that of (A ,Y ). As a result,

we will first compute the limiting distribution of (A ,Y )

;

^ ^ n n

then use it to compute the limiting distribution of

(A (t) , Y (t) , U ( t) ) ; and finally compute the limiting distribution

of Z (t) as t - °°.

2.2 Limiting Properties of (A ,Y ).- - n n

Fix a Borel subset B of 1R with positive Lebesgue

measure. From (1.2) it follows that (A } is a discrete time
n

Markov process. To show that the process is recurrent note that

expression (6.2) of Jacobs and Lewis [1977] for the kth order

transition probability Q of {A } implies that for each



b > and <_ 6 <
J

Ae dx there exists a k such that
B

inf Q
k
(x,B) > 6

x £ [0,b]
Hence

P( U {A € B} I A. = x) > 6 , x € ]R

m=l

Therefore, by Proposition (5.1) of Orey [1971]

P(A, £ B infinitely often | A = x) = 1

for all x and thus {A } is recurrent with respect to
n

Lebesgue measure in the sense of Orey [1971, page 4].

Since the service times for server 2 are independent

with common exponential distribution, a similar argument shows

that

(2.4) P{A £ B, Y = j infinitely often I A =x, Y =i) = 1
n n '00

for i, j 6 {0,1}, x 6 ]R. Thus, by Theorem (7.1) of Orey

[1971] there exists a possibly a-finite invariant measure

(tt.(B); j = 0,1, B d g } for the transition probability of

UA
n
,Y

n n.

The invariant measure satisfies the following system

of equations



/ 7r

Q
(dx) P

Q
(x,B) + / ir

1
(dx) P

1 Q
(x,B) = tt

q
(B)

/ 7T

Q
(dx) P

Q
^XjB) + / 7r

1
(dx) P

1
(x,B) = tt

1
(B)

Rewriting the two equations using the matrix (2.3) yields

-yX,
(2.5) / 7r

x
(dx)E[e x

; A
±

€ B|A
q
=x] = tt

q
(B)

-yx.
(2.6) 7T

Q
(B) + / TT

1
(dx) E[l - e 1

;A
1

€ B|A
Q
=x] = tt (B)

Substituting the expression for Tr
n
(B) from (2.5)

into (2.6), equation (2.6) becomes

(2.7) / tt (dx) P(A 6 B|A =x) = tt (B)

By the result after (6.2) in Jacobs and Lewis [1977], equation

(2.7) implies that

(2.8) tt (B) = c / Ae
Ay

dy
B

for any non-negative constant c. Substituting the expression

for tt
1

into (2.5) we have



-Ax "^ X -

(2.9) 7T n (B) = c / *e E[e 1
; A € B|A =x] dx .

u
Q

i u

We now want to choose c so that tt is a probability and

hence tt . (B) = lim P{A € B, Y =i}. To this end we set
1 n -> °° n n

1 = tt (nR
+ ) + tt

q
(]R+ )

00 . -yX
= c[l + / Ae

x E[e 1
|A

n=x] dx]
U

= c[l + A(A+y)
1

]

since, if A~ has an exponential distribution with mean A ,

so does X. . It now follows that c = (A+y) (2A+y)

This result will be used in the next subsection to compute the

limiting distribution of (A (t) , Y (t) , U (t) )

.

2 . 3 Limiting Properties of an Imbedded Semi-Markov Process

Since {(A ,Y ),T } is a Markov renewal process in the
n n n

sense of (^inlar [1975] , { [A(t) ,Y(t) ,U(t) ) ;t ^ 0} is a Markov

process. Hence, { (A ( t) , Y (t) ) ; t ^ 0} is a semi-Markov process

of the second type in the sense of Jacod [1973]. We will use

the results of Jacod [1973] to compute the limiting distribution

of (A(t) ,Y (t) ,U(t) ) as t -+ « which will then be used to

compute the limiting distribution of Z (t)

.

Since {& } and {S } are independent sequences of
n n en

independent exponential variables, the process {A(t),Y(t)}

is right continuous with left hand limits satisfying the
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hypothesis R-3 on page 85 of Jacod [1973 ] concerning the set

of discontinuity points of (A(t),Y(t)). Furthermore,

{ (A (t) , Y (t) ) ; t >_ 0) is recurrent in the sense that, if

B € R has positive Lebesgue measure, then

oo

P{ / i r
.

oY(s) 1 °A(s)ds = °°|A_ = x, Y n = i} = 1

o (j > B o u

for i, j € {0,1} and x € 3R where 1_ (x) is 1 if x € B+ hi

and otherwise. Therefore, Theorem 111-10 on page 103 of

Jacod [19731 applies to show that

(2.10) v n
(BxC) = d / tt (dx) / e

ys
1 (x) 1 (s)ds

u

(2.11) v (B x c) = d / tt (dx) / P{X > s|A =x} 1 (x) 1 (s)ds,
i ± ±utsu

B, C 6 R , is an invariant measure for the transition function

of the Markov process { (A(t) , Y ( t) , U (t) ) ; t > 0} for any

d > 0.

We will now choose d so that v. , i = 0,1, is a prob-

ability. Put

1 = v
Q
(]R^) + v

1
CR^) = d[y 1

Tr (3R
+ ) + cA

1
]

= dc[A[y(A+y) ]

X
+ A

1
] .

Hence,

11



(2.12) dc = Xy (X + y) (A
2
+ Ay + y

2
)

_1

and d = Xy ( X+2y) (X
2
+Xy+y

2
)

1
.

2.4 The Limiting Distribution of Z (t) as t -* °°

Using (2.10), (2.11), and (2.12) we can now compute the

limiting distribution of Z(t), the number of customers both

waiting and being served at queue 1, as t -> °°. Recall

that we are considering the case N = 2 and, therefore, Z(t)

has the values 0, 1, or 2.

From the argument after (2.3) it follows that

(2.13) lim P{Z(t)=0|Z(0)=0} = lim P{ Y (t) =0 | Y (0) =0} = v
Q
(1R

2
)

t -> °° t •* °°

2 2 2-1
= X [X + Xy + y ] ;

(2.14) lim P{Z(t)=l|Z(0)=0> = lim E [e
yU (t)

; Y (t) =1 | Y (0 ) =0

]

t -* °° t "*" °°

oo oo

-MS
/ / v, (dx,ds) e

= Xy[X
2

+ Xy + y
2 ]" 1

by (2.11) and (2.12); and finally

12



(2.15) lim P{Z(t)=2|Z(0)=0} = lim E[(l-e yU (t)
) ; Y (t) =l| Y (0) =0]

t -> °° t * °°

2
r
,2 . 2.-1= U [A + Ay + u ]

Note that the limiting distribution for the number of

customers waiting or being served by server 1 with EARMA(1,1)

service times is the same as if the service times for server 1

were independent random variables each with an exponential

distribution with mean A (cf. Gaver and Thompson [1973]).

We feel that this is due to the constraints imposed on the net-

work by having only two customers. This conjecture is shown

to be true by the simulation results of Section 4 where it

becomes clear that the result is not true if N > 2.

3. THE VIRTUAL WAITING TIME FOR THE CYCLIC QUEUE WITH TWO

CUSTOMERS

In this section we will compute the long run virtual

waiting time for server 1 in the case in which the service

times for server 1 form an EARMA(1,1) process and there are two

customers in the system.

The virtual waiting time for server 1 at time t, W(t),

is the sum of the service times of the customers in queue at

server 1 at time t plus the remaining service time of the

customer currently being served. To define W(t) more precisely,

13



let N(t) = sup{n:T <_ t} . If Z(t) is 1 or 2, then

V (t) = T„,. .
, , - t is the time from t until the completion

N (t) +1 r

of the current service. If Z(t) = 2, then T.,...
,

- T._ ,, XjlN ( t) +2 N (t) +1

is the length of the service time for the customer who arrived

at server 1 in the time interval (t-U(t),t]. Hence, the

virtual waiting time at time t is defined formally as

if Z(t) = ,

V(t) if Z(t) = 1,

>

V(t) + T
N(t) + 2

" T
N(t)+l

if Z(t) = 2
'

From (3.1) it follows that { (A (t) , Y (t) , Z (t) ,U (t) ,V(t) ,W (t) )

;

t 0} is a Markov process. Further, the process is recurrent

in the sense of Azema, Duflo, and Revuz [1969]. Thus by the

ergodic theorem in Section (3.1) of that paper, there exists a

constant W such that

1 r(3.2) W = lim ^ / W(s)ds
t •* °°

P(-|A(0)=x, Z (0)=0) -almost surely and

(3.3) W= lim ^ E[/ W(s)ds| A (0) =x, Z (0) =0]
t + °°

for almost all x. We will use (3.3) to compute W.

First, from (3.1) and the argument after (2.3)

14



(3.4) E[W(s) |A(0)=x, Z(0)=0]

= E[V(s)e" yU(s) ; Y(s)=l|A(0)=x, Z(0)=0]

+E[(V(s) + (T
N(s)+2

- T
N(s)+1 ))(l-e~

yU(s) );Y(s)=l|A(0)=x,Z(0)=0]

= E[V(s) ;Y(s)=l|A(0)=x; Z(0)=0]

+E[(TN(s)+2
" T

N(s)+1 ) (l-e
~ yU(S)

);Y(s)=l|A(0)=x,Z(0)=0]

We will first compute

1
t

(3.5) lim i / E[V(s); Y(s)=l|A(0) = x, Y(0) = 0] ds .

t -» °°

Since (A (t) , Y (t) , U (t) ) has a limiting distribution as t > °°,

by the proof of Theorem 111-10 on page 105 of Jacod [1973],

we have that

M (D) = lim P{Y(t)=l, (A(t) ,U(t) ,V(t) ) 6 D | A (0) =x, Y (0 ) =0

}

-1
- t > °°

exists and equals

oo oo y
cd / Ae"

Xz
dz / P{X € dy|A =z} / dx 1 (z,x,y-x)

3where D is a Borel subset of TR . By the ergodic theorem of

Azema, Duflo and Revuz , (3.5) equals

(3.6) / y (dz,dy,ds)s = y ( A + p) [ A (

A

2
+ Ay + p

2
) ]

-1

3

By (1.1) and (1.2), the second term of (3.4)

15



(3.7) E [( TN ( s ) +2- T
N ( s)+ i

)) (1 - e
yU(S) );Y(s)=l|A(0)=x, Z(0)=0]

= E[3e
N(s)+2

(l-e'
yU(s)

) ; Y (s) =1 1 A (0)=x f Z(0)=0]

+ (l-3)E[pA(s) (l-e'yU(s) ) ; Y(s)=l|A(0)=x, Z(0)=0]

+(1-3) (1-P) E[eN(s)+1 (l-e
pU(s)

);Y(s)=l|A(0)=x,Z(0)=0]

Since e .

2
is independent of (Y(s),U(s))

(3.8) lim | / E[e (l-e" yU(s) ) ;Y(s)=l|A(0)=x / Z(0)=0]ds
t

= A
1

lim ^ / P{Z(s)=2|A(0)=x,Z(0)=0}ds
t -* oo

t

2 2 2-1
= y [A(A

Z +Ay+y )

]

by (2.15) and the previously cited ergodic theorem.

The ergodic theorem also implies that

(3.9) lim £/ E[A(s) (l-e
_iJU(s)

) ;Y(s)=l|A(0)=x,Z(0)=0]ds

= / v (dz,dx)z(l-e yx
)

2

oo oo

= cd / Ae"
Az

z dz / P{X > x|A =z) (l-e"
yX

)dx
l U
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cd / Ae~
Xz

z dz / [3P{Be, > x}+ (1-3) P{ Be, > x-z } ] (1-e
yx

) dx
1 l

[A[A
2
+Ay+y

2
] (A+y) (X+Bu)

]

_1

xp 2
[3A

2
+ 2A)j+3(2Ay+2y

2
-A

2
) + 3

2
(-2 Ay-y

2
-A

2
) ]

by (2.11) , (1.1) and (1.2)

.

We now turn our attention to the computation of

(3.10) lim \ j E[e . (1-e
yL }

) ;

Y

(s) =1 | A (0 ) =x, Z (0 ) =0 ] ds ,

t -* oo ^ VS/TX

First, note that (A ,Y ,e
,

, ) is a discrete time Markov process
n n n+1 ^

with limiting distribution it. (Bxc) = tt . (B) / Ae dx for

B, C € R, . Hence, by similar arguments to those in subsection 2.3

(A (t) , Y (t) , £ , » , ,U(t) ) has a limiting distribution v..

Further, for B, C, D € R , by Theorem 111-10 of Jacod

v
n
(BxCxD) = 37 tt, (dz) /Ae~

Ax
dx / P (x > s|A =z, e =x) ds

1
B

X
C D 1 °

X

= d /tt (dz) / Ae"
Ax

dx /{Bl, .. . (Bx) + (1-B) 1 , , (Bx+z)}ds
B

i
c D

[S, ) is, j

for some constant d by (1.1) and (1.2).

*j
To evaluate d, note that

v, (BxD) = v (B x ]R x D)

= dc / Ae
Az

dz / P{X > s|A =z} ds
B D

17



Hence, from (2.8) and (2.11), d = d. By the ergodic theorem

again, (3.10) equals

(3.11) / v (dz,dx,ds) x(l-e~ ys
)

3

= [A(A
2
+Ay+y

2
) (A+y3)]~

1
y
2
[A(l+3+3 2

) + y(3+3
2
)]

after some simplification.

Putting together (3. 3) -(3.11) we obtain after some

simplification

(3.12) [A(A
2+Ay+y 2

) ]

X W

= yA + 2y

+ (l-3)y
2
[(A+y) (A+3y)]

1
{ [3A ( A+y) +3

2
( A+y)

2
]

+p[2A(A+y)+3(-2A 2
+y

2 )-23 2
(A+y)

2
]}

Putting y = Ay , the traffic intensity, (3.12) becomes

(3.13) AW = (2+Y ) (Y
2
+Y+D~ 1

+ (1-3) [(Y
2
+Y+l) (Y+l) (Y+3)]"

1

x{ [3y(Y +1)+3
2
(y + 1)

2
]+P[2y(Y+1)+3(-2y

2 +1)-23 2
(y +D 2

]}

If 3=1, then the service times for server 1 are

independent exponential random variables with mean A and

(3.14) *^ind
= (2+Y) ( Y

2
+Y+1)~

1

18
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as expected in this case. Note that W >_ W. , and, hence,

the positive correlation of the service times increases the

average virtual waiting time. Also there is a such that

for 3 < 3
Q

increasing p increases W; while for 3 > 3 n

increasing p decreases W. The value L is a solution to

the quadratic equation

(3.15) -2(y+D 2.2
+ (-2y+D 3 + 2y(Y+l) =

and hence depends on the traffic intensity Y •

To give an idea of the effect of different and p

on W we give Table 1 whose entries are differences between W

and W. ., for various values of 3 and
ind

in this case)

.

for A=y = 1(W. =1
ind

P\3 .1 .3 .b .7 .9

.03 .09 .11 .10 .04

.1 .05 .07 .10 .11 .09 .04

.3 .15 .15 .14 .12 .08 .03

.5 .25 .23 .18 .13 .08 .03

.7 .35 .30 .21 .13 .07 .02

.9 .45 .38 .25 .14 .06 .01

TABLE 1. Values of W - W. , for the case X = u = 1
ind
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Note that it is the autoregressive part of the EARMA(1,1)

service time that causes the most change in W. As expected,

for 3 small W increases with increasing p; for 3 large

W decreases with increasing p ; the value at which the change

occurs, 3 / is .55 in this case.

4. THE CYCLIC QUEUE WITH A FINITE NUMBER OF CUSTOMERS

In this section we will study the queueing network of

Section 1 in the case in which there are N >_ 3 customers. We

will use without mention previous notation adapted to the

present case. As before, we are interested in the limiting

distribution as t + °° of Z(t), the number of customers either

waiting or being served at server 1 at time t. Again, we first

consider the discrete time Markov process {(A ,Y )} which now
n n

has state space (]R x {0 ,1 , . . . ,N-1} , a ( B+
x (0 , 1 , . . . ,N-1} )

)

where a (R x {0 ,1 , . . . ,N-1 } ) denotes the product a-algebra

of the Borel subsets of IR and the subsets of { , 1 , . . . ,N-l)

.

Let P
ij

(x / B) = P(A
n+1 € B, Y

n+1
=j|A

n
=x, Y

n
=i} for B € R

+ ,

x € M
+ , and i, j € {0 ,1 , . . . ,N-1} . If P(x,B) denotes the

matrix whose (i,j)-entry is P. . (x,B) , then it is not hard to

show that

20



P(x,B) =

b
Q
(x,B)

6 (B)
x

b
1
(x,B)

b
Q
(x,B)

b
2
(x,B)

b
x
(x,B)

b
Q
(x,B)

b
N_ 2

(x,B)

b
N_ 3

(x,B)

V-4 (X ' B)

a
N_ x

(x,B)

a
N_ 2

(x,B)

a
N_ 3

(x,B)

b
Q
(x,B) a

1
(x,B)

where

b
k
(x,B; = E

-yx (yx )

"TcT ; A
l

€ B IV X

and

(x,B) =
I b (x,b;

n=k

By similar methods to those of subsection 2.2 one can show

that there exists a possibly a-finite invariant measure for P

which satisfies the following system of equations for B £ R

(4.1) / 7T, (dx)b (x,B)=tt (B)

!4.2) / tt (dx)6 (B)+/ 7T (dx)b (x,B)+/ tt (dx)b (x,B)=tt (B)
X
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(4-3) / tt, (dx)b (x,B) + / 7T
9
(dx)b (x,B)+ / Tr,(dx)b (x,B)=ir (B)

l z 1 JU

(4.4) / ^
1
(dx)a

N _ 1
(x,B)+/-rr

2
(dx) a

N_ 2
(x,B) + ••• + / tt

n _ 1
(dx) a

±
(x, B) =tt

n_ 1
(B)

Substituting the expression for ^n^ 6 ) of (4.1) into (4.2)

and then adding all the equations except (4.1) together yields

the equation

00

/ [tt,+tt„+- • •+ttm , ] (dx) P{A
n

e B|A.=x} = [tt
1
+tt„ + - ••+ttm , ] (B)

i 12 N-l 1 12 N-l

By the result after (6.2) of Jacobs and Lewis [1977] we have

71

1
+, ** + 7TN-1 ] (B) = c ' /

Ae
AX

dx
B

for any constant c'. Hence, we can and will choose c' so

that the invariant measure tt is a probability.

We will now consider the limiting distribution of Z(t)

as t -» °° . Let K(t) be the number of service completions by

server 2 in the time interval (t - U(t) ,t] . Since the service

times of server 2 are independent each with the same exponential

distribution { (A (t) , Y (t) f U(t) ,K (t) ) ;t _> 0} is a Markov process.

Note that {Z(t)=0} = {Y(t)=0};

22



1

{Z(t)=i} = U {Y(t)=k,K(t)=i-k} , < i < N;
k=l

and
N-l

{Z(t)=N} = U {Y(t)=k,K(t)=N-k} .

k=l

Thus, using the techniques of subsections 2.3 and 2.4 one can

show that

v(0) = lim P{z(t)=0| Z(0)=0,A(0)=0} = dp
_1

Tr

Q
(1R

+ ) ;

t -" °°

v(N) = lim P{Z (t)=N| Z(0)=0,A(0)=0}
t -* °°

fj— ]_
oo oo oo -i

= d I / TiMdy) / P{X>s|A=y} J e^ S -^-ds;
k=l j=N-k J '

and

v(i) = lim p{Z(t)=i |

Z

(0)=0,A(0)=x>
t -* °°

i °° °°
, , i-k

= d I ! tt (dy) / P{X >s|A =y} e~ vs ^ ds
k=l u llJCJ '

for some positive constant d.

It seems difficult to solve (4.1) -(4.4) for tt . ,

i = 0,...,N-1. Hence, we are unable to obtain explicit expressions

for the limiting distribution of Z (t) as t -»• °° as we could in

the case N=2. We will, however, give some simulation results

to indicate the limiting behavior of Z (t) as t * °° for higher

values of N.

The simulation is based on the following observation.

Since the service times of server 2 are independent and exponentially

23



distributed { (A(t) , Y (t) ,U (t) , Z (t) ) ; t ^ 0} is a Markov process

that satisfies the hypotheses of the ergodic theorem of Azdma,

Duflo and Revuz [1969]. Hence,

1
t

lim ± / lr.-.°Z(s)ds = v(i) , i = 0,...,N
t > °°

t 11J "

almost surely P(«|A(0)=x, Z(0)=0). Further, if t is the
' M

time of completion of the Mth service time for server 1, then,

since t .
-+ °° as M -* °° almost surely with respect to

M

P(.
|

A(0)=x,Z (0)=0)

1
"M

(5.5) lim — J lr.,°Z(s)ds = v(i), i = , . . . ,N

M -* °°
T
M

almost surely with respect to the same probability.

The following results are from a simulation designed

by Professor P. A. W. Lewis at the Naval Postgraduate School,

Monterey, California for a closed queueing network having

EARMA(1,1) service times. The simulation we used consists of

the computation of

(5.6) -^- /
M

l n) o Z (s)ds
T M llJ

for M equal to the 5000th service time. The computation was

repeated for 100 independent replications and the sample mean

and variance over the 100 replications were computed. All

runs were performed on an IBM system 360/67 computer at the

Naval Postgraduate School using the LLRANDOM package (Learmonth
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and Lewis [1973]) which generates numbers according to the

scheme given by Lewis, Goodman, and Miller [1969] and

exponentially distributed random numbers using the Marsaglia

"rectangle-wedge- tail" method. Tests of the random number

generator are given in Learmonth and Lewis [1974].

Table 2 gives the results of a simulation of the queueing

network for the case N=5 and X=y=l. The entries in the table

are the sample means of (5.6) over the independent replications

for different values of 3 and p. The numbers in the

parentheses are estimates of the standard deviations of the

estimate of v(i). For comparison, note that the limiting

distribution in the case in which server 1 has independent

exponential service times and X=y=l is

(5.7) lim P{Z(t)=i) = 1/6 = 0.1666, i = 0,...,5 ,

t -* °°

(cf. Gaver and Thompson [1973]). This corresponds to the case

3 = 0, p = in the first line of the table.

Note that again it is the autogressive part of the

service times that causes most of the change in the estimates

for the limiting distribution of Z (t) as t > °° . The

positively correlated service times increase the probabilities

of server 1 or server 2 being idle; they also increase the

probability of all customers being in one or the other service

center. This seems to be due to the fact that, if p is large

and 3 is small, then having a large service time at one time
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i 1 ;I :3 4 5

3= p= • 17( .009) .17( .007) .17( .005) .17( .006) .17( .007) .17( .009)

.1 .18( .01) .16( .007) .16( .005) .15( .005) • 17( .007) .17( .01)

.5 .21( .01) • 13( .006) • 12( .006) • 12( .005) .18( .007) .21( .01)

.9

p=

.26( .02) • IK .01) .079(.006) .088(.006) .20( .01) • 26( .03)

3-.1 .17( .01) .16( .008) .16( .005) .16(.005) • 17( .007) .17 ( .01)

.1 .18( .01) .16( .008) .16( .005) .15( .005) • 17( .007) • 17( .01)

.5 • 21( .01) .15( .007) • 13( .006) • 13( .005) .18( .007) .20( .01)

.9

P= o

• 25( .02) • 13( .01) .092(.006) .10( .005) • 18( .01) • 25( .03)

3=.5 .18( .01) • 17( .007) .16( .005) .15( .006) .16( .007) .18( .01)

.1 .18( .01) • 17( .007) .16( .005) • 15( .006) .16( .007) .18( .01)

.5 • 19( .01) .17( .007) • 15( .006) • 15( .006) .16( .007) .18( .01)

.9

p=

.20( .02) .16( .01) • 14( .007) .14( .006) • 16( .01) .20( .02)

3=.7 .18( .01) .17( .007) .16( .005) • 15( .005) .16( .007) .18( .01)

.1 .18( .01) • 17( .007) .16( .005) • 15( .006) .16( .007) .18( .01)

.5 .18( .01) .17( .008) .16( .005) • 15( .006) .16( .008) .18( .01)

.9

p=

.18( .01) • 17( .009) .16( .006) .16( .006) .16( .009) • 17( .01)

3=.9 • 17( .01) • I7( .007) .16( .005) .16( .006) .16( .007) .17( .01)

.1 • 17( .01) .17( .007) .16( .005) .16( .007) .16( .007) • 17( .01)

.5 • 17( .01) • 17( .007) .16( .005) .16( .006) .16( .008) • 17( .01)

.9 • 17( .01) • 17( .008) • 17( .005) .16( .006) .16( .008) .17( .01)

TABLE 2. Estimates for the limiting distribution for the number of customers

in queue for N=5 customers and A=u=l when server 1 has EARMA(1,1)

service times and server 2 has independent exponential service times.
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implies that the service times will tend to be large for a

while; having a small service time implies that the service

times will tend to be small for a while. The dependent service

times appear to have little effect on the long run average

number of customers that are waiting or being served at server 1;

the average is 2.5 for all values of (8,p) except the values

(0,.9), (.1,.5), and (.1,.9) for which it is 2.6. This

invariance reflects the fact that the change in the limiting

distribution {v(i)} due to the dependence is somewhat

symmetric in i.

Finally, we present in Table 3 the results of a simulation

to investigate what happens if the service times of both servers

are independent EARMA(1,1) processes. In that simulation

the number of customers N is 5 and the parameters for the

EARMA(1,1) service times for server 1 are 3, = .1 and p, = .9.

The parameters $ and p~ for the EARMA(1,1) service times

for server 2 are allowed to take on several values. The

expression (5.6) is computed for M = 10,000 for 750 independent

realizations. The entries in the table are the values for this

simulation of the same quantities as in Table 2.

*

2
=.i, p

2
=o

*

2
-.l, P

2
=-9

249(.02) .130(.006) .090(.004) .100(.004) .182(.008) .249(.016)

265(.017) .142(.007) ,079(.003) .086(.004) .164(.007) .265(.017)

290(.021) .149(.009) .060(.004) .060(.004) .150(.009) .290(.021)

TABLE 3. Estimates of the limiting distribution for the number

of customers in queue for N=5 customers and A=y=l.

The two sequences of service times are independent

EARMA(1,1) processes.
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Note that the positive correlation of both sequences of

service times tends to make the probability of server 1 being

idle and the probability of all customers being at server 1

larger than when only one sequence of service times is

positively correlated. The change in the limiting distribution

v(i) is again somewhat symmetric in i. The long run average

number of customers waiting or being served at server 1 is

2.5 if 3
2

= .1, p„ = .9 and 2.6 for the other values of

(6
2
/P 2

)

•

It is clear from both simulations that the limiting

distribution for number of customers at server 1 is quite

sensitive to serial correlation in the service times. The

simulations indicate that perhaps v(0) = v(5) in the case

X = u = 1. It can in fact be shown that in general

>
. [1 - v(0) ] = y[l - v(N) ] .

5. CONCLUSIONS

In this paper we considered one scheme for using EARMA

processes to model dependence in queues. We find that the

introduction of dependence does affect the limiting behavior

of the queue. There are, of course, many other schemes and

some of these will be considered elsewhere. Two advantages

of using the EARMA processes in queues are the ease of intro-

ducing dependence in the queue and the ease of simulating

the processes. The major drawback to using EARMA processes
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in queues is the difficulty of obtaining the exact analytic

results. It is expected, therefore, that approximation

techniques and simulation will be of major importance in

analysing these queues.
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