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1. Let G be a non-abelian connected compact Lie group and T a
maximal torus in G with Lie algebras g, i respectively. With respect
to i, we introduce a lexicographic order on the set oi roots of g (the
complexification of g). And we denote by X (k=l,2,...,n) (resp.
X;) root vectors for all positive roots (resp. negative roots) in this
order.

Any unitary representation U is canonically able to be extended
to a representation U(X) of . When U is irreducible, we can define
uniquely its highest weight/ as a linear form on /-1 i. The highest
(resp. the lowest) weight vector v in U is characterized up to constant
as a vector satisfying U(X)v=O (resp. U(X;)v=O) for all k.

In [1] Theorem 3’, C. Fronsdal and T. Hirai proved the following
Theorem. Let vl e El (resp. v2 e Ef) be the non-zero highest (resp.

lowest) weight vector for irreducible representation U (resp. U) of
G. Then the vector v(R)v in E(R)E2 is a cyclic vector for the tensor
product UI(R)U.

The purpose of this paper is to give another proo of this theorem.
2. Proof of Theorem. Since G is compact, we can assume that

U, U are unitary. And it is enough to show that for any irreducible
component U in U(R)U with representation space E in E(R)E,
( 1 ) the vector v(R)v is not orthogonal to E.

By weight vectors v E (= 1, 2, ., m) (v =v, v=vl), any v
in E is expanded in a unique way as
( 2 ) v=, a(v, v, v)v;(R)v.

Especially the highest weight vector w in U is written as
( 3 ) w v;(R)u (u e E),

u= F, a(w, v, v)v:.

The vector w satisfies or any k,
( 4 ) U(X;)w--, U,(X;)v;(R)u"-, v(R)U(X;)u"-O.

Let the weight/ be the highest among the set {/ u" =/=0 in (4)}. Since
the vector U(XZ)v[ has the weight higher than/[, it must vanish ior
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any k. This means v=vl, and therefore
( 5 ) M--{Z; v e E such that a(v, v, v)=/=0} =/=9.

Let/ be the lowest in M, and v0 e E a vector for which a(Vo, v, v)
=/=0. In the expansion
( 6 ) U(X;)vo= a(vo, v, v)(v(R)U(X;)v+ U(X;)v(R)v)+...,

if U.(X;)v =0, it has the weight lower than/. Because o the selec-
tion of/, U(X;)v-O or any k. That is, v--v, and
( 7 ) (Vo, v(R)v. a(v0, v, v) =/= 0.
This proves (1) directly.

3. The act that U(R)U is cyclic, is valid more generally.
Proposition. For any finite dimensional irreducible unitary

representations U (]-1,2)of a locally compact group G, the tensor
product U1(R)U2 is cyclic.

A proof of this proposition is deduced rom following Lemma 1
and wellknown Lemma 2.

Lemma 1. Let U (]--1,2,3) be finite dimensional irreducible
unitary representations of locally compact group G. Then
(8) [U(R)U" U] <__ Min (dim U).

j=12,3

Here [D" U] is the multiplicity of U in D.
Proof. At first the ollowing is trivial.

(9) [U(R)U." U]-(dim U)(dim U)/(dim U).
Denote U* the conjugation o U in the sense of G. W. Mackey [2],

and 1 the unit representation of G. The standard theory of tensor
product o finite dimensional unitary representations leads us to
(10) [U(R)U." U]=[U(R)U.(R)U*" I]

=[U(R)U* U* ]=[U(R)U* U*].
Combining (9) and (10), we get the result.
Lemma 2. Finite dimensional unitary representation D of a

locally compact group G is cyclic, if and only if
(11) [D" U]=<dim U,
for any irreducible unitary representation U.
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