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Abstract. This paper is devoted to difference of convex functions (d.c.) optimization: d.c.
duality, local and global optimality conditions in d.c. programming, the d.c. algorithm (DCA), and
its application to solving the trust-region problem. The DCA is an iterative method that is quite
different from well-known related algorithms. Thanks to the particular structure of the trust-region
problem, the DCA is very simple (requiring only matrix-vector products) and, in practice, converges
to the global solution. The inexpensive implicitly restarted Lanczos method of Sorensen is used to
check the optimality of solutions provided by the DCA. When a nonglobal solution is found, a simple
numerical procedure is introduced both to find a feasible point having a smaller objective value and
to restart the DCA at this point. It is shown that in the nonconvex case, the DCA converges to
the global solution of the trust-region problem, using only matrix-vector products and requiring at
most 2m+2 restarts, where m is the number of distinct negative eigenvalues of the coefficient matrix
that defines the problem. Numerical simulations establish the robustness and efficiency of the DCA
compared to standard related methods, especially for large-scale problems.
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1. Introduction. In this paper we shall be concerned with the following
nonconvex quadratic optimization problems with nonempty solution sets:

(Q1) min

{

1

2
xT Ax + bT x : ‖x‖ ≤ r

}

,

(Q2) min

{

1

2
xT Ax + bT x : ‖x‖ = r

}

,

where A is an n × n real symmetric matrix, b ∈ R, r is a positive number and
‖ · ‖ denotes the Euclidean norm of R

n. If A is positive semidefinite, then (Q1) is
a convex quadratic problem; in general, (Q1) is nonconvex. Problem (Q2), whose
feasible domain is a sphere, is always nonconvex even if A is positive semidefinite.
(Q1) and (Q2) are among a few nonconvex optimization problems which possess a
complete characterization of their solutions. These problems play an important role
in optimization and numerical analysis. For example, for solving the problem of
minimizing a twice continuously differentiable function on the whole space R

n, D. M.
Gay [5], J. J. Moré and D. C. Sorensen [16], [17], [36], and T. Pham Dinh and his
coworkers [1], [7], [24], [25], [26] have used trust-region methods. It is known that these
methods are of Newton type and consist of solving subproblems of the form (Q1);
consequently, (Q1) has been often called a trust-region subproblem. Furthermore, in
numerical analysis, several problems, e.g., constrained eigenvalue and quadratically
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constrained least squares problems, can be formulated in the forms of (Q1) and (Q2)
[4], [6].

To our knowledge, the first efficient (primal-dual) algorithm for solving (Q1) is due
to J. J. Moré and D. C. Sorensen [17]. These authors used a safeguarding technique
combined with an adapted Newton method (due to Hebden) for computing a saddle-
point of the Lagrangian function L(x, λ). In the same primal-dual approach T. Pham
Dinh and L. T. Hoai An [24], [26] proposed a dichotomy process as an alternative
for the safeguarding technique of J. J. Moré and D. C. Sorensen. According to many
comparative numerical simulations [7], [24], [26], the dichotomy algorithm seems to be
less expensive than the safeguarding one. Moreover, it can be also applied to solving
(Q2).

G. H. Golub, W. Gander, and U. Von Matt [4], [6] studied (Q2) from both theoret-
ical and computational viewpoints. These authors mentioned algorithmic difficulties
of (Q2) caused by the nonconvexity of the constraint {x : ‖x‖ = r}. In [4] the sen-
sitivity of the solutions to the primal problem was discussed. More recently, G. H.
Golub and U. Von Matt [6] proposed a new computational approach to the solution
of (Q2) in the normal case. The method again uses the theoretical tools developed in
[4]. It seems to be well suited when A is a large sparse matrix.

J. M. Martinez [15] has investigated the nature of local nonglobal solutions of
(Q1) and (Q2) and has shown the following interesting property (especially for local
algorithms): these problems have at most one local nonglobal solution. Moreover,
being inspired by G. E. Forsythe and G. H. Golub’s work [3], S. Lucidi, L. Palagi,
and M. Roma [13] have stated a very nice result: in (Q1) the objective function can
admit at most 2m+2 different values at Kuhn–Tucker points, where m is the number
of distinct negative eigenvalues of A.

The algorithms in [17], [24] require matrix factorizations which are not feasible
in the large-scale setting. Recently, matrix-free methods [32], [35], [38] have been
introduced to solve large-scale trust-region subproblems. These methods recast the
trust-region subproblem in terms of a parametrized eigenvalue problem and require
matrix–vector products only. Sorensen’s algorithm [38] provides a superlinearly con-
vergent scheme to adjust the parameter and find the optimal solution from the eigen-
vector of the parametrized problem, as long as the hard case does not occur. The
so-called hard case [17] is characterized by whenever the vector b is orthogonal to the
eigenspace of A corresponding to its smallest eigenvalue λ1 and there is a solution u to
the system (A−λ1I)u = −b such that ‖u‖ < r. This algorithm is linearly convergent
in the hard case. The implicitly restarted Lanczos method (IRLM) introduced by
D. C. Sorensen [12], [37] which meets the requirements of limited storage and reliance
only on matrix–vector products is the recommended technique used in [38] to find the
smallest eigenvalue and the corresponding eigenvector of the parameterized problem.
A primal-dual semidefinite framework for the trust-region subproblem is proposed by
F. Rendl and H. Wolkowicz in [32], where a dual simplex-type method is used in
the general iteration and a primal simplex-type method provides steps for the hard
case iteration. In [32] a block Lanczos routine is used at each iteration instead of
the IRLM. The new matrix-free algorithm of S. A. Santos and D. C. Sorensen [35]
improves upon that of D. C. Sorensen by introducing a unified iteration that naturally
includes the hard case. It is shown that this algorithm is superlinearly convergent in
all cases. Numerical simulations given in [35] proved the superiority of S. A. Santos
and D. C. Sorensen’s algorithm upon that of D. C. Sorensen. Moreover, these tests
indicate that the former has advantage over F. Rendl and H. Wolkowicz’s algorithm.
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In convex approach to nonconvex nondifferentiable optimization the first author
has extensively studied subgradient methods for solving convex maximization prob-
lems (see [20] and references therein). The d.c. duality investigated by J. F. Toland
[39] and the works on d.c. optimization by T. Pham Dinh and L. T. Hoai An [7], [27],
[28], [29], [30] can be considered as a natural generalization of the aforementioned
works concerning convex maximization. DCA based on the duality in d.c. optimiza-
tion had been introduced by T. Pham Dinh and S. Elbernoussi in [23]. Important
developments and improvements for the DCA from both theoretical and numerical
viewpoints have been completed after the works by the authors [7], [8], [27], [28], [29],
[30] appeared. These algorithms are actually among a few algorithms which allow to
solve large-scale d.c. optimization problems [7], [8]. Due to their local character they
cannot guarantee the globality of computed solutions for general d.c. programs. In
general the DCAs, converge to a local solution; however, we observe that the DCAs,
converge quite often to a global one [7], [8].

The d.c. objective function (of a d.c. program) has infinitely many d.c. decompo-
sitions which may have an important influence on the qualities (robustness, stability,
rate of convergence, and globability of sought solutions) of the DCA. So, it is par-
ticularly interesting to obtain various equivalent d.c. forms for the primal and dual
problems. The Lagrangian duality without gap in d.c. optimization [7], [28], [30] and
regularization techniques partially answer this concern. In practice, regularization
techniques using the kernel λ/2‖ · ‖2 and inf-convolution may provide interesting d.c.
decompositions of objective functions for the DCA [7], [27], [29]. Furthermore, it is
worth noting that by using conjointly suitable d.c. decompositions of convex functions
and proximal regularization techniques [7], [27], [29] we can obtain the proximal point
algorithm [14], [34] and the Goldstein–Levitin–Polyak subgradient projection method
[31] as particular cases of the DCA. It would be interesting to find conditions on the
choice of the d.c. decompositions and the initial point xo to ensure the convergence of
the DCA to a global minimizer. In practice, the DCA have been successfully applied
to many large-scale d.c. optimization problems and proved to be more robust and
efficient than related standard methods [7], [8], [27], [29].

The main part of the paper is dealing with the d.c. optimization framework (d.c.
duality, local and global optimalities for d.c. programming, and the DCA) and its
application to the treatment of problem (Q1) since (Q2) can be simply transformed
into an equivalent problem of the form (Q1).

We first briefly present global optimality conditions in (Q1) and (Q2) [1], [2], [5],
[7], [17], [24], [25], [26], [36]. These results express the same important fact: writing
the constraints in (Q1) and (Q2) in equivalent forms, we obtain [26], [30] the stability
of the Lagrangian duality relative to them, i.e., there is no duality gap and the solution
sets of (Q1) and (Q2) can be described with the help of their dual solutions exactly
as in convex programming. This approach emphasizes main properties of the dual
objective function and is particularly useful to the development of various primal-dual
algorithms for solving these problems. The algorithms in [17], [24], [32], [35], [38] are
originated from this primal-dual approach.

In the third section we study the d.c. optimization framework, the description
of the DCA and its convergence. The key point which makes a unified and deep
d.c. optimization theory possible relies on the particular structure of the objective
function to be minimized on R

n:

f(x) = g(x)− h(x)

with g and h being convex on R
n. One works then actually with the powerful convex
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analysis tools applied to the two d.c. components g and h of the d.c. function f . With
the help of the functional conjugate notion, the d.c. duality associates a primal d.c.
program with a dual d.c. one and states relationships between them. More precisely,
the d.c. duality is built on the fundamental feature of proper lower semicontinuous
convex functions; such functions θ(x) are the supremum of the affine functions

sup{〈x, y〉 − θ∗(y) : y ∈ R
n}.

Thanks to a symmetry in the d.c. duality (the bidual d.c. program is exactly the
primal one) and the d.c. duality transportation of global minimizers, solving a d.c.
program implies solving the dual one and vice versa. Furthermore, it may be very
useful when one program is easier to be solved than the other (for example, one
can directly solve Problem (Q1) but not its dual d.c. program). The equality of the
optimal value in the primal and dual d.c. programs can be easily translated (with
the help of ε-subdifferentials of the d.c. components) in global optimality conditions.
These conditions have been stated for the first time by J. B. Hiriart-Urruty [9] in
a complicated way and mark the passage from convex optimization to nonconvex
optimization. They are nice but difficult to use for devising solution methods to d.c.
programs.

Local d.c. optimality conditions constitute the basis of the DCA. In general, it is
not easy to state them as in global d.c. optimality and very few properties have been
found which are useful in practice. Therefore, we shall present in section 3 the most
significative results on d.c. programming; most of them are new. In particular, we
give there a new elegant property concerning sufficient local d.c. optimality conditions
and their consequences, e.g., the d.c. duality transportation of local minimizers ((ii)
of Theorem 6). The latter is very helpful in establishing relationships between local
minimizers of primal and dual d.c. programs. All these results are indispensable in
the understanding of DCA for locally solving primal and dual d.c. programs. The
proof of the convergence of the DCA will be presented in the appendix.

An application of the DCA to solving the trust-region subproblem (Q1) is given
in the fourth section. The DCA for this problem is quite different from the afore-
mentioned algorithms: it is an iterative method based on the local optimality in d.c.
programming. For solving (Q1) we propose a quite appropriate d.c. decomposition. It
turns out that the DCA becomes very simple: it indifferently treats both the standard
(or normal) and hard cases and requires matrix–vector products only. Theoretically,
the DCA generates a sequence of feasible points {xk} which decrease the values of
the original quadratic function and converges to a Kuhn–Tucker point of (Q1). Main
results for d.c. optimization show the convergence of the DCA to a local solution for
certain classes of d.c. programs. These do not concern (Q1) directly; however, the
foundations of the d.c. optimization theory enable us to conjecture that the DCA
converges to a local solution to (Q1) and so, in general, to a global solution to this
problem according to J. M. Martinez’s results [15]. For the trust-region subproblem,
it is interesting to note the following paradox: checking a global solution is easier
than checking a local nonglobal one [15]. We take advantage of this fact to introduce
a simple numerical procedure for checking the global optimality of solutions x∗ given
by the DCA or finding a feasible point x̄ having a smaller objective value in case x∗

is not global. This procedure uses the efficient and inexpensive IRLM to compute
the smallest eigenvalue of A and a corresponding eigenvector. In case of nonglobal
solutions, we restart DCA with the new initial point x̄. Finally, we can affirm that the
DCA (with at most 2m+2 restarting procedures), which requires only matrix–vector
products too, converges to a global solution.
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In the last section we present computational results and comments. A lot of nu-
merical experiments have been done to compare the DCA with some known related
algorithms, among them the new matrix-free algorithm of S. A. Santos and D. C.
Sorensen [35]. They have proved the robustness and the efficiency of the DCA, es-
pecially in the large-scale setting, and the fact that in practice the DCA (without
restarting procedure) converges to a global solution of the trust-region subproblem.

2. Global optimality conditions for (Q1) and (Q2). We first summarize
several well-known global optimality conditions for (Q1) whose proofs can be found
in [1], [16], [17], [25], [26], [30], [36].

THEOREM 2.1. x∗ is a solution to Problem (Q1) if and only if there exists λ∗ ≥ 0
such that
(i) (A + λ∗I)x∗ = −b,
(ii) λ∗(‖x∗‖ − r) = 0, ‖x∗‖ ≤ r,
(iii) (A + λ∗I) is positive semidefinite.

Moreover, λ∗ is unique.
The conditions (i) and (ii) are Kuhn–Tucker conditions (necessary local optimality

conditions). So, only the last condition is crucial and does express the passage from
“convex” to “nonconvex” in (Q1).

We note that (Q2) is equivalent to a problem of the form (Q1). Namely, it is
equivalent to

min

{

1

2
xT (A + γI)x + bT x : ‖x‖ ≤ r

}

,(1)

where γ is a real number such that A + γI is not positive semidefinite. Indeed, (Q2)
is equivalent to

min

{

1

2
xT (A + γI)x + bT x : ‖x‖ = r

}

,(2)

and in case A + γI is not positive semidefinite problems (1) and (2), by Theorem 2.1,
have the same sets of solutions. Thus, solving (Q2) is reduced to solving problem (1)
which is of the form (Q1).

In [36] D. C. Sorensen gave a sufficient condition for optimality to problem (Q2).
In [24] T. Pham Dinh proved that this condition is not only sufficient, but also nec-
essary. This result was also given partially in R. Fletcher [2] using the optimality
conditions of Theorem 2.1. It looks as follows.

THEOREM 2.2. x∗ is a solution to (Q2) if and only if there exists λ∗ such that
(i) (A + λ∗I) is positive semidefinite,
(ii) (A + λ∗I)x∗ = −b,
(iii) ‖x∗‖ = r.

This number λ∗ is unique.
Denote by λ1 ≤ · · · ≤ λn the eigenvalues of A. Let φ be a function defined on

R\{−λi : i = 1, . . . , n} by

φ(λ) = ‖x(λ)‖,

where x(λ) is the solution of (A + λI)x = −b.
The following nice result which has been stated very recently by J. Martinez [15]

strengthens the ability for the DCA to reach a solution (global minimizer) of (Q1).
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THEOREM 2.3. (i) If x∗ is a local nonglobal minimizer for (Q1) or (Q2), then
(A + λ∗I)x∗ = −b with λ∗ ∈] − λ2,−λ1[ and φ′(λ∗) ≥ 0. If x∗ is a local nonglobal
minimizer for (Q1), then λ∗ ≥ 0.

(ii) There exists at most one local nonglobal minimizer for (Q1) or (Q2).
(iii) If ‖x∗‖ = r, (A + λ∗I)x∗ = −b for some λ∗ ∈] − λ2,−λ1[ and φ′(λ∗) > 0,

then x∗ is a strict local minimizer for (Q2). If, in addition, λ∗ > 0, then x∗ is also a
strict local minimizer for (Q1).

(iv) If b is orthogonal to some eigenvector associated with λ1, then there is no
local nonglobal minimizer for (Q1) and (Q2).

Finally, a result in S. Lucidi, L. Palagi, and M. Roma [13] guarantees that in the
nonconvex case the restarting procedure can be repeated at most 2m+2 times, where
m is the number of the distinct negative eigenvalues of A.

THEOREM 2.4. In (Q1) the objective function can admit at most 2m + 2 differ-
ent values at Kuhn–Tucker points, where m is the number of the distinct negative
eigenvalues of A.

3. D.c. optimization. Let the space X = R
n be equipped with the canonical

inner product 〈·, ·〉. Thus the dual space Y of X can be identified with X itself. The
Euclidean norm of X is denoted by ‖ · ‖ = 〈·, ·〉1/2. Denote by Γo(X) the set of all
proper lower semicontinuous convex functions on X. The conjugate function g∗ of
g ∈ Γo(X) is a function belonging to Γo(Y ) and defined by

g∗(y) = sup{〈x, y〉 − g(x) : x ∈ X}.

For a convex set C in X the indicator function of C is denoted by χC(x) = 0 if
x ∈ C, +∞ otherwise. We shall use the following usual notations of [33]

dom g = {x ∈ X : g(x) < +∞}.

For ǫ > 0 and xo ∈ dom g, the symbol ∂ǫg(xo) denotes ǫ-subdifferential of g at xo,
i.e.,

∂ǫg(xo) = {y ∈ Y : g(x) ≥ g(xo) + 〈x− xo, y〉 − ǫ ∀x ∈ X},

while ∂g(xo) stands for the usual (or exact) subdifferential of g at xo. Also, dom ∂g =
{x ∈ X : ∂g(x) 6= ∅} and range ∂g = ∪{∂g(x) : x ∈ dom ∂g}. We adopt in the sequel
the convention +∞− (+∞) = +∞.

A d.c. program is that of the form

(P) α = inf{f(x) := g(x)− h(x) : x ∈ X},

where g and h belong to Γo(X). Such a function f is called a d.c. function on X while
g and h are called its d.c. components.

Using the definition of conjugate functions, we have

α = inf{g(x)− h(x) : x ∈ X} = inf{g(x)− sup{〈x, y〉 − h∗(y) : y ∈ Y } : x ∈ X}
= inf{β(y) : y ∈ Y }

with

(Py) β(y) = inf{g(x)− (〈x, y〉 − h∗(y)) : x ∈ X}.
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It is clear that β(y) = h∗(y)− g∗(y) if y ∈ dom h∗, +∞ otherwise. Finally, we state
the dual problem

α = inf{h∗(y)− g∗(y) : y ∈ dom h∗}

which is written according to the above convention as

(D) α = inf{h∗(y)− g∗(y) : y ∈ Y }.

We observe the perfect symmetry between primal and dual programs (P) and (D):
the dual program to (D) is exactly (P).

Note that the finiteness of α merely implies that

dom g ⊂ dom h and dom h∗ ⊂ dom g∗.(3)

Such inclusions will be assumed throughout the paper.
This d.c. duality was first studied by J. F. Toland [39] in a more general framework.

It can be considered as a logical generalization of our earlier works concerning convex
maximization ([20] and references therein).

It is worth noting the richness of the set of d.c. functions on X, denoted by
DC(X) [7], [9], [10], [27]:

(i) DC(X) is a subspace containing the class of lower-C2 functions (f is said to be
lower-C2 if f is locally a supremum of a family of C2 functions). In particular, DC(X)
contains the space C1,1(X) of functions whose gradient is locally Lipschitzian on X.

(ii)DC(X) is closed under all the operations usually considered in optimization. In
particular, a linear combination of fi ∈ DC(X) belongs to DC(X), a finite supremum
of d.c. functions is d.c. Moreover, the product of two d.c. functions remains d.c. [7],
[9], [10], [27].

(iii) Under some caution we can say that DC(X) is the subspace generated by
the convex cone Γo(X) : DC(X) = Γo(X)− Γo(X). This relation marks the passage
from convex optimization to nonconvex optimization and also indicates that DC(X)
constitutes a minimal realistic extension of Γo(X).

A point x∗ is said to be a local minimizer of g − h if g(x∗)− h(x∗) is finite (i.e.,
x∗ ∈ dom g ∩ dom h) and there exists a neighborhood U of x∗ such that

g(x∗)− h(x∗) ≤ g(x)− h(x) ∀x ∈ U.(4)

Under the convention +∞− (+∞) = +∞, the property (4) is equivalent to g(x∗) −
h(x∗) ≤ g(x)− h(x), ∀x ∈ U ∩ dom g.

A point x∗ is said to be a critical point of g − h if ∂g(x∗) ∩ ∂h(x∗) 6= ∅.
The interior of the set S in X is denoted by int S. Moreover, if S is convex then

ri S stands for the relative interior of S.
A convex function f on X is said to be essentially differentiable if it satisfies the

following three conditions [33]:
(i) C = int (dom f) 6= ∅,
(ii) f is differentiable on C,
(iii) limk→∞‖∇f(xk)‖ = +∞ for every sequence {xk} which converges to a point at

the boundary of C.
Let ρ ≥ 0 and C be a convex subset of X. One says that the function θ : C −→

R ∪ {+∞} is ρ− convex if

θ[λx + (1− λ)x′] ≤ λθ(x) + (1− λ)θ(x′)− λ(1− λ)

2
ρ‖x− x′‖2 ∀λ ∈]0, 1[ ∀x, x′ ∈ C.
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It amounts to say that θ−(ρ/2)‖·‖2 is convex on C. The modulus of strong convexity
of θ on C, denoted by ρ(θ, C) or ρ(θ) if C = X, is given by

ρ(θ, C) = sup{ρ ≥ 0 : θ − (ρ/2)‖ · ‖2 is convex on C}.(5)

Clearly, the ρ− convexity implies the convexity. One says that θ is strongly convex
on C if ρ(θ, C) > 0.

For f ∈ Γo(X) and λ > 0 the Moreau–Yosida regularization of f with parameter
λ, denoted by fλ, is the inf-convolution of f and 1/2λ‖ · ‖2. The function fλ is con-
tinuously differentiable, underapproximates f without changing the set of minimizers
and (fλ)µ = fλ+µ. More precisely, ∇fλ = 1/λ[I − (I + λ∂f)−1] is Lipschitzian with
the ratio 1/λ. The operator (I + λ∂f)−1 is called the proximal mapping associated
to λf [34].

Let P and D denote the solution sets of problems (P) and (D), respectively, and
let
Pl = {x∗ ∈ X : ∂h(x∗) ⊂ ∂g(x∗)}, Dl = {y∗ ∈ Y : ∂g∗(y∗) ⊂ ∂h∗(y∗)}.
We present below some fundamental results of d.c. optimization which constitute

the basis of the DCA presented in subsection 3.3.

3.1. Duality and global optimality for d.c. optimization.
THEOREM 3.1. Let P and D be the solution sets of problems (P) and (D), respec-

tively. Then
(i) x ∈ P if and only if ∂ǫh(x) ⊂ ∂ǫg(x) ∀ǫ > 0.
(ii) Dually, y ∈ D if and only if ∂ǫg

∗(y) ⊂ ∂ǫh
∗(y) ∀ǫ > 0.

(iii) ∪{∂h(x) : x ∈ P} ⊂ D ⊂ domh∗.
The first inclusion becomes equality if g∗ is subdifferentiable in D (in particular,

if D ⊂ ri(dom g∗) or if g∗ is subdifferentiable in domh∗). In this case D ⊂ (dom ∂g∗∩
dom ∂h∗).

(iv) ∪{∂g∗(y) : y ∈ D} ⊂ P ⊂ dom g.
The first inclusion becomes equality if h is subdifferentiable in P (in particular,

if P ⊂ ri(domh) or if h is subdifferentiable in dom g). In this case P ⊂ (dom ∂g ∩
dom ∂h).

The relationship between primal and dual solutions: ∪{∂h(x) : x ∈ P} ⊂ D
and ∪{∂g∗(y) : y ∈ D} ⊂ P is due to J. F. Toland [39] in the general context of the
duality principle dealing with linear vector spaces in separating duality. A direct proof
of the results (except Properties (i) and (ii)), based on the theory of subdifferential for
convex functions is given in [7], [23], [27]. The properties (i) and (ii) have been first
established by J. B. Hiriart-Urruty [9]. His proof (based on his earlier work concerning
the behavior of the ǫ-directional derivative of a convex function as a function of the
parameters ǫ) is quite complicated. The following proof of these properties is very
simple and well suited to our d.c. duality framework [7], [23], [27]. In fact, they are
nothing but a geometrical translation of the equality of the optimal value in the primal
and dual d.c. programs (P) and (D).

Indeed, in virtue of the d.c. duality, x∗ ∈ P if and only if x∗ ∈ dom g and

g(x∗)− h(x∗) ≤ h∗(y)− g∗(y) ∀y ∈ dom h∗,(6)

i.e.,

g(x∗) + g∗(y) ≤ h(x∗) + h∗(y) ∀y ∈ dom h∗.(7)
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On the other hand, for x∗ ∈ dom h, the property ∂ǫh(x∗) ⊂ ∂ǫg(x∗) ∀ǫ > 0 is, by
definition, equivalent to

∀ǫ > 0, 〈x∗, y〉+ ǫ ≥ h(x∗) + h∗(y)⇒ 〈x∗, y〉+ ǫ ≥ g(x∗) + g∗(y).(8)

It is easy to see the equivalence between (7) and (8), and property (i) is thus proved.
The global optimality condition in (i) is difficult to use for deriving solution methods
to problem (P). The DCA which will be described in subsection 3.3 is based on local
optimality conditions. The relations (ii) and (iv) indicate that solving the primal d.c.
program (P) implies solving the dual d.c. program (D) and vice versa. It may be
useful if one of them is easier to solve than the other.

3.2. Duality and local optimality conditions for d.c. optimization.
THEOREM 3.2. (i) If x∗ is a local minimizer of g − h, then x∗ ∈ Pl.
(ii) Let x∗ be a critical point of g − h and y∗ ∈ ∂g(x∗) ∩ ∂h(x∗). Let U be a

neighborhood of x∗ such that U ∩ dom g ⊂ dom ∂h. If for any x ∈ U ∩ dom g there is
y ∈ ∂h(x) such that h∗(y)− g∗(y) ≥ h∗(y∗)− g∗(y∗), then x∗ is a local minimizer of
g − h. More precisely,

g(x)− h(x) ≥ g(x∗)− h(x∗) ∀x ∈ U ∩ dom g.

Property (i) is well known [7], [9], [23], [39]. For completeness we give below a short
proof for it. Property (ii) is new; it establishes an interesting sufficient condition
(dealing with the d.c. duality) for local d.c. optimality.

Proof. (i) If x∗ is a local minimizer of g − h, then there exists a neighborhood of
x∗ such that

g(x)− g(x∗) ≥ h(x)− h(x∗) ∀x ∈ U ∩ dom g.

Hence for y∗ ∈ ∂h(x∗) we have g(x) − g(x∗) ≥ 〈x − x∗, y∗〉 ∀x ∈ U ∩ dom g. The
convexity of g then implies that y∗ ∈ ∂g(x∗).

(ii) The condition y∗ ∈ ∂g(x∗) ∩ ∂h(x∗) implies g(x∗) + g∗(y∗) = 〈x∗, y∗〉 =
h(x∗) + h∗(y∗). Hence

g(x∗)− h(x∗) = h∗(y∗)− g∗(y∗).(9)

For any x ∈ U ∩ dom g, by assumption, there is y ∈ ∂h(x) such that

h∗(y)− g∗(y) ≥ h∗(y∗)− g∗(y∗).(10)

On the other hand, we have h(x) + h∗(y) = 〈x, y〉 ≤ g(x) + g∗(y). Hence,

g(x)− h(x) ≥ h∗(y)− g∗(y).(11)

Combining (9), (10), (11), we get g(x)− h(x) ≥ g(x∗)− h(x∗) ∀x ∈ U ∩ dom g.
A function θ ∈ Γo(X) is said to be polyhedral convex if [33]

θ(x) = max{〈ai, x〉 − αi : i = 1, . . . , m}+ χC(x) ∀x ∈ X,

where C is a nonempty polyhedral convex set in X.
Polyhedral d.c. optimization occurs when either g or h is polyhedral convex. This

class of d.c. optimization problems, which is frequently encountered in practice, enjoys
interesting properties (from both theoretical and practical viewpoints) concerning
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local optimality and the convergence of the DCA, and has been extensively developed
in [7], [29].

COROLLARY 3.3 (sufficient local optimality). Let x∗ be a point that admits a
neighborhood U such that ∂h(x) ∩ ∂g(x∗) 6= ∅ ∀x ∈ U ∩ dom g. Then x∗ is a local
minimizer of g − h. More precisely, g(x)− h(x) ≥ g(x∗)− h(x∗) ∀x ∈ U ∩ dom g.

Proof. Let x ∈ U ∩ dom g and let y ∈ ∂h(x) ∩ ∂g(x∗). Since y ∈ ∂h(x) we have
h(x) + h∗(y) = 〈x, y〉 ≤ g(x) + g∗(y). So g(x) − h(x) ≥ h∗(y) − g∗(y). Similarly,
y ∈ ∂g(x∗) implies that g(x∗)+g∗(y) = 〈x∗, y〉 ≤ h(x∗)+h∗(y). Hence h∗(y)−g∗(y) ≥
g(x∗)−h(x∗). If y∗ ∈ ∂h(x∗)∩∂g(x∗), then g(x∗)+g∗(y∗) = 〈x∗, y∗〉 = h(x∗)+h∗(y∗).
Hence g(x∗) − h(x∗) = h∗(y∗) − g∗(y∗). The assumptions of Theorem 3.2 (ii) are
fulfilled. Thus, the proof is complete.

Corollary 3.3 can be used to prove the following well-known result due to C.
Michelot (in the case where g, h belonging to Γo(X) are finite on the whole X) and
generalized by the authors [7], [29] to the case of arbitrary g and h belonging to Γo(X):
the converse of property (i) of Theorem 3.2 in case h is polyhedral convex.

COROLLARY 3.4 (sufficient strict local optimality). If x∗ ∈ int (dom h) verifies
∂h(x∗) ⊂ int (∂g(x∗)), then x∗ is a strict local minimizer of g − h.

Proof. From the upper semicontinuity of the operator ∂h at x∗ ∈ int (dom h) [33]
it follows that for any open set O containing ∂h(x∗) there is a neighborhood U of x∗

such that ∂h(x) ⊂ O ∀x ∈ U.
Hence by letting O = int (∂g(x∗)) and taking Corollary 3.3 into account, we

have x∗ is a local minimizer of g − h. But x∗ is actually a strict local minimizer
of g − h. Indeed, since ∂h(x) is compact for x ∈ V = U ∩ int (dom h), we have
∀x ∈ V ∃ǫ(x) > 0 such that ∂h(x) + ǫ(x)B ⊂ O (B being the closed unit ball of the
Euclidean norm).

Now let x ∈ V \{x∗} and y ∈ ∂h(x). Then

g(x)− g(x∗) ≥
〈

x− x∗, y +
ǫ(x)

‖x− x∗‖ (x− x∗)

〉

= ǫ(x)‖x− x∗‖+ 〈x− x∗, y〉
≥ ǫ(x)‖x− x∗‖+ h(x)− h(x∗).

The proof is complete.
It may happen that it is easier to solve locally the dual d.c. program (D) than

the primal d.c. program (P). So it is useful to state results relative to the d.c. duality
transportation of local minimizers. Paradoxically, such a result is more complicated
than the d.c. duality transportation of global minimizers in Theorem 3.1.

COROLLARY 3.5 (d.c. duality transportation of a local minimizer). Let x∗ ∈
dom ∂h be a local minimizer of g−h, and let y∗ ∈ ∂h(x∗) (i.e., ∂h(x∗) is nonempty and
x∗ admit a neighborhood U such that g(x)− h(x) ≥ g(x∗)− h(x∗) ∀x ∈ U ∩ dom g).
If

y∗ ∈ int (dom g∗) and ∂g∗(y∗) ⊂ U(12)

((12) holds if g∗ is differentiable at y∗), then y∗ is a local minimizer of h∗ − g∗.
Proof. According to (i) of Theorem 3.2 we have y∗ ∈ ∂h(x∗) ⊂ ∂g(x∗). So

x∗ ∈ ∂g∗(y∗) ∩ ∂h∗(y∗). Under the assumption (12) and the upper semicontinuity
of ∂g∗, y∗ admits a neighborhood V ⊂ int (dom g∗) such that ([33]) ∂g∗(V ) ⊂ U .
More precisely, ∂g∗(V ) ⊂ (U ∩ dom g) since we have [33] range ∂g∗ = dom ∂g and
dom ∂g ⊂ dom g. Using the dual property (in the d.c. duality) in (ii) of Theorem 3.2
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we deduce that y∗ is a local minimizer of h∗ − g∗ . If g∗ is differentiable at y∗, then
x∗ = ∂g∗(y∗) and we have (12) [33].

By the symmetry of the d.c. duality, Corollary 3.5 has its corresponding dual
part.

Remark. This result improves an earlier result of J. F. Toland [39] where he
assumed that g∗ is differentiable on the whole dual space Y . In [7], [29] we have
proved that this result remains true if g∗ is only essentially differentiable.

3.3. Description of the DCA for general d.c. programs. For each fixed
x∗ ∈ X we consider the problem

(S(x∗)) inf{h∗(y)− g∗(y) : y ∈ ∂h(x∗)},

which is equivalent to the convex maximization one

inf{〈x∗, y〉 − g∗(y) : y ∈ ∂h(x∗)}.

Similarly, for each fixed y∗ ∈ Y , for duality, we define the problem

(T (y∗)) inf{g(x)− h(x) : x ∈ ∂g∗(y∗)}.

This problem is equivalent to

inf{〈x, y∗〉 − h(x) : x ∈ ∂g∗(y∗)}.

Let S(x∗), T (y∗) denote the solution sets of Problems (S(x∗)) and (T (y∗)), respec-
tively.

The complete form of the DCA is based upon duality of d.c. optimization defined
by (P) and (D). It allows approximating a point (x∗, y∗) ∈ Pl × Dl. Given a point
xo ∈ dom g, the algorithm constructs two sequences {xk} and {yk} defined by

yk ∈ S(xk); xk+1 ∈ T (yk).(13)

The complete DCA can be viewed as a sort of a decomposition approach of the
primal and dual problems (P), (D). From a practical point of view, although problems
(S(xk)) and (T (xk)) are simpler than (P), (D) (we work in ∂h(xk) and ∂g∗(yk) with
convex maximization problems), they remain nonconvex programs and thus are still
difficult (see subsection 3.5). In practice the following simplified form of the DCA is
used:
• Simplified form of the DCA: The idea of the simplified DCA is quite natural:

it constructs two sequences {xk} and {yk} (candidates to primal and dual solutions)
which are easy to calculate and satisfy the following conditions:
(i) The sequences (g − h)(xk) and (h∗ − g∗)(yk) are decreasing.
(ii) Every limit point x∗ (resp. y∗) of the sequence {xk} (resp. {yk}) is a critical

point of g − h (resp. h∗ − g∗).
These conditions suggest constructing two sequences {xk} and {yk}, starting from a
given point xo ∈ dom g, by setting

yk ∈ ∂h(xk); xk+1 ∈ ∂g∗(yk).

Interpretation of the simplified DCA: At each iteration k we do the following:

xk ∈ ∂g∗(yk−1)→ yk ∈ ∂h(xk)

= argmin{h∗(y)− [g∗(yk−1) + 〈xk, y − yk−1〉] : y ∈ Y }, (Dk)
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yk ∈ ∂h(xk)→ xk+1 ∈ ∂g∗(yk) = argmin{g(x)−[h(xk)+〈x−xk, yk〉] : x ∈ X}. (Pk)

Problem (Pk) is a convex program obtained from (P) by replacing h with its affine
minorization defined by yk ∈ ∂h(xk). Similarly, the convex problem (Dk) is obtained
from (D) by using the affine minorization of g∗ defined by xk ∈ ∂g∗(yk−1). Here
we can see a complete symmetry between problems (Pk) and (Dk), and between the
sequences {xk} and {yk} relative to the duality of d.c. optimization. The two forms
of the DCA are identical if g∗ and h are essentially differentiable.
•Well definiteness of the DCA: The DCA is well defined if one can construct

two sequences {xk} and {yk} as above from an arbitrary initial point xo ∈ dom g.
We have xk+1 ∈ ∂g∗(yk) and yk ∈ ∂h(xk) ∀k ≥ 0. So {xk} ⊂ range ∂g∗ = dom ∂g
and {yk} ⊂ range ∂h = dom ∂h∗. Then the following lemma is clear.

LEMMA 3.6. Sequences {xk}, {yk} in the DCA are well defined if and only if

dom ∂g ⊂ dom ∂h and dom ∂h∗ ⊂ dom ∂g∗.

Since for ϕ ∈ Γo(X) we have ri (dom ϕ) ⊂ dom ∂ϕ ⊂ dom ϕ ([33]) (ri (dom ϕ) stands
for the relative interior of dom ϕ) we can say, under the essential assumption (3), that
the DCA is, in general, well defined.

Remark. A d.c. function f has infinitely many d.c. decompositions. For example,
if f = g−h, then f = (g+θ)− (h+θ) for every θ ∈ Γo(X) finite on the whole X. It is
clear that the primal d.c. programs (P) corresponding to the two d.c. decompositions
of the objective function f are identical. But their dual programs are quite different
and so is the DCA relative to these d.c. decompositions. In other words, there are as
many DCAs as there are d.c. decompositions of the objective function f . It is useful
to find a suitable d.c. decomposition of f since it may have an important influence on
the efficiency of the DCA for its solution. This question is intimately related to the
regularization techniques in d.c. programming [7], [23], [27].

3.4. Convergence of the DCA for general d.c. programs. Let ρi and
ρ∗

i , (i = 1, 2) be real nonnegative numbers such that 0 ≤ ρi < ρ(fi) (resp. 0 ≤ ρ∗
i <

ρ(f∗
i )) where ρi = 0 (resp. ρ∗

i = 0) if ρ(fi) = 0 (resp. ρ(f∗
i ) = 0) and ρi (resp. ρ∗

i )
may take the value ρ(fi) (resp. ρ(f∗

i )) if it is attained. We next set f1 = g and f2 = h.
Also let dxk := xk+1 − xk and dyk := yk+1 − yk.

The basic convergence theorem of the DCA for general d.c. programming will be
stated below. Its proof is very technical and long. We will present it in the appendix
and refer the reader to our previous works [7], [27] for more details.

THEOREM 3.7. Suppose that the sequences {xk} and {yk} are defined by the
simplified DCA. Then we have

(i) (g − h)(xk+1) ≤ (h∗ − g∗)(yk)−max

{

ρ2

2
‖dxk‖2, ρ∗

2

2
‖dyk‖2

}

≤ (g − h)(xk)

−max

{

ρ1 + ρ2

2
‖dxk‖2, ρ∗

1

2
‖dyk−1‖2 +

ρ2

2
‖dxk‖2, ρ∗

1

2
‖dyk−1‖2 +

ρ∗
2

2
‖dyk‖2

}

.

The equality (g − h)(xk+1) = (g − h)(xk) holds if and only if xk ∈ ∂g∗(yk), yk ∈
∂h(xk+1)and (ρ1 + ρ2)dxk = ρ∗

1dyk−1 = ρ∗
2dyk = 0. In this case

• (g − h)(xk+1) = (h∗ − g∗)(yk) and xk, xk+1 are the critical points of g − h
satisfying yk ∈ (∂g(xk) ∩ ∂h(xk)) and yk ∈ (∂g(xk+1) ∩ ∂h(xk+1)),
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• yk is a critical point of h∗ − g∗ satisfying [xk, xk+1] ⊂ ((∂g∗(yk) ∩ ∂h∗(yk)),
• xk+1 = xk if ρ(g)+ρ(h) > 0, yk = yk−1 if ρ(g∗) > 0 and yk = yk+1 if ρ(h∗) > 0.
(ii) Similarly, for the dual problem we have

(h∗ − g∗)(yk+1) ≤ (g − h)(xk+1)−max

{

ρ1

2
‖dxk+1‖2, ρ∗

1

2
‖dyk‖2

}

≤ (h∗ − g∗)(yk)

−max

{

ρ1

2
‖dxk+1‖2 +

ρ2

2
‖dxk‖2, ρ∗

1

2
‖dyk‖2 +

ρ2

2
‖dxk‖2, ρ∗

1 + ρ∗
2

2
‖dyk‖2

}

.

The equality (h∗−g∗)(yk+1) = (h∗−g∗)(yk) holds if and only if xk+1 ∈ ∂g∗(yk+1), yk ∈
∂h(xk+1) and (ρ∗

1 + ρ∗
2)dyk = ρ2dxk = ρ1dxk+1 = 0. In this case

• (h∗ − g∗)(yk+1) = (g − h)(xk+1) and yk, yk+1 are the critical points of h∗ − g∗

satisfying xk+1 ∈ (∂g∗(yk) ∩ ∂h∗(yk)) and xk+1 ∈ (∂g∗(yk+1) ∩ ∂h∗(yk+1)),
• xk+1 is a critical point of g − h satisfying [yk, yk+1] ⊂ ((∂g(xk+1) ∩ ∂h(xk+1)),
• yk+1 = yk if ρ(g∗) + ρ(h∗) > 0, xk+1 = xk if ρ(h) > 0 and xk+1 = xk+2 if

ρ(g) > 0.
(iii) If α is finite, then the decreasing sequences {(g−h)(xk)} and {(h∗−g∗)(yk)}

converge to the same limit β ≥ α, i.e., limk→+∞(g−h)(xk) = limk→+∞(h∗−g∗)(yk) =
β. If ρ(g) + ρ(h) > 0 (resp. ρ(g∗) + ρ(h∗) > 0), then limk→+∞{xk+1 − xk} = 0 (resp.
limk→+∞{yk+1 − yk} = 0). Moreover, limk→+∞{g(xk) + g∗(yk) − 〈xk, yk〉} = 0 =
limk→+∞{h(xk+1) + h∗(yk)− 〈xk+1, yk〉}.

(iv) If α is finite and the sequences {xk} and {yk} are bounded, then for every
limit x∗ of {xk} (resp. y∗ of {yk}) there exists a cluster point y∗ of {yk} (resp. x∗

of {xk}) such that
• (x∗, y∗) ∈ [∂g∗(y∗) ∩ ∂h∗(y∗)] × [∂g(x∗) ∩ ∂h(x∗)] and (g − h)(x∗) = (h∗ −

g∗)(y∗) = β,
• limk→+∞{g(xk) + g∗(yk)} = limk→+∞〈xk, yk〉.
Comments on Theorem 3.7. (i) Properties (i) and (ii) prove that the DCA

is a descent method for both primal and dual programs. The DCA provides critical
points for (P) and (D) after finitely many operations if there is no strict decrease of
the primal (or dual) objective function.

(ii) If C and D are convex sets such that {xk} ⊂ C and {yk} ⊂ D, then Theorem
3.7 remains valid if we replace ρ(fi) by ρ(fi, C) and ρ(f∗

i ) by ρ(f∗
i , D) for i = 1, 2.

By this way we may improve the results in the theorem.
(iii) In (ii) of Theorem 3.7, the convergence of the whole sequence {xk} (resp.

{yk}) can be ensured under the following conditions [18], [20]:
• {xk} is bounded;
• The set of limit points of {xk} is finite;
• limk→+∞ ‖xk+1 − xk‖ = 0.
(iv) The only difference between the simplified DCA and the complete DCA lies

on the choice of yk in ∂h(xk) and xk+1 in ∂g∗(yk). The convergence result of the
complete DCA is thus improved: in Theorem 3.7, the nonemptiness of a subdifferential
intersection is replaced by a subdifferential inclusion [7], [23], [27]. In other words, the
complete DCA permits to obtain a couple of elements (x∗, y∗) ∈ Pl ×Dl. In practice
the simplified DCA usually yields a local minimizer which is also global [7].

(v) In general, the qualities (robustness, stability, rate of convergence, and glob-
ality of sought solutions) of the DCA, in both complete and simplified forms, depend
upon the d.c. decomposition of the function f . Theorem 3.7 shows how strong con-
vexity of d.c. components in primal and dual problems can influence the DCA. To
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make the d.c. components (of the primal objective function f = g−h) strongly convex
we usually apply the following process

f = g − h =

(

g +
λ

2
‖ · ‖2

)

−
(

h +
λ

2
‖ · ‖2

)

.

In this case the d.c. components in the dual problem will be continuously differentiable.
Similarly inf-convolution of g and h with λ/2‖ · ‖2 will make the d.c. components (in
dual problems) strongly convex and the d.c. components of the primal objective
function continuously differentiable. For a detailed study of regularization techniques
in the d.c. optimization, see [7], [23], [27].

3.5. How to restart the simplified DCA for obtaining x∗ such that
∂h(x∗) ⊂ ∂g(x∗). As mentioned above, the complete DCA theoretically provides
a x∗ such that ∂h(x∗) ⊂ ∂g(x∗). In practice, except for the cases where the convex
maximization problems (S(xk) and (T (yk)) are easy to solve, one generally uses the
simplified DCA. It is worth noting that if the simplified DCA terminates at some point
x∗ for which ∂h(x∗) is not contained in ∂g(x∗), then one can reduce the objective
function value by restarting it from a new initial point xo = x∗ with yo ∈ ∂h(xo) such
that yo /∈ ∂g(xo). In fact, since

g(x1) + g∗(yo) = 〈x1, yo〉 ≤ h(x1)− h(xo) + 〈xo, yo〉

and 〈xo, yo〉 < g(xo) + g∗(yo) because yo /∈ ∂g(xo), we have

g(x1) + g∗(yo) < h(x1)− h(xo) + g(xo) + g∗(yo).

Hence,

g(x1)− h(x1) < g(xo)− h(xo).

We have given the main concept of the d.c. programming and the DCA. In the
next section we shall apply this technique to the trust-region subproblem.

4. Solving trust-region subproblem (Q1) by the DCA.

4.1. DCA for solving Problem (Q1). We describe below the DCA for solving
(Q1). For this we must point out d.c. decompositions of the objective function in (Q1).

(Q1) α = inf

{

1

2
xT Ax + bT x + χE(x) : x ∈ R

n

}

,

where E = {x ∈ R
n : ‖x‖ ≤ r} and χE stands for its indicator function. The following

d.c. decomposition seems to be the most natural

f(x) =
1

2
xT Ax + bT x + χE(x) = g1(x)− h1(x)

with

g1(x) =
1

2
xT (A + ρI)x + xT b + χE(x), h1(x) =

1

2
ρxT x,(14)

and ρ is a positive real number such that A + ρI is positive semidefinite.
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For this case in the simplified DCA yk = ρxk and xk+1 is a solution of the problem

min

{

1

2
xT (A + ρI)x + xT (b− yk) : ‖x‖ ≤ r

}

.(15)

Thus, at each iteration, the algorithm requires solving a convex quadratic program
and so is expensive, especially in large-scale problems. In practice the algorithm with
this d.c. decomposition is unstable ([7]). Note that if A is positive semidefinite then
DCA with this decomposition reduces to the well-known proximal point algorithm
[14], [34].

From the computational viewpoint the following decomposition, in our opinion,
is the most efficient: f(x) = g(x)− h(x) with

g(x) =
1

2
ρ‖x‖2 + bT x + χE(x), h(x) =

1

2
xT (ρI −A)x,(16)

and ρ is a positive number such that ρI −A is positive semidefinite.
Clearly, g, h ∈ Γo(R

n) and thus (Q1) takes the form

(P ) min{g(x)− h(x) : x ∈ R}.(17)

The simplified DCA applied to this case can be formulated as follows. Let xo ∈ R
n

and k ≥ 0. Further, let yk = (ρI −A)xk and xk+1 be a solution of the problem

min
{ρ

2
‖x‖2 + xT (b− yk) + χE(x) : x ∈ R

n
}

.(18)

Clearly,

(18)⇔ min
x∈E

∥

∥

∥

∥

x− yk − b

ρ

∥

∥

∥

∥

2

.

Thus, xk+1 is, in fact, the projection of (yk − b)/ρ onto E, i.e.,

xk+1 = PE

(

xk − 1

ρ
(Axk + b)

)

.(19)

Summing up, we state the chosen DCA as follows:

DCA :
Let xo ∈ R

n and k ≥ 0

a) If ‖(ρI −A)xk − b‖ ≤ ρr take xk+1 = (ρI−A)xk−b
ρ .

b) Otherwise, take xk+1 = r (ρI−A)xk−b
‖(ρI−A)xk−b‖

.

If ‖xk+1 − xk‖ ≤ ǫ, terminate. Otherwise, increase k by 1 and return to a).

Remark. (i) In case b = 0, except if A is positive semidefinite (for which zero
is a solution), we choose xo such that yo = (ρI − A)xo 6= 0, since yo = 0 implies
xk = 0 ∀k ≥ 1.
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(ii) We have presented the two d.c. decompositions (14), (16) (of the objective
function f) which give rise to quite different DCA. These algorithms treat indiffer-
ently the normal and hard cases of (Q1). However, the DCA corresponding to the
decomposition (16) requires only matrix–vector products since the solution (19) is
explicit. This DCA seems to be more stable and more efficient than the former. The
following convergence results are a consequence of Theorem 3.7.

THEOREM 4.1. (i) f(xk+1) ≤ f(xk) − 1/2(ρ + λ)‖xk+1 − xk‖2, where λ is the
smallest eigenvalue of (ρI −A).

(ii) f(xk)ց α′ ≥ α and limk→∞ ‖xk+1 − xk‖ = 0.
(iii) Every limit point x∗ of the sequence {xk} is a Kuhn–Tucker point; i.e., there

exists λ∗ ≥ 0 such that (A + λ∗I)x∗ = −b, λ∗(‖x∗‖ − r) = 0 and ‖x∗‖ ≤ r.
Proof. For the d.c. decomposition (16) of f , we have ρ(g, E) = ρ, ρ(h) = ρ− λn.

Since the sequence {xk} is contained in E and the supremum ρ(g, E) in (5) is attained,
according to (i) of Theorem 3.7 and (i) of comments on Theorem 3.7, we get

f(xk+1) ≤ f(xk)− 1

2
(2ρ− λn)‖xk+1 − xk‖2.

Property (ii) then follows from (iii) of the above theorem.
Now let x∗ be a limit point of {xk}. Since the sequences {xk} and {yk} are

bounded, Property (iv) of Theorem 3.7 then implies

∂h(x∗) = ∇h(x∗) ⊂ ∂g(x∗).(20)

We have ∇h(x∗) = (ρI − A)x∗, ∂g(x∗) = ρx∗ + b + ∂χE(x∗) with ∂χE(x∗) = {0} if
‖x∗‖ < r, {λx∗ : λ ≥ 0}, otherwise. So the relation (20) is equivalent to

(A + λ∗I)x∗ = −b, λ∗(‖x∗‖ − r) = 0, and ‖x∗‖ ≤ r

for some nonnegative real λ∗. The proof is complete.

4.2. Using the DCA for globally solving (Q1). Let x∗ be a point produced
by the DCA (Theorem 4.1). It is clear that if A is positive semidefinite, then (P )
in (17) is a “false” d.c. optimization problem (i.e., it is a convex one in reality) and
the condition (iii) is actually a characterization of (Q1). In other words, the DCA
converges to a solution of (Q1) in this case. In general, using Theorem 2.1 we can
calculate λ∗ and check the global optimality. Indeed, from Theorem 2.1 it follows that

λ∗ =
−〈x∗, Ax∗〉 − 〈x∗, b〉

r2
.

So, checking the global optimality of x∗ can be done, for example, by applying the
inexpensive algorithm IRLM to compute the smallest eigenvalue λ1 of A and a corre-
sponding eigenvector u:

Au = λ1u.

If λ∗ + λ1 ≥ 0, then x∗ is a global solution to (Q1). Otherwise,

uT (A + λ∗I)u = (λ∗ + λ1)u
T u < 0.(21)

In this case we will indicate below how to restart the DCA, say, how to find x̄ such
that ‖x̄‖ ≤ r and f(x̄) < f(x∗). First let us mention the following property.
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LEMMA 4.2. If f(x) = 1/2〈x, Ax〉 + 〈b, x〉, with A being symmetric, and (A +
µI)y = −b, then

f(x) = f(y)− µ

2
(‖x‖2 − ‖y‖2) +

1

2
〈x− y, (A + µI)(x− y)〉 ∀x.

Proof. We have

f(x) = f(y) + 〈x− y, Ay + b〉+ 1

2
〈x− y, A(x− y)〉

= f(y)− µ〈x− y, y〉+ 1

2
〈x− y, (A + µI)(x− y)〉 − µ

2
〈x− y, x− y〉.

Since µ/2〈x− y, x− y〉 = µ/2(‖x‖2 + ‖y‖2)− µ〈x, y〉, we get

−µ

2
〈x− y, x− y〉 − µ〈x− y, y〉 = −µ

2
(‖x‖2 + ‖y‖2) + µ‖y‖2 = −µ

2
(‖x‖2 − ‖y‖2).

The proof is complete.

How to compute the initial point for restarting the DCA. a) If 〈b, x∗〉 > 0,
then taking x̄ = −x∗ we have f(x̄) < f(x∗). Indeed, in virtue of Lemma 4.2,

f(x) = f(x∗)− λ∗

2
(‖x‖2 − ‖x∗‖2) +

1

2
〈x− x∗, (A + λ∗I)(x− x∗)〉.(22)

This implies

f(x̄) = f(x∗) + 2〈(A + λ∗I)x∗, x∗〉 = f(x∗)− 2〈b, x∗〉 < f(x∗).

So we can restart the DCA from the initial point x̄.
b) If 〈b, x∗〉 ≤ 0, then we distinguish two cases:
(b.1). If either ‖x∗‖ < r or ‖x∗‖ = r and uT x∗ 6= 0, then we take x̄ = x∗ + γu,

where γ 6= 0 is chosen such that ‖x̄‖ = r. More precisely, γ is a nontrivial solution of
the following equation:

‖u‖2γ2 + 2uT x∗γ + ‖x∗‖2 − r2 = 0,

which is given explicitly by

γ =

{

−2(uT x∗)/‖u‖2 if ‖x∗‖ = r,
(

−(uT x∗)±
√

∆
)

/‖u‖2 if ‖x∗‖ < r,
(23)

where ∆ = (uT x∗)2 − ‖u‖2(‖x∗‖2 − r2).
So we can choose x̄ as the initial point for restarting the DCA, since

f(x̄) = f(x∗) +
γ2

2
〈u, (A + λ∗I)u〉 < f(x∗).

Note that in (23) the greater γ2 is, the smaller f(x̄) becomes. Then the better value
of γ is given by γ = (−(uT x∗) +

√
∆)/‖u‖2 if uT x∗ < 0, (−(uT x∗) −

√
∆)/‖u‖2

otherwise.
(b.2). If ‖x∗‖ = r, and uT x∗ = 0, then we find a new vector v = u + τx∗ with

τ < 0 such that vT (A+λ∗I)v < 0 and vT x∗ 6= 0. Return to (b.1) with v instead of u.
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To prove the existence of such a vector we will proceed as follows: we have
vT x∗ = uT x∗ + τ‖x∗‖2 = τ‖x∗‖2. So vT x∗ < 0 if τ < 0. Since

〈v, (A + λ∗I)v〉 = τ2〈x∗, (A + λ∗I)x∗〉+ 2τ〈u, (A + λ∗I)x∗〉+ 〈u, (A + λ∗I)u〉
= −τ2〈b, x∗〉 − 2τ〈b, u〉+ 〈u, (A + λ∗I)u〉

we easily deduce the following properties:
• If bT x∗ = 0 and bT u ≤ 0, then vT (A + λ∗I)v < 0 for all τ < 0. If bT x∗ = 0 and

bT u > 0, then vT (A + λ∗I)v < 0 for 0 > τ > uT (A + λ∗I)u/bT u.
• If bT x∗ < 0, then vT (A + λ∗I)v < 0 for τ1 < τ < 0, where τ1 is the smallest

root of the second degree polynomial of τ , −bT x∗τ2 − 2bT uτ + uT (A + λ∗I)u, i.e.,
τ1 = [bT u + ((bT u)2 + bT x∗uT (A + λ∗I)u]1/2)]/bT x∗.

Summing up, we conclude that if a Kuhn–Tucker point x∗ produced by the DCA
is not a global solution to (Q1) then another point x̄ (such that ‖x̄‖ ≤ r and f(x̄) <
f(x∗)) is already available for restarting the DCA.

Remark. In case (b.2) the optimal choice for τ is a bit complicated because it
deals with roots of a third degree polynomial of τ . Finally, we state here our global
algorithm for solving (Q1) in the nonconvex case.
Algorithm GDCA: (globally solving (Q1)).

Initialization. Compute λ1 and u by the IRLM.
Compute an approximation λ̃n to λn by the IRLM.
Let ρ := λ̃n + 0.1, x̄ ∈ C, stop := false.

While stop = false do
1. Apply the DCA from starting point xo := x̄ to obtain x∗.
2. Let λ∗ = (−〈x∗, Ax∗〉 − 〈x∗, b〉)/r2.
If λ∗ ≥ −λ1 then stop := true, x∗ is a global solution of (Q1)
else compute x̄ such that f(x̄) < f(x∗) and return to 1.

end while

4.3. Relation between the DCA and the Goldstein–Levitin–Polyak gra-
dient projection algorithm for solving (Q1) in the convex case. In case the
matrix A in (Q1) is positive semidefinite, the Goldstein–Levitin–Polyak gradient pro-
jection algorithm applied to (Q1) looks as follows:

xk+1 = PE(xk − ρ−1(Axk + b)) = F (xk).(24)

The following well-known convergence result can be proved by using classical argu-
ments of fixed point theory (B. Polyak [31]).

PROPOSITION 4.3. Let A be positive semidefinite and ρ > 0. Then
(i) ‖F (x)− F (x′)‖ ≤ max{| 1− ρ−1λn |, | 1− ρ−1λ1 |}‖x− x′‖.
(ii) If ρ > λn/2, then every limit point of {xk} is a solution of (Q1). Moreover, if

the solution set of (Q1) is finite, then the whole sequence {xk} converges to a solution
of (Q1).

(iii) If A is positive definite and 0 < ρ−1 < 2λ−1
n , then F is a contraction with

constant q(ρ) < 1. Moreover, ρ̄ = (λn +λ1)/2 is the best choice which minimizes q(ρ)
over ]λn/2,+∞[:

q(ρ̄) =
λn − λ1

λn + λ1
.

Remark. (i) The Goldstein–Levitin–Polyak gradient projection can be considered
as a special case of the DCA applied to (Q1).
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(ii) In the DCA ρ must be greater or equal to λn, while Proposition 4.3 requires
only that ρ > λn/2.

(iii) The assertion (ii) of Proposition 4.3 is a direct consequence of Theorem 4.1.
(iv) Actually, the whole sequence {xk} converges to a solution of (Q1) if this

problem admits a solution. The proof of this result is based on the theory of maximal
monotone operators.

4.4. Optimal choice of the regularization parameter ρ. In practice, the
convergence rate of the DCA depends on the value ρ. Except for the case where the
matrix A is positive definite for which the “theoretically optimal” value (λ1 + λn)/2
(that is not “practically optimal,” however, as shown in Table 5) of ρ has been pointed
out in Proposition 4.3, the general optimal choice of ρ is not easy. Numerical experi-
ments proved that, in general, the closer to λn the positive parameter ρ is, the better
the DCA converges. Such good parameters ρ belong to {λ > 0 : λ ∈]ρ∗, ρ∗+ε]}, where
ε > 0 is sufficiently small and ρ∗ = λn if λn > 0, 0 otherwise. In practice, such a ρ can
be computed by using the quite inexpensive IRLM due to D.C. Sorensen [37]. We
need only a low accuracy for an approximation λ̃n given by the IRLM of the largest
eigenvalue λn of A. In other words, we are satisfied with an approximation λ̃n such
that λ̃n ≤ λn ≤ λ̃n + ∆λ̃n, where the variation ∆λ̃n is given by: if |λ̃n| = α10k with
α ∈ [0, 10[ and k integer, then ∆λ̃n = 2.10k−1 when α ≥ 5, 10k−1 when 0 < α < 5, 0
when α = 0.

Such an approximation λ̃n can be provided by the IRLM with the tolerance equal
to 0.1 [37] at little cost. A good practical choice of ρ is then max{λ̃n + ∆λ̃n, 10−3}.

5. Numerical experiments. In this section, we present some computational
tests on the performance of the DCA for different sets of test problems. Our ex-
periments are composed of five sets of tests. In the first set we compare the DCA
with safeguarding [17] and dichotomy [7], [24] algorithms. The algorithms have been
coded in PASCAL under Unix system and run on Sun SPARC-2 station with double
precision. In the second set, we provide a comparison between the DCA and the
approach proposed by S. A. Santos and D. C. Sorensen [35]. The third set reports the
performance of the DCA and the gradient projection algorithm in the convex case.
Finally, in the fourth and fifth sets we study the sensitivity of the DCA, respectively,
for different choices of ρ and several sizes of the radius. For the last four sets the al-
gorithms have been coded in FORTRAN 77 and run on Sun SPARC-10 station with
double precision.

The stopping criterion of the DCA was actually er ≤ ǫ, where

er =

{

‖xk+1 − xk‖2/‖xk‖2 if ‖xk‖ > 1,
‖xk+1 − xk‖2 otherwise,

(25)

with ǫ = 10−6. The initial point of the DCA was always chosen as xo
i = r/

√
n, i =

1, . . . , n.

5.1. Comparison with safeguarding and dichotomy algorithms. In the
first experiment we solved 150 problems (five problems per dimension n) whose data
was randomly generated in a similar way as described in [17]. The matrix A is
of the form A = UDUT for some orthogonal matrix U and a diagonal matrix D.
Let b = Ug for some vector g. The orthogonal matrix U was of the form Q1Q2Q3

where Qj = I − 2wjw
T
j /‖wj‖2, j = 1, 2, 3 and the components wj were random

numbers in (−1, 1). The elements of g were chosen as random numbers in (−1, 1)
while the diagonal elements of matrix D are random numbers in (−5, 5). This choice
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leads to the normal case. The hard case is generated by setting to zero all the
components of g corresponding to the smallest element of D (that is λ1) and then by
taking r greater than ‖(A−λ1I)+b‖ (here “+” denotes the Moore–Penrose generalized
inverse), i.e., r > ‖d‖ where di = gi/(Dii − λ1) if Dii 6= λ1, 0 otherwise. A positive
definite case (resp. positive semidefinite) was obtained by replacing Dii < 0 by |Dii|
(resp. 0). In the normal case, r is randomly chosen in (1, 100). The values of ρ
(in the DCA) were chosen as 0.25‖A‖1 or 0.35‖A‖1. For the safeguarding algorithm
(Sfg) we took σ1 = 10−4, σ2 = 10−2. For the dichotomy algorithm (Dct) we chose
ε3 = 0.001(λk

L + λk
U ). The optimal values provided by the three algorithms are, to

within 10−3, equal.
Tables 1 and 2 indicate, respectively, the average iteration (IT) and the average

CPU time in seconds (on Sun SPARC-2) of three algorithms in nonconvex and convex
cases.

TABLE 1
Comparison with dichotomy and safeguarding algorithms, A is indefinite, the normal case (left)

and the hard case (right).

n DCA Dct Sfg
IT time IT time IT time

100 53.2 1.3 6 2.5 7 3.2
200 113 11.3 6.2 28.4 7.4 32.6
250 102 13.5 5 42.1 7 60.6
300 75 15.5 6 85.6 7.4 95.3
350 73 20.4 5.2 122.2 7 161.6
400 59 23.6 5.2 172.0 6 189.7
450 77 80.6 4.4 250.2 6 270.2
500 67 90 6 497 6.4 502

n DCA Dct Sfg
IT time IT time IT time

100 83 2.2 8.6 4.7 10 5.5
200 222 22.2 9.2 30.3 11.2 37.9
250 180 37.5 9 62.1 11 75.4
300 178 45.0 7.2 75.0 12 130.4
350 190 74.0 6.4 129.2 12 244.9
400 279 122 5.6 181.4 11.4 355.1
450 187 139 6.6 316.6 11.2 539.6
500 234 144 7.6 475.7 11 684.9

TABLE 2
Comparison with dichotomy and safeguarding algorithms, A is positive definite (left) and A is

positive semidefinite (right).

n DCA Dct Sfg
IT time IT time IT time

100 43 1.2 2.4 1.45 2.4 1.45
150 32 2.0 3 7.0 4.4 8.5
200 21 2.25 3.4 11.9 4 14.5
250 23 3.8 3.4 21.5 4 24.7
300 22 4.2 3 38.7 4 53.42
350 22 6.8 3 50.2 4 84.7
400 16 7.5 4.2 130 4 126.5

n DCA Dct Sfg
IT time IT time IT time

100 10 0.32 3 2.0 3 2.0
150 35 2.5 3 7.6 3 8.0
200 23 2.3 3.5 12.9 4 15.5
250 22 3.7 3 25.0 3 25.0
300 45 13.0 3 52.2 3.4 73.4
350 165 48.8 2 56.8 5 85.2
400 17 7.2 3 118 3 120

5.2. Comparison with the new matrix-free algorithm. In the second ex-
periment we solved two different families of 112 problems by the DCA and the new
matrix-free algorithm (NMFA). We used the code in MATLAB of S. A. Santos and
D. C. Sorensen [35] to generate the data. First, the matrix A takes the form L− 5I,
where L is the standard 2-D discrete Laplacian on the unit square based upon a 5-point
stencil with equally-spaced meshpoints. The shift of −5I was introduced to make A
indefinite. The vector b was randomly generated with entries uniformly distributed
on (0, 1). The hard case is generated by performing the operation b ← b − q1(q

T
1 b)

to orthogonalize the vector b against q1, the eigenvector of A corresponding to the
smallest eigenvalue λ1. The radius was always equal to 100.

In the second family of problems, the matrix A is of the form UDUT and generated
as in subsection 5.6. of [35]. D was a diagonal matrix and U = I−2uuT , uT u = 1. The
elements of D = diag(d1, . . . , dn) were randomly generated and uniformly distributed
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on (−5, 5). The entries of u and b were randomly selected from a uniform distribution
on (−0.5, 0.5). The vector u was normalized to have unit length. As in the first family,
an orthogonalization of b against q1 generated a hard case. A noise vector of norm
10−8 was added to b. To ensure the hard case the radius was chosen as r = 2rmin

where rmin = ‖(A − d1I)+b‖. In the normal case the radius was fixed at r = 100
when n = 256, n = 576, n = 1024 and r = 20 when n = 100.

We used the IRLM implemented in the package ARPACK [12], [37] for
computing the two smallest eigenpairs at each iteration in the NMFA. For the
IRLM we choose nine Lanczos basis vectors, six shifts on each implicit restart,
and different tolerances at each case of the two families. In the first family (A =
L − 5I) the initial tolerance was εR = 0.5 for all dimensions in both cases, ex-
cept εR = 0.1 when n = 1024 in the normal case. Subsequently, in the nor-
mal case εR = max{min{εR, |r − ‖xk‖/r|}, 0.075} when n = 100, n = 256, n =
576; εR = max{min{εR, |r − ‖xk‖/r}, 0.01} when n = 1024 and in the hard case;
εR = max{min{εR, |r − ‖xk‖/1000r|, |τ2(zT Az − λk)/(1000(bT xk+ λkr2)|}, 0.01}
when n = 100, n = 256, n = 576, εR = max{min{εR, |r − ‖xk‖/1000r|,
|τ2(zT Az − λk)/1000(bT xk + λkr2|}, 0.001} when n = 1024. In the second fam-
ily (A = UDUT ) the initial tolerance was εR = 10−4 (resp., εR = 10−2 ) when
n = 100, εR = 10−6 (resp., εR = 10−3 ) when n = 256, n = 576, and εR =
10−7 (resp., εR = 10−4) when n = 1024 in the hard case (resp., the normal case).
Subsequently, εR = min{εR, |r − ‖xk‖/1000r|, |τ2(zT Az − λk)/(1000(bT xk + λkr2))|}
(resp., εR = min{εR,

√

|r − ‖xk‖/r|, |τ2(zT Az − λk)/(bT xk + λkr2)|}). For a fixed
tolerance εR, the stopping condition in the IRLM is (‖f‖|eT

j y|)2 ≤ εR|µ|G(j) (cf.
[19, pp. 206, 222]). In our experiments j = 3. The IRLM was started with
v = (1, . . . , 1)T /

√
n + 1 and then the previously calculated eigenvector corresponding

to the smallest eigenvalue was used as the initial vector. The parameters for the
NMFA were the following: εδ = εhc = 10−6, εν = 10−2, α0 = min{0, αU} and the
initial of δS was δS = min{Aii : i = 1, . . . , n}+ 0.5 in the hard case with A = UDUT

and δS = min{Aii : i = 1, . . . , n} in other cases. (See [35] for these notations.)
For computing ρ in the DCA we also applied the IRLM to the matrix A with the

tolerance εR = 0.5 in the first family (A = L− 5I) and εR = 0.1 in the second family
(A = UDUT ). So we obtained an approximation λ̃n of the largest eigenvalue λn of A
and took ρ = λ̃n + 0.1 (resp. ρ = λ̃n + 0.5) when A = L− 5I (resp. A = UDUT ).

For each case (normal and hard cases) seven problems per dimension were gen-
erated with different seeds for each family and solved by both Santos and Sorensen’s
algorithm (NMFA) and our code (DCA). The average results are indicated in Ta-
bles 3 and 4. In these tables we used the following notation: IT stands for the
number of iterations; MVP stands for the number of matrix–vector products; KTC =
‖b + (A + λ∗I)x∗‖/‖b‖ (this presents the Kuhn–Tucker condition); time: CPU time
in seconds (on Sun SPARC-10). The value λ∗ is the average of the obtained multi-
pliers provided by each algorithm. Note that for the DCA the number of required
matrix–vector products is exactly the sum of the number of iterations in the DCA and
the number of matrix–vector products in the IRLM. In our experiments we observe
from numerical results that the last quantity was always equal to nine. The quantity
KTC in the DCA was equal to zero because λ∗ was deduced from the expression
(A + λ∗I)x∗ = −b. CPU time of the DCA was presented in two parts: the first (resp.
second) part indicated CPU time of the IRLM (resp. DCA).

5.3. Comparison with the gradient projection algorithm in the convex
case. In the third experiment we solved 56 problems whose data was generated as
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TABLE 3
Comparison with the new matrix-free method, A = L − 5I.

n Type Algorithm IT MVP
r−‖x

∗‖
r

KTC λ∗ time

100 normal NMFA 7.4 89.4 −3.10−8 7.10−5 4.8822 0.3
case DCA 47.6 56.6 −3.10−17 0.0 4.7939 0.03+0.02

100 hard NMFA 12.6 298.2 −9.10−17 3.10−3 4.8340 0.9
case DCA 45.2 54.2 6.10−17 0.0 4.8381 0.03+0.02

256 normal NMFA 7.8 131.4 −9.10−8 2.10−6 5.0013 0.7
case DCA 108.6 117.6 −2.10−16 0.0 4.8631 0.04+ 0.1

256 hard NMFA 9.4 383.4 2.10−17 9.10−4 4.9319 1.7
case DCA 86.8 95.6 5.10−33 0.0 4.9325 0.04+0.1

576 normal NMFA 8.2 135 10−7 8.10−6 5.0709 1.5
case DCA 471.8 480.8 −2.10−16 0.0 5.0701 0.07+1.3

576 hard NMFA 10.8 678 2.10−16 10−2 4.9684 5.2
case DCA 166.6 175.6 −4.10−16 0.0 4.9711 0.07 + 0.5

1024 normal NMFA 7.4 187.8 4.10−8 4.10−7 5.1212 4.9
case DCA 346.8 355.8 2.10−16 0.0 5.1188 0.1+1.8

1024 hard NMFA 11.6 1490 −2.10−7 2.10−2 4.9818 20.1
case DCA 315.2 324.2 −2.10−16 0.0 4.9907 0.1+1.6

TABLE 4
Comparison with the new matrix-free method, A = UDUT .

n Type Algorithm IT MVP
r−‖x

∗‖
r

KTC λ∗ time

100 normal NMFA 6.6 313.8 4.10−8 6.10−8 4.970 3.2
case DCA 249 258 −7.10−17 0.0 4.959 0.1+2.2

100 hard NMFA 8.8 909.6 −3.10−17 10−2 4.9492 9.1
case DCA 307.6 316.6 −2.10−16 0.0 4.9469 0.1+2.7

256 normal NMFA 8 962.4 −7.10−9 5.10−4 4.9748 48.3
case DCA 316.6 325.6 5.10−16 0.0 4.9698 0.5+18.2

256 hard NMFA 6.6 1447.8 2.10−16 8.10−3 4.9730 144.3
case DCA 316.8 325.8 7.10−17 0.0 4.9717 0.5+18.4

576 normal NMFA 9.3 1658.3 −2.10−7 10−8 4.9852 391.9
case DCA 348 357 −4.10−16 0.0 4.9812 3.2+124.9

576 hard NMFA 8.4 2242.8 −6.10−17 4.10−3 4.9843 1347.3
case DCA 343.4 352.3 −8.10−16 0.0 4.9809 3.3+123.9

1024 normal NMFA 9.8 2318.3 2.10−7 4.10−9 4.9876 2209.8
case DCA 431 440 −6.10−16 0.0 4.9806 13.2+476.4

1024 hard NMFA 10.3 3279 −8.10−16 10−2 4.9919 4381.6
case DCA 439.6 448.6 9.10−16 0.0 4.9861 13.2+576.4

in subsection 5.1. We considered two types of matrices for A: positive semidefinite
(p.s.d.) and positive definite (p.d.) with n = 250 and n = 500. The diagonal elements
of D were in (−5, 5) when n = 250 and in (−50, 50) when n = 500. The elements of
g were random numbers in (−1, 1). As in subsection 5.1, a p.d. (resp., p.s.d.) matrix
A = UDUT was obtained by replacing Dii < 0 by |Dii| (resp., 0). We considered two
cases (normal and hard case) when A is a p.s.d. matrix. For each type of A seven
problems per dimension and per case were solved by the gradient projection algorithm
(GPA) and by the DCA. In the GPA we took ρ = 1/2λn + 0.1 if A is p.s.d. and the
theoretically optimal ρ = 1/2(λ1 + λn) if A is p.d. In the DCA we took ρ = λn. The
average result is reported in Table 5.
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TABLE 5
Comparison with the gradient projection method in the convex case.

n Type of A Algorithm IT
r−‖x

∗‖
r

λ∗ time

250 A p.d GPA 640.4 −2.10−16 0.5539 50.8
DCA 250.2 0.06 0.5533 20.0

250 A p.s.d GPA 48 −10−16 1.0230 4.1
normal case DCA 79 2.10−16 1.0230 6.4

250 A p.s.d GPA 1360.4 0.01 0.0009 108.0
hard case DCA 250.8 0.02 0.0011 20.3

500 A p.d GPA 2573.2 0.2841 0.0008 877.2
DCA 294.6 0.3866 0.00172 101.4

500 A p.s.d GPA 225.6 −3.10−16 0.4827 80.4
normal case DCA 305 −2.10−16 0.4800 108.0

500 A p.s.d GPA 742.6 0.05 0.0074 254.4
hard case DCA 349.4 0.1 0.0095 120.1

5.4. Different choices for ρ. In the fourth experiment we solved 20 problems
(ten per dimension) of the second family generated exactly as in subsection 5.2. We
considered the normal case when n = 256 and the hard case when n = 1024. In
the first case the radius was equal to 100 and in the last case it varied in the interval
(110, 701). Each of these problems was solved five times, with ρ = ‖A‖1, ρ = 1/2‖A‖1,
ρ = 1/3‖A‖1, ρ = 5, and ρ = λ̃n + 0.5. The value λ̃n was an approximation to
the largest eigenvalue of A calculated by the IRLM with the tolerance tol = 0.1. In
these problems, ‖A‖1 were in the interval (18, 19.5). The average result is indicated in
Table 6. CPU time (on Sun SPARC-10) in case ρ = λ̃n+0.5 was presented in two parts
as in Tables 3 and 4. The quantity avOPT presented the average of optimal values.

TABLE 6
Average behavior for different choices of ρ.

n ρ r−‖x∗‖
r avOPT λ∗ IT time

‖A‖1 4.10−16 -24823.7 4.9626 411 23.3
256 0.5‖A‖1 −3.10−16 -24851.1 4.9682 362.4 20.6

normal 0.3‖A‖1 3.10−16 -24858.5 4.9697 319.4 18.4
case 5.0 −1.1016 -24859.4 4.9699 311.6 18.4

λ̃n + 0.5 5.10−16 -24858.9 4.96988 316.6 0.5+18.2
‖A‖1 −2.10−16 -471484.3 4.9691 503 551.4

1024 0.5‖A‖1 8.10−15 -496199.1 4.9751 455.2 515.2
hard 0.3‖A‖1 −10−15 -496438.5 4.9795 438 487.3
case 5.0 3.10−16 -496481.4 4.9797 433.7 472.7

λ̃n + 0.5 3.10−16 -496481.4 4.9797 433.7 13.2 + 502.7

5.5. Different sizes for the radius. In the last experiment (Table 7) we solved
10 problems of the second family mentioned above. We considered here the nor-
mal case with n = 500. The radius varied by a factor of 10 through the values
100, . . . , 0.001. ρ was always equal to 5.

5.6. Comments on computational results. (i) For every test problem the
DCA (without restarting procedure) always provided a global solution.
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TABLE 7
Average behavior for different sizes of the radius.

r → 100 10 1 0.1 0.01 0.001

IT 354 314 18 5 3 2.2

time 120.6 107.1 6.7 2.5 1.8 1.5

(ii) The parameter ρ as well as the d.c. representation of the objective function
have an important influence on the convergence rate of the DCA. The practical choice
(subsection 4.6) of ρ seems to be well suited (Table 6). We observe (see Table 5) the
following:
• If A is positive definite, the choice ρ = λn is much better than the theoretically

optimal choice ρ = (λ1 + λn)/2 given in Proposition 1. The ratio of execution times
is 2.5 for n = 250 and 8.7 for n = 500.
• If A is positive semidefinite, the choice ρ = λn is better than the choice ρ =

0.5λn + 0.1 in the hard case. The ratio of execution times is 5.4 when n = 250 and 2
when n = 500. The situation reverses in the normal case (1.6 when n = 250 and 1.35
when n = 500).

(iii) The DCA is faster than the Sfg. Table 1 indicates that in the normal case
(resp., hard case) with A being indefinite the ratio of execution times varies between
2.4 and 8 (resp., 1.7 and 4.7). In the convex case Table 2 shows that the ratio of
execution times varies between 1.2 and 16.8 (resp., 1.7 and 16.6) when A is positive
definite (resp., positive semidefinite).

(iv) The DCA is faster than the NMFA. In the case where A = L − 5I, Table 3
indicates that the ratio of execution times belongs to the interval ]1, 18[. It is more
significant in the hard case (equal to 18 when n = 100, 12 when n = 256, 10 when
n = 576 and 11.8 when n = 1024). In the normal case the ratio is smaller (equal to 6
when n = 100, 5 when n = 256 and 2.6 when n = 1024).

In the case where A = UDUT , Table 4 shows similar results. In the normal case
the ratio of execution times is 1.4 when n = 100, 2.6 when n = 256, 3 when n = 576,
and 4.5 when n = 1024. It becomes (in the hard case) 3.2 when n = 100, 7.6 when
n = 256, 10.6 when n = 576, and 7.4 when n = 1024.

(v) One of the referees suggested the example: A = Diag(1,−1), b = (1, 1), r = 2,
and ρ = 1.1, where the pure DCA (i.e., without the restarting procedure) with the
choice xo = (r/

√
n, r/

√
n) = (

√
2,
√

2) does not lead to a global solution. However,
we observe that the random choice of xo : xo

i = 2[random(100)− 0.5], i = 1, 2 yields
a global one.

6. Conclusion. We have presented a thorough study of the d.c. optimization,
its algorithm DCA, and the application of the DCA to solving the trust-region sub-
problems.

By its very approach the DCA is completely different from other available methods
for the trust-region problem [17], [24], [32], [35], [38]. The DCA is quite simple and
requires matrix–vector products only. Moreover, it indifferently treats the normal and
hard cases of the trust-region subproblem. Theoretically, it has been stated that the
DCA converges to a Kuhn–Tucker point of the trust-region subproblem. We observe,
however, that in all numerical examples we tried, convergence occurred to a global
minimizer. The foundations of the d.c. optimization theory enable us to conjecture
that the DCA converges to a local minimizer (of the trust-region subproblem) and
so, most times, to a global one according to Martinez’s results. In the absence of a
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theoretical proof of the conjecture, we have pointed out a simple numerical procedure
to restart the DCA with a new initial point-in-case when the solution provided by the
DCA is not global. This restarting procedure needs computing the smallest eigenvalue
of the matrix A (in the trust-region subproblem) and a corresponding eigenvector and
uses for that the quite inexpensive Implicitly Restarted Lanczos Method introduced by
D. C. Sorensen [37]. Since the IRLM meets the requirements of limited storage and
reliance only on matrix–vector products, the DCA with at most 2m + 2 restartings
(Theorem 4) requires only matrix–vector products too and converges to a global
solution. In practice the DCA rarely has recourse to the restarting procedure. From
the computational viewpoint, a lot of our numerical experiments proved the robustness
and efficiency of the DCA with respect to other well-known algorithms, especially in
the large scale trust-region subproblem.

Appendix. Proof of the basic convergence theorem of the DCA for
general d.c. programming. First, we need the following results.

PROPOSITION A.1. Suppose that the sequences {xk} and {yk} are generated by
the simplified DCA. Then we have

(i) (g−h)(xk+1) ≤ (h∗− g∗)(yk)− ρ2

2
‖dxk‖2 ≤ (g−h)(xk)− ρ1 + ρ2

2
‖dxk‖2.

The equality (g − h)(xk+1) = (g − h)(xk) holds if and only if

xk ∈ ∂g∗(yk), yk ∈ ∂h(xk+1) and (ρ1 + ρ2)‖dxk‖ = 0.

(ii) Similarly, by duality we have

(h∗ − g∗)(yk+1) ≤ (g − h)(xk+1)− ρ∗
1

2
‖dyk‖2 ≤ (h∗ − g∗)(yk)− ρ∗

1 + ρ∗
2

2
‖dyk‖2.

The equality (h∗ − g∗)(yk+1) = (h∗ − g∗)(yk) holds if and only if

xk+1 ∈ ∂g∗(yk+1), yk ∈ ∂h(xk+1) and (ρ∗
1 + ρ∗

2)‖dyk‖ = 0.

Proof of Proposition A.1. (i) Since yk ∈ ∂h(xk) we have h(xk+1) ≥ h(xk) +
〈xk+1 − xk, yk〉+ ρ2/2‖dxk‖2. Hence,

(g − h)(xk+1) ≤ g(xk+1)− 〈xk+1 − xk, yk〉 − h(xk)− ρ2

2
‖dxk‖2.(26)

Likewise, xk+1 ∈ ∂g∗(yk) implies

g(xk) ≥ g(xk+1) + 〈xk − xk+1, yk〉+ ρ1

2
‖dxk‖2.

So,

g(xk+1)− 〈xk+1 − xk, yk〉 − h(xk) ≤ (g − h)(xk)− ρ1

2
‖dxk‖2.(27)

On the other hand,

xk+1 ∈ ∂g∗(yk)⇔ 〈xk+1, yk〉 = g(xk+1) + g∗(yk),(28)

yk ∈ ∂h(xk)⇔ 〈xk, yk〉 = h(xk) + h∗(yk).(29)
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Thus,

g(xk+1)− 〈xk+1 − xk, yk〉 − h(xk) = h∗(yk)− g∗(yk).(30)

Finally, combining (26), (27), and (30), we get

(g − h)(xk+1) ≤ (h∗ − g∗)(yk)− ρ2

2
‖dxk‖2 ≤ (g − h)(xk)− ρ1 + ρ2

2
‖dxk‖2.(31)

If ρ1 + ρ2 > 0, the last statement of (i) is an immediate consequence of the equality
dxk = 0 and the construction of the sequences {xk} and {yk}.

It is clear that there exist ρ1 and ρ2 such that ρ1+ρ2 > 0 if and only if ρ(h)+ρ(g) >
0. In case ρ(h) = ρ(g) = 0, (29) implies the equivalence between (g − h)(xk+1) =
(g − h)(xk) and the combination of (32) and (33)

(g − h)(xk+1) = (h∗ − g∗)(yk),(32)

(h∗ − g∗)(yk) = (g − h)(xk).(33)

We then deduce from (28) and (32) that h(xk+1) + h∗(yk) = 〈xk+1, yk〉, i.e., yk ∈
∂h(xk+1). Similarly, (29) and (33) give g(xk) + g∗(yk) = 〈xk, yk〉, i.e., xk ∈ ∂g∗(yk).
Property (ii) is proved analogously.

The following result is an important consequence of Proposition A.1.
COROLLARY A.2.

(i) (g−h)(xk+1) ≤ (h∗−g∗)(yk)−ρ2

2
‖dxk‖2 ≤ (g−h)(xk)−

[

ρ∗
1

2
‖dyk−1‖2 +

ρ2

2
‖dxk‖2

]

.

(ii) (g−h)(xk+1) ≤ (h∗−g∗)(yk)−ρ∗
2

2
‖dyk‖2 ≤ (g−h)(xk)−

[

ρ∗
1

2
‖dyk−1‖2 +

ρ∗
2

2
‖dyk‖2

]

.

The equality (g − h)(xk+1) = (g − h)(xk) holds if and only if

xk ∈ ∂g∗(yk), yk ∈ ∂h(xk+1) and (ρ1 + ρ2)dxk = ρ∗
1dyk−1 = ρ∗

2dyk = 0.

Similarly, by duality we have

(iii) (h∗−g∗)(yk+1) ≤ (g−h)(xk+1)
ρ∗
1

2
‖dyk‖2 ≤ (h∗−g∗)(yk)−

[

ρ∗
1

2
‖dyk‖2 +

ρ2

2
‖dxk‖2

]

.

(iv)(h∗−g∗)(yk+1) ≤ (g−h)(xk+1)−ρ1

2
‖dxk+1‖2 ≤ (h∗−g∗)(yk)−

[ρ1

2
‖dxk+1‖2 +

ρ2

2
‖dxk‖2

]

.

The equality (h∗ − g∗)(yk+1) = (h∗ − g∗)(yk) holds if and only if

xk+1 ∈ ∂g∗(yk+1), yk ∈ ∂h(xk+1) and (ρ∗
1 + ρ∗

2)dyk = ρ2dxk = ρ1dxk+1 = 0.

Proof. The inequalities in (i) and (ii) are easily deduced from Properties (i) and
(ii) of Proposition A.1. The inequalities in (iii) and (iv) can be shown by the same
arguments as in the proof of Proposition A.1.

We are now in a position to demonstrate Theorem 3.7.
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Proof of Theorem 3.7. Properties (i) and (ii) are proved analogously; therefore,
we give here the proof for (i) only.

The first inequality of (i) is an immediate consequence of (i) and (ii) of Corollary
A.2.
• If ρ2‖dxk‖2 ≤ ρ∗

2‖dyk‖2, then it follows from (ii) of Corollary A.2 that

(h∗ − g∗)(yk)−max

{

ρ2

2
‖dxk‖2, ρ∗

2

2
‖dyk‖2

}

= (h∗ − g∗)(yk)− ρ∗
2

2
‖dyk‖2

≤ (g − h)(xk)−
{

ρ∗
1

2
‖dyk−1‖2 +

ρ∗
2

2
‖dyk‖2

}

.

Similarly, Property (i) of Corollary A.2 implies

(h∗ − g∗)(yk)− ρ∗
2

2
‖dyk‖2 ≤ (h∗ − g∗)(yk)− ρ2

2
‖dxk‖2

≤ (g − h)(xk)−
[

ρ∗
1

2
‖dyk−1‖2 +

ρ2

2
‖dxk‖2

]

.

On the other hand, by (i) of Proposition A.1,

(h∗−g∗)(yk)− ρ∗
2

2
‖dyk‖2 ≤ (h∗−g∗)(yk)− ρ2

2
‖dxk‖2 ≤ (g−h)(xk)− ρ1 + ρ2

2
‖dxk‖2.

Combining these inequalities, we get the second inequality of (i).
• If ρ∗

2‖dyk‖2 ≤ ρ2‖dxk‖2, then by using the same arguments we can easily show
the second inequality of (i). The first property of (iii) is evident. We will prove the
last one.

Taking (30) and (i) into account, we have

lim
k→+∞

(g−h)(xk+1) = lim
k→+∞

{g(xk+1)−〈xk+1−xk, yk〉−h(xk)} = lim
k→+∞

(g−h)(xk).

The second equality implies limk→+∞{g(xk+1)− 〈xk+1 − xk, yk〉 − g(xk)} = 0, i.e.,
limk→+∞{g(xk) + g∗(yk)− 〈xk, yk〉} = 0, since xk+1 ∈ ∂g∗(yk).

Likewise, it results from the first equality that limk→+∞{h(xk+1−〈xk+1−xk, yk〉−
h(xk)} = 0, i.e., limk→+∞{h(xk+1) + h∗(yk)− 〈xk+1, yk〉} = 0 since yk ∈ ∂h(yk).

(iv) We assume α is finite and the sequences {xk} and {yk} are bounded. Let
x∗ be a limit point of {xk}. For the sake of simplicity we write limk→+∞ xk = x∗.
We can suppose (by extracting a subsequence if necessary) that the sequence {yk}
converges to y∗ ∈ ∂h(x∗). Property (iii) then implies

lim
k→+∞

{g(xk) + g∗(yk)} = lim
k→+∞

〈xk, yk〉 = 〈x∗, y∗〉.

Let θ(x, y) = g(x) + g∗(y) for (x, y) ∈ X × Y . It is clear that θ ∈ Γo(X × Y ). Then
the lower semicontinuity of θ implies

θ(x∗, y∗) ≤ lim
k→+∞

inf θ(xk, yk) = lim
k→+∞

θ〈xk, yk〉 = 〈x∗, y∗〉,

i.e., θ(x∗, y∗) = g(x∗) + g∗(y∗) = 〈x∗, y∗〉.
In other words, y∗ ∈ ∂g(x∗). According to Lemma A.3 stated below we have

lim
k→+∞

h(xk) = h(x∗) and lim
k→+∞

h∗(yk) = h∗(y∗) since yk ∈ ∂h(xk), xk → x∗ and yk → y∗.
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Hence, in virtue of (iii),

lim
k→+∞

(g − h)(xk) = lim
k→+∞

g(xk)− lim
k→+∞

h(xk) = lim
k→+∞

g(xk)− h(x∗) = β,

lim
k→+∞

(h∗ − g∗)(yk) = lim
k→+∞

h∗(yk)− lim
k→+∞

g∗(yk) = h∗(y∗)− lim
k→+∞

g∗(yk) = β.

It then suffices to show that

lim
k→+∞

g(xk) = g(x∗); lim
k→+∞

g∗(yk) = g∗(y∗).

Since limk→+∞ g(xk) and limk→+∞ g∗(yk) exist, (iii) implies

g(x∗) + g∗(y∗) = lim
k→+∞

{g(xk) + g∗(yk)} = lim
k→+∞

g(xk) + lim
k→+∞

g∗(yk).

Further, because of the lower semicontinuity of g and g∗,

lim
k→+∞

g(xk) = lim
k→+∞

inf g(xk) ≥ g(x∗), lim
k→+∞

g∗(yk) = lim
k→+∞

inf g∗(yk) ≥ g∗(y∗).

The former equalities imply that these last inequalities are in fact equalities. The
proof of Theorem 3.7 is complete.

LEMMA A.3. Let h ∈ Γo(X) and {xk} be a sequence of elements in X such that
(i) xk → x∗;
(ii) there exists a bounded sequence {yk} with yk ∈ ∂h(xk);
(iii) ∂h(x∗) is nonempty.

Then limk→+∞ h(xk) = h(x∗).
Proof. Indeed, let y∗ ∈ ∂h(x∗), then h(xk) ≥ h(x∗) + 〈xk − x∗, y∗〉 ∀k. Since

yk ∈ ∂h(xk) we have h(x∗) ≥ h(xk) + 〈x∗ − xk, yk〉 ∀k. Hence, h(xk) ≤ h(x∗)+
〈xk − x∗, yk〉 ∀k. As xk → x∗, we have limk→+∞〈xk − x∗, y∗〉 = 0. Moreover,
limk→+∞〈xk − x∗, yk〉 = 0, since the sequence {yk} is bounded. Consequently,
limk→+∞ h(xk) = h(x∗).
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de la norme du maximum, Numer. Math., 45 (1984), pp. 377–401.

[23] T. PHAM DINH AND S. ELBERNOUSSI, Duality in d.c. (difference of convex functions) optimiza-
tion. Subgradient methods, in Trends in Mathematical Optimization, Internat. Ser. Numer.
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