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Abstract

This paper describes the development of a weather generator for use in climate impact assessments of agricultural and water system man-

agement. The generator produces internally consistent series of meteorological variables including: rainfall, temperature, humidity, wind, sun-

shine, as well as derivation of potential evapotranspiration. The system produces series at a daily time resolution, using two stochastic models in

series: first, for rainfall which produces an output series which is then used for a second model generating the other variables dependent on

rainfall. The series are intended for single sites defined nationally across the UK at a 5 km resolution, but can be generated to be representative

across small catchments (<1000 km2). Scenarios can be generated for the control period (1961e1990) based on observed data, as well as for the

UK Climate Impacts Programme (UKCIP02) scenarios for three time slices (2020s, 2050s and 2080s). Future scenarios are generated by fitting

the models to observations which have been perturbed by application of change factors derived from the UKCIP02 mean projected changes in

that variable. These change factors are readily updated, as new scenarios become available, and with suitable calibration data the approach could

be extended to any geographical region.

� 2007 Elsevier Ltd. All rights reserved.
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Software availability

Name of software: EARWIG (Environment Agency Rainfall

and Weather Impacts Generator).

Developer: School of Civil Engineering and Geosciences,

University of Newcastle upon Tyne, Newcastle upon

Tyne NE1 7RU, UK.

Contact: Chris Kilsby, School of Civil Engineering and Geo-

sciences, University of Newcastle upon Tyne, New-

castle upon Tyne NE1 7RU, UK. E-mail address:

c.g.kilsby@ncl.ac.uk

Year first available: 2006.

Hardware required: PC.

Software required: Windows 2000 or XP.

Program language: Fortran numerics: interface developed un-

der MS Visual Studio.

Program size: 30 Mb of disk space required: runs within

60 Mb of memory.

Availability: Can be made available to researchers on request

to the authors.

Cost: N/A.

1. Introduction

Impact assessments of climate change on hydrology and re-

lated fields such as agricultural and water management prac-

tice require time series of weather variables for specific

catchments or locations at daily or higher resolution. Data

are needed for both the current climate and a range of future

possible scenarios. These series must be consistent, both be-

tween variables, and with a range of observed and projected
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statistics of the variables in order to account for extremes

(floods and droughts) and seasonality. Such series are not di-

rectly available from climate models, and this paper describes

an alternative approach using a ‘‘weather generator’’ to pro-

vide series of rainfall, temperature, humidity, wind and poten-

tial evapotranspiration at river catchment scales.

The proposedmethodology uses stochasticmodels of rainfall

andweather. Previousweather generators have used simple rain-

fall models based on either Markov chains (Richardson, 1981)

or empirical distributions of wet/dry spells (Semenov and

Brooks, 1999). The approach described here uses a more so-

phisticated Neyman-Scott point process model (Cowpertwait,

1991) capable of more accurately reproducing higher order

rainfall statistics. The general approach taken is as follows:

� Observed data of rainfall and other weather variables used

to define current climate.

� Regional Climate Model (RCM) rainfall and temperature

data used to derive factors of change from current climate

state to define climate change scenarios.

� Stochastic model of daily rainfall fitted to current climate,

and then re-fitted for possible future climates using future,

factored daily rainfall statistics.

� Weather Generator (WG) model based on regression rela-

tions between daily climatic variables and daily rainfall:

parameterised using current climate data, and then applied

for possible future climates, using future factored daily cli-

mate variable statistics.

� Software implementation using a map viewer linked to

a spatial database allowing the flexible selection of areas

for generation of series.

The essentials of this methodology have been previously

applied within the BETWIXT project at 17 UK sites (for rain-

fall) and 5 sites for all variables (see BETWIXT Project web-

site). This paper describes how the method can be extended to

continuous UK coverage, providing a capability of generating

rainfall and other weather variables representative of any loca-

tion and a range of possible future climates and time-periods.

In principle, and with suitable observed and RCM data, the ap-

proach can be extended to any geographical region. The ele-

ments of the methodology are described in more detail in

the following sections.

2. Climate data

2.1. Observed data

UKMO/UKCIP (UK Meteorological Office/UK Climate

Impacts Programme) 5-km gridded weather data were used

in this project (Perry and Hollis, 2005a,b). These consist of

two 5 km � 5 km gridded datasets covering the UK for the pe-

riod 1961e2000. The first is of monthly values of mean tem-

perature, daily temperature range, rainfall, sunshine, cloud,

and wind speed. The second is daily rainfall for the period

1958e2002. These data were generated in a geographical in-

formation system combining multiple regression with inverse

distance-weighted interpolation taking account of geographic

and topographic factors (Perry and Hollis, 2005a,b). Daily se-

ries from 115 sites, with a reasonable national coverage, were

used to provide additional information on climatic variables at

the daily level. These sites are the same as those used by Os-

born et al. (2000).

The 1961e1990 period is taken as a climatological normal

for rainfall. However, it is possible to use other periods for this

purpose, or even to set the model up for separate decades to

explore issues of climatic variability and stationarity of model

relationships.

Grids of rainfall statistics derived from this data set are

shown in Fig. 1.

Variables apart from rainfall are available only at the daily

level for 1995e2000 so an approach combining monthly data

(available 1958e2002) with site data has been followed (see

Section 5).

2.2. Climate scenarios

The methodology is illustrated using UKCIP02 change fac-

tors, but the approach is applicable using change factors taken

from any global or regional climate model. The model future

scenarios are based on the UKCIP02 scenarios (Hulme et al.,

2002) for four emissions scenarios (SRES A1, A2, B1 and B2)

and three future time-slices (2020s, 2050s and 2080s as

defined below) derived from the HadRM3H integrations. A

control scenario simulating the 1961e1990 period is also

available. The approach relies on deriving factors of change

for various statistics from control to future scenarios and ap-

plying these to observed statistics, rather than using the

RCM’s rainfall climatology directly as it does not reproduce

the spatial patterns of mean rainfall or seasonality accurately

(Fowler and Kilsby, 2004) and, more importantly, does not ac-

curately represent extreme dry spells or extreme rainfall events

(Fowler et al., 2005).

Change factors are derived using multiplicative factors for

rainfall statistics and additive ones for other climate variables

on a calendar month basis. These are taken directly as ratios

for the mean (M ), variance (Var) and skewness (S ) of daily

rainfall, and a logit transformation of proportion of dry days

(PDry) to ensure linearity across the range of values.

The following equations are used to apply the calculated

change fields (a) for a general variable P (using the suffix

GCM to indicate climate model values):

PFut

PObs
¼

PGCMFut

PGCMCon
ð1Þ

where a ¼ PGCMFut=PGCMCon and therefore,

PFut ¼ aPObs ð2Þ

For PDry however, the following equation is used:

XðPDryFutÞ

X
�
PDryObs

�¼
X
�
PDryGCMFut

�

X
�
PDryGCMCon

� ð3Þ
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where XðPDryÞ ¼ PDry=1� PDry and a ¼ XðPDryGCMFutÞ=
XðPDryGCMConÞ and therefore,

PDryFut ¼ X�1
�
aX

�
PDryObs

��
ð4Þ

For temperature, the change factor is additive and the follow-

ing equation is used:

TFut � TObs ¼ TGCMFut � TGCMCon ð5Þ

where a ¼ TGCMFut � TGCMCon and therefore,

TFut ¼ TObs þ a ð6Þ

Change fields have been derived using all three ensemble

members of the HadRM3H SRES A2 Scenario (UKCIP02

Medium-High Scenario), using 1961e1990 for the Control

Scenario and 2071e2100 for the Future Scenario to be

consistent with the UKCIP02 Scenarios (i.e. change field for

M-H 2080s Scenario). To apply the change fields to other Sce-

narios (Low, Medium-Low and High) and time-slices (2020s,

2050s and 2080s), scaling factors between the global and

regional climate models were developed by UKCIP02 to

Fig. 1. Daily rainfall statistics from the UKMO 5 km data set. Top row January, second row July. Units are (mm) for mean precipitation and mm2 for variance. The

proportion dry and skew are dimensionless.
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produce four scenarios matching the original SRES emissions

scenarios. Time slices are then produced by taking the mean cli-

mate for periods conventionally defined as the 2020s (2011e

2040), 2050s (2041e2070) and 2080s (2071e2100). The

scaling between the 2080s and earlier periods is linked to

changes in global mean temperature. These scaling factors are

given in Table 1.

These scaling factors were applied to the regional climate

changes of the 2080s, a, to produce change fields for all

four emissions scenarios and three time-slices. Change fields

(a) are shown in Fig. 2a for precipitation statistics, and for

temperature in Fig. 2b.

The UKCIP02 data are available on a rotated polar grid

with 50 km resolution, so the change factor fields are queried

to identify which of the RCM grid squares the contains the

centroid of each 5 km grid square.

3. Rainfall model

There is a very extensive literature on stochastic rainfall

models, with applications for single- and multi-sites, and for

durations ranging from annual through daily, hourly and

down to 5-min intervals. Srikanthan and McMahon (2001) re-

view the main methods, including re-sampling models, Mar-

kov chain models and two-stage occurrence and amount

models. Whilst most models can reproduce low order mo-

ments of rainfall (mean and variance) and wet-dry behaviour

at the daily level, they cannot accurately reproduce extremes.

They additionally do not accurately reproduce the lower order

statistics over a wider range of time aggregations such as at the

hourly or monthly level. Additionally, most models are not

readily adapted for use in future climate applications as they

do not explicitly allow re-parameterisation using future pro-

jected statistics readily available from climate models.

Stochastic rainfall models using clustering approaches han-

dle occurrence and amount in one process, and are attractive in

that they represent the observed clustered nature of rainfall.

They have been extensively developed over the last 20 years

or so, following Rodriguez-Iturbe et al. (1987). Two main var-

iants, the Neyman-Scott Rectangular Pulses (NSRP) model

and Bartlett-Lewis Rectangular Pulses (BLRP) model have

been extensively developed and evaluated (Onof et al., 2000;

Velghe et al., 1994). Much development has been invested in

the NSRP model, which is capable of producing rainfall series

of arbitrary length and time resolution down to minutes. NSRP

is the basis for standard UK industrial urban drainage design

software, and has been regionalised for any site in the UK

(Cowpertwait et al., 1996). It has been shown to realistically

reproduce extreme values for engineering impact studies,

most recently using multi-site data of intense events from Italy

(Cowpertwait et al., 2002) and for UK single-site data under

present and future climates (Kilsby et al., 2004). Within the

BETWIXT project the model was parameterised for 17 sites

with hourly rainfall data. The model is run within the Rain-

Clim software package, and can generate series at daily,

hourly and 5-min resolution for the 17 sites for the current

(1961e1990) period as well as for the four emissions scenar-

ios and three time-slices of the UKCIP02 scenarios.

The fitting method is flexible since it does not use rainfall

series directly, but selected characteristic rainfall sample sta-

tistics. These statistics can be from observed rainfall, or down-

scaled from atmospheric circulation variables output from

numerical climate models, e.g. global General Circulation

Models (GCMs) or Regional Climate Models (RCMs). Here,

the parameters will be defined using combinations of the

UKMO/UKCIP 5-km observed rainfall statistics together

with change factors from the UKCIP02 data as described

above. In principle, this flexibility allows other sources of cli-

mate model data to be used interchangeably.

3.1. Definition of the Neyman-Scott Rectangular Pulses

model

In the NSRP model, rainfall is associated with clusters of

‘‘rain cells’’ making up ‘‘storm events’’. The model rain cells

may be thought of, conceptually at least, as loosely represent-

ing small-scale rain-bearing meteorological structures. For ex-

ample, a short intense rain cell could be a convective system

(thunderstorm) while a longer less intense cell could be asso-

ciated with a warm front. The positions of the rain cells are de-

termined by a set of independent and identically distributed

random variables representing the time intervals between the

storm origin and the birth of the individual cells. The model

structure is shown in Fig. 3 and is based upon the following

assumptions:

� storm origins arrive in a Poisson process with the arrival

rate represented by a parameter l;

� each storm origin generates a (Poisson) random number C,

with mean value n, of raincells separated from the storm

origin by time intervals that are each exponentially distrib-

uted with parameter b;

� the duration of each raincell is exponentially distributed

with parameter h;

� the intensity of each raincell is exponentially distributed

with parameter x;

� the rainfall intensity is equal to the sum of the intensities

of all the active cells at that instant.

The parameters of the model can be summarised as follows:

1. l�1 the average time between subsequent storm origins

(h),

Table 1

Multiplying factors for conversion from 2080s Medium-High scenario to other

scenarios and time-slices

Time-slice Low emissions

SRES B1

Medium-Low

emissions

SRES B2

Medium-High

emissions

SRES A2

High emissions

SRES A1

2020s 0.24 0.27 0.27 0.29

2050s 0.43 0.50 0.57 0.68

2080s 0.61 0.71 1.00 1.18

Source: UKCIP02 Scientific Report (Hulme et al., 2002).
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Author's personal copy

(a)

(b)

Change in 24hr rainfall variance Change in skewness of daily rainfallChange in mean Rainfall Change in PD

Change in 24hr rainfall variance Change in skewness of daily rainfallChange in mean Rainfall

Change in mean temperature (DegC) Change in mean temperature (DegC)Change in temperature SD Change in temperature SD

Change in PD

Fig. 2. (a) Change factors for daily rainfall statistics for the HadRM3H A2 SRES 2080s scenario (UKCIP02 Medium-High Scenario). Top row January, second row

July. (b) Change factors for the daily temperature statistics, for the HadRM3H A2 SRES 2080s scenario (UKCIP02 Medium-High Scenario). Mean (left panels)

and standard deviation (right panels). First and third are for January, second and fourth for July.
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2. b�1 the average waiting time of the raincells after the

storm origin (h),

3. h�1 the average cell duration (h),

4. n�1 the average number of cells per storm,

5. x�1 the average cell intensity (mm/h).

3.2. Fitting procedure

There are five parameters of the NSRP model to be esti-

mated, so the usual procedure would be to equate five statisti-

cal properties taken from the observed time series with their

derived expressions for the model, and to solve the resulting

set of simultaneous equations for the parameter estimates.

The model would then fit five sample moments exactly, with

the fit to other statistics not guaranteed. A more flexible fitting

procedure is adopted here which assumes that it is more desir-

able to fit a larger set of sample moments approximately rather

than a smaller set exactly.

In general, the parameters of the NSRP model can be esti-

mated by selecting a set that matches, as closely as possible,

the expected statistics of the generated time series with the

corresponding statistics estimated from observed rainfall time

series. To implement this, the model parameters are estimated

by minimising the weighted sum of squared differences, Di, be-

tween the statistics of the observed time series and the expected

model statistics for each month, i, in turn:

Di ¼
X

h˛G

wh

�
1�

bf i;hðli;bi;hi; ni;xiÞ

fi;h

�2

ð7Þ

where G is a set of statistics, h, each with a specified aggrega-

tion level, wh is the weight applied to statistic h chosen to give

better fits to particular statistics according to the requirements

of different applications, bf i;hð Þ is the expected value of h for

the NSRP model using a given set of parameters and fi,h de-

notes the sample estimate of h evaluated from observed data

for month i. A numerical optimizing routine, such as the Sim-

plex algorithm, is used to find the parameter set that minimizes

the Di function subject to fixed upper and lower bounds ap-

plied to the parameters.

4. Weather generator

4.1. Background to weather generators

Weather generators generally have a similar structure, with

precipitation considered to be the primary variable (Wilks and

Wilby, 1999). Depending on whether the day is wet or dry,

other meteorological variables such as maximum and mini-

mum temperatures, sunshine/cloudiness, vapour pressure and

windspeed are determined by regression relationships with

precipitation and values of the variables on the previous day.

The regression relationships maintain both the cross- and

auto-correlations between and within each of the variables.

The success of the procedure in producing realistic weather se-

quences, therefore, rests primarily on the method of precipita-

tion generation (Hutchinson, 1986). There is a vast literature

on stochastic rainfall simulation (see previous section) which

is ignored in much of the recent developments in weather gen-

eration, which therefore do not always use the best available

precipitation generation models.

Thewell-knownweather generator developed by Richardson

(1981) is available as computer software (Richardson and

Wright, 1984). Although correctly stating that any daily type

of precipitation generator can be used, the Richardsonmodel in-

corporates the simplest, a first orderMarkov chainwith only two

states, wet or dry, and an exponential distribution to select pre-

cipitation amounts on wet days. The main rationale behind this

choice was simplicity: few parameters, all of which are capable

of being estimated from both neighbouring sites and smoothed

for each day of the year from monthly estimates.

In a previous version, the WG developed here used a two

state Markov Chain to determine whether a day is wet or

dry, with the two states being conditional on whether the pre-

vious day was wet or dry. The amount of rain on wet days was

determined using a gamma distribution derived from wet

day rainfall totals. However, for most rainfall regimes, it is

widely recognised that the clustered nature of rainfall occur-

rence is better modelled by the structure of the more sophisti-

cated and complex clustered point process models such as

Neyman-Scott and Bartlett-Lewis; ‘‘the Markov model is

inappropriate due to event clustering or other phenomena’’

(Srikanthan and McMahon, 2001). The LARS-WG approach

(Semenov and Brooks, 1999) uses a semi-empirical approach

that, although an improvement upon a basic Markov process,

is still unable to provide a correlation between precipitation

amounts on successive wet days, the reproduction of dry spells

or extreme rainfall events. Clustered point process based

models such as the NSRP are able to provide this ‘‘event clus-

tering’’ and thus also reproduce daily variability more reliably.

A comparison is presented in an example application in

Fig. 3. A schematic representation of the NSRP model.
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Section 6. In this latest development, the WG is being driven

by the NSRP rainfall model, providing a powerful combina-

tion of the two models.

Although the present tool uses the NSRP rainfall model (see

Section 3), it is important to put the generation of the other vari-

ables in context. The most important issue is not that the model

should fit the data distribution well, but that the model should

validate well (i.e. produce realistic sequences, particularly

when extremes are considered for data not used in model cali-

bration). Normally, statistical properties (means, variability on

different time scales, frequencies of extremes, length of dry

and wet spells, etc.) are compared between the observed and

simulated data. Inadequate validation may lead to a false sense

of security regarding the model’s veracity and realism. For ex-

ample, although synthetic datamay agreewell in the distribution

of precipitation amounts on wet days, giving what appear to be

good fits in terms of monthly precipitation and wet day totals,

low frequency aspects of the synthetic data are often poorly re-

produced. Both Gregory et al. (1992, 1993) and Cowpertwait

(1991) have found that the variability of seasonal totals and

the autocorrelation of daily amounts are both lower when com-

pared with similar measures from observational series. These

are serious deficiencies that affect other weather variables,

which are ultimately dependent upon the accuracy of the precip-

itation generation.

4.2. Generating the other variables

Once the precipitation sequence has been generated, other

weather variables can be generated, maintaining, where possi-

ble, observed relationships between the variables. In the Ri-

chardson generator this is achieved by having two states, wet

and dry. Each secondary variable is normalized by removing

the appropriate mean and standard deviation for that time of

year; there being two different distributions, one for wet days

and one for dry days. Regression relationships then generate

the variables for each of the states, maintaining the cross-corre-

lations and the lag auto-correlations between the variables.

Nicks and Harp (1980) had earlier introduced additional

states by considering four types of days determined by the

wet/dry status of the preceding and the current day, i.e., wet-

wet, dry-dry, wet-dry and dry-wet. This introduces many more

parameters and thus attempts have been made to reduce the

number of parameters (Bruhn et al., 1980) and to use sine curves

(Larsen and Pense, 1981) to model the seasonal dependence. In

this development the four states defined by Nicks and Harp

(1980) will be used.

Daily precipitation series are generated separately from the

other variables because of the fundamental difference in char-

acter between precipitation and other variables. Other meteo-

rological variables have continuous ranges of variation that are

more reliably generated as autoregressive processes.

The program generates meteorological data for the follow-

ing five variables:

T daily mean temperature

R daily temperature range

VP vapour pressure

S sunshine duration

W wind speed

These five variables are sufficient to calculate potential evapo-

transpiration (PET) using the FAO-modified (Food and Agri-

culture Organization of the United Nations) version of the

Penman method (described in Ekström et al., in press). Mod-

elling mean daily temperature (T ) and temperature range (R)

has advantages compared to the equivalent method of model-

ling maximum and minimum temperature separately. For in-

stance, the temperature range is likely to be high on a dry,

sunny day and low when wet and cloudy. These temperatures

are related by TMAX ¼ T þ 0.5R; TMIN ¼ T � 0.5R. Vapour

pressure is easier to model than relative humidity as its distri-

bution is near normal. If relative humidity is required, it is eas-

ily calculated from vapour pressure using the saturation vapour

pressure at the mean temperature.

The model development procedure for these variables is

best described as a stepwise procedure:

1. The seasonal cycles of both the mean and the standard

deviation of all five variables are removed. This is achieved

by dividing each month into two parts with the mean and daily

standard deviation calculated for 24 (12 � 2) half monthly pe-

riods. This is performed separately for the four transition states

(DD, WW, DW and WD) using all days in each half month.

All variables are then reduced to time series of normalised

values (residuals) that have a mean of zero and a standard

deviation of unity. The mean and standard deviation is based

on all available data in each transition state for each half

month: for this application typically 30 years were available.

Note that a normal distribution may not be ideal for sunshine

duration, but experimentation has not yet revealed a better

approximation.

2. For both daily mean temperature and the temperature

range, the residual time series are modelled as first-order au-

toregressive processes (the adequacy of which has been amply

demonstrated in the literature, even for the simulation of tem-

perature extremes e see for example, Mearns et al., 1984). To

accommodate the four transition states, four equations and as-

sociated regression and correlation coefficients are calculated.

The models are:

Dry periods (current day dry, previous day dry; DD):

Ti ¼ a1Ti�1 þ b1 þ e ð8Þ

Ri ¼ a2Ri�1 þ b2 þ e ð9Þ

Wet periods (current day wet, previous day wet; WW):

Ti ¼ a3Ti�1 þ b3 þ e ð10Þ

Ri ¼ a4Ri�1 þ b4 þ e ð11Þ

Dry/wet transition (current day wet, previous day dry;

DW):

Ti ¼ a5Ti�1 þ a6Pi þ b5 þ e ð12Þ

1711C.G. Kilsby et al. / Environmental Modelling & Software 22 (2007) 1705e1719
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Ri ¼ a7Ri�1 þ a8Pi þ b6 þ e ð13Þ

Wet/dry transition (current day dry, previous day wet; WD):

Ti ¼ a9Ti�1 þ a10Pi�1 þ b7 þ e ð14Þ

Ri ¼ a11Ri�1 þ a12Pi�1 þ b8 þ e ð15Þ

All the regression weights (a1 to a12, b1 to b8) have been de-

termined by regression analysis using the observed data. Ti,

Ri and Pi are respectively mean temperature (�C), daily tem-

perature range (�C) and mean precipitation (mm) on day i,

and suffix i � 1 indicates the previous day’s value. All the

e’s are independent standard normal (Gaussian) variables

(scaled by the degree of fit or explained variance of each

regression) and are selected randomly when the models are

used in simulation or ‘‘weather generation’’ mode. The random

numbers were chosen using the machine independent genera-

tor RAN1 given by Press et al. (1992).

3. The remaining variables (X ) are determined by regres-

sion analyses of the form:

Xij ¼ cj þ djPi þ ejTi þ fjRi þ gjXi�1;j þ e

where j ¼ 1,3 corresponds to vapour pressure, sunshine dura-

tion, and wind speed. This general form ensures that the sim-

ulated data will have the correct autocorrelation structure.

Correlations between these three variables, temperature and

precipitation (which are generally quite high) will also be cor-

rectly simulated, and correlations between the different Xij will

arise naturally through the common dependences on Pi, Ti and

Ri. All generated variables are then transformed back to

absolute values using the appropriate means and standard

DATA 

OUTPUTS

MODELS

USER 

Selection using

GUI and map viewer 

Stats      5km grid 

Rainfall

x 12 months

m, pdry, var, skew, …

Weather 

x 24 ½-months

T,Tmax, Tmin,  sun,

wind, RH,etc.

NSRP

simulate

WG PET

Fit

NSRP

fit

Change factors

50km - 5km grid
12 months for MH

scenario

Rainfall and weather

Scenario Time Location

Scale factors

4 scenarios 
3 time slices

NSRP

parameter

set

WG PET

simulate

Rainfall

series 

PET and

weather

series
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Fig. 4. Schematic of operation of weather generator including map viewer.
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deviations. Finally, PET is calculated using the FAO-modified

version of the Penman’s formula.

The method is illustrated by an example application in

Section 6.

4.3. Parameter adjustment for future climate

applications

For the future, all regression weights and explained vari-

ances (which determine the size of the error terms) are as-

sumed not to change. The only parameters that are changed

are the mean and standard deviation for each half month.

Both GCMs and RCMs indicate little change in future temper-

ature range, vapour pressure or wind speed for the UK (see

e.g. Hulme, 2002 using HadRM3H). Potential future changes

in these variables are also likely to differ between the many

available RCM integrations. As maximum sunshine hours can-

not increase, it is only necessary to perturb the mean and stan-

dard deviation of the temperature. The mean is changed by

a simple increment: the difference between the future and con-

trol RCM temperature (scaled appropriately for the scenario;

see Table 1). The standard deviation (SD) is perturbed by

the ratio of the future to the control SD values from the

RCM (then scaled for the scenario according to Table 1).

4.4. Implementation

The application of the weather generator at any location

uses the generated rainfall sequence from Section 3, together

with the parameters determined from Section 4.2. To extend

this to 5 km resolution across the country, daily climate

data for 115 stations across the UK are used. Spatial regres-

sion relationships were developed between each of the half-

month means and standard deviations, regression weights

and explained variances (the a’s to g’s in Section 4.2) for

the 115 stations and geographic variables. The geographic

variables used were elevation, easting and northing (British

National Grid co-ordinates) and distance from coast. All the

necessary information required to run the weather generator

for any 5 km square can then be developed from the same

geographic data for each square. As the 5-km resolution

data are available gridded at monthly resolution for 1958e

2002, comparison can be undertaken at this timescale for

all the variables, in terms of monthly means and standard

deviations.

For spatial applications, a simple averaging of the weather

generator parameters (the means, standard deviations, regres-

sion weights and explained variances for each half month)

across a number of 5 km squares will then generate areally

representative weather. As the principal determinant of the

quality of the generated series is the precipitation sequence,

an upper limit to the area must be imposed, because use of

point rainfall as an approximation to an areal average will in-

cur errors with increasing catchment area. Choice of this upper

limit is difficult to define strictly, and depends on the nature of

the application and topographic variation within the catch-

ment. However, variogram analysis of observed rainfall

(Skøien et al., 2003) showed e-folding distances of about

45 km for point precipitation, which suggests 1000 km2 is

a conservative estimate for the upper limit.

Fig. 5. (a) Screenshot of map viewer with 5 km grid and main river overlay, showing selection of a catchment. (b) Screenshot of map viewer showing scenario

selection.
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5. Software implementation

5.1. Overall structure

The system is implemented in Microsoft Windows compat-

ible software with a graphical user interface (GUI). The NSRP

and WG models are incorporated as separate executables,

allowing individual development. The model parameters are

contained in a database (Access) allowing rapid modification

or replacement for new climate scenarios, and flexible reading

by a variety of applications.

The software structure is as shown in Fig. 4. A key point is

the modularity of the data structure and model executables,

allowing flexible upgrade and replacement of data as new
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Fig. 6. Performance of NSRP rainfall model in reproducing observed rainfall statistics for Heathrow. Calculated from 100 30-year simulated series: mean and 10

and 90 percentile bounds are plotted. The CRU WG simulated statistics are also plotted for skew and autocorrelation at lag1, where the NSRP is markedly superior:

performance of the CRU WG rainfall model is similar to the NSRP model for other statistics.
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scenarios become available. This flexibility is promoted by

the inclusion of rainfall and weather variable statistics in the

package (in standard database format). These are used to

estimate model parameters at run-time. An alternative

approach would be to pre-calculate the model parameters for

each scenario/time-slice/location. This is restrictive on two

counts:

e scenarios must be pre-defined, so that for example, a later

extension to probabilistic scenarios would not be sup-

ported (e.g. the UKCIPnext initiative);

e model parameters cannot in general be area-averaged, so

catchment-averaged outputs are not supported. On the

other hand it is possible to area-average (some) rainfall

and weather variable statistics, and work will be done to

implement this (e.g. by calculating variation of rainfall

Pdry with catchment area).

5.2. Map viewer

A map viewer with pan and zoom capability is provided to

allow easy selection of the area of interest for scenario gener-

ation. The viewer shows a national map overlaid by major

rivers, catchment boundaries, major towns and the 5 km grid

as appropriate (see Fig. 5).

The mapviewer provides a number of intuitive methods for

selecting an area of interest. Users’ selections can be named

and saved in a config file for future repeated use. Areas of in-

terest for catchments have been predefined. These can be

loaded and edited by the end user.

A simple rule for selecting the appropriate 5 km grid

squares for catchments is used: if the centroid of the square

is within the catchment polygon. This is adequate given the in-

terpolation of the UKMO 5 km data, the 50 km resolution of

the HadRM3 change factors and the spatial interpolation of

many climate variables (e.g. wind).

Catchment definition and averaging are performed, with an

upper limit (currently set at 1000 km2) to preclude the use of

very large areas with too much heterogeneity of rainfall or

other weather variables to define a meaningful average.

6. Example application

The performance of the NSRP rainfall model is illustrated

in Figs. 6 and 7 for Heathrow. Fig. 6 shows validation against

rainfall statistics used in fitting of the model, and perfor-

mance is good throughout. The weighting of statistics can

be changed in the fitting procedure to improve the reproduc-

tion of any particular statistic, usually at the expense of worse

fits elsewhere.

Comparisons are presented with the Markov rainfall model

in cases where the NSRP model performs significantly better.

The reproduction of autocorrelation and skewness is compared

in Fig. 6 where it can be seen that the NSRP model is superior.

Fig. 7 shows an assessment of performance in estimating

extreme values which are not explicitly used in the fitting pro-

cedure. It can be seen that the NSRP model performs better

than the Markov model which overestimates the annual max-

ima, generating some unrealistically large values.

The model has been validated at higher time aggregations,

e.g. monthly and annual. For rainfall some reduction in vari-

ance is found for annual totals, which has a concomitant

effect on annual mean temperature and evaporation, etc.

This may be significant for some applications, and it may be

necessary to model these time scales separately and condition

the model externally. It should of course be noted that climate

models cannot in general reproduce low frequency variability

either.

Fig. 8a,b illustrate the performance of the weather genera-

tor for average values of maximum and minimum temperature,

sunshine duration, wind speed, vapour pressure and PET. The

cross indicates the observed average value for 1961e1990 for

each half month. The error bar range encompasses 90% of the

same averaged values from 100 generated sequences of

30 years. Most of the observed values fall within the generated

ranges, although winter sunshine durations tend to be too great

in the model.

Fig. 8c shows the performance of the generated data for the

estimation of temperature extremes. A software package for

the calculation of a range of extremes from daily precipitation

and temperature has been developed through international col-

laboration over the last 5 years. The software can be down-

loaded from http://cccma.seos.uvic.ca/ETCCDMI/software.

shtml and the indices are also described by Alexander et al.

(2006). Here average values for 1961e1990 for four indices

are shown. The first three are the number of hot days (esti-

mated from maximum temperatures) and warm and cold

nights (from minimum temperatures). Site specific thresholds

are estimated for each season based on the 10th and 90th per-

centiles of all observed days in each season for the 30 years.

As each season has approximately 90 days, the average num-

ber of days above/below these percentiles is roughly nine for
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the observed data (plotted with crosses). The same thresholds

are used for the generated sequences, with the ranges shown

with similar error bars to Fig. 8a,b. The annual counts are

the sum of the seasonal counts. The fourth index looks at

spells of warm days for the time of year and is called the Heat-

wave Duration Index. Here spells of maximum temperature

above the 90th percentile threshold for each season are

counted if the duration is 6 days or more. Here the average

value of this index for the 30 years is plotted. The index has

a value less than 6 as many seasons do not have any durations

above 5 days. The annual value of the Heatwave Duration In-

dex is based on the seasonal counts, but takes the annual max-

imum value rather than a summation as for the other three

indices. For example, if one season has a value of 6 and the

other three are zero, the annual value will be 6.

When the weather generator is used for future extremes, the

same software is used, but with the observed thresholds from

the 1961e1990 observations. Future simulations can then be

compared with present conditions, for both average as well

as a range of extreme indices.

7. Discussion and conclusions

A combination and implementation of models, data and

methodology has been described, which is capable of

generating self-consistent series of meteorological variables.

These variables comprise precipitation, temperature, vapour

pressure, windspeed, and sunshine hours. Additionally, poten-

tial evapotranspiration is derived using these variables. The

system produces time series at a daily resolution using two

stochastic models in series. First, a rainfall model produces

a series which is then used as the input for a weather generator

producing temperature, vapour pressure, sunshine duration and

windspeed values. These series are for single sites (points) de-

fined across the UK at a 5-km resolution. However, by fitting

the model to area-average statistics rather than point statistics,

series representative of small catchments (<1000 km2) can be

generated.

Weather time series can be generated for a control period

(1961e1990) based on observed data, and for future emissions

scenarios at various time slices (2020s, 2050s and 2080s). Fu-

ture scenarios are generated by fitting the models to observa-

tions that have been perturbed by application of change

factors derived from mean projected changes in that variable

from climate models. These change factors can readily be up-

dated, as new scenarios and simulations from different climate

models become available.

Initial development of the tool is customised for the UK, but

the overall framework is readily transportable to other regions.

A version with a simpler rainfall model has been applied suc-

cessfully across Europe, suggesting general applicability in
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mid-latitudes. The approach may however be expected to be

limited geographically for the following reasons:

e poor data availability in some regions, particularly since

consistent daily records of multiple variables are needed;

e precipitation occurring with heavier-tailed distributions

(e.g. tropical storms) where alternative rain cell intensity

distributions can be used;

e precipitation occurring in mixed (or bimodal) distribu-

tions, e.g. from distinct mechanisms or directions:

a more sophisticated two-cell type rainfall model can be

used in these cases;

e long dry seasons where conditioning by wet/dry state is in-

effectual (too few samples within the available precipita-

tion record).

A number of further developments and extensions to the

WG framework is envisaged beyond this project, and readily

achievable. These include:

e Further or new climate scenarios: the system is now being

further developed to provide time series for the ‘‘UK-

CIP08’’ set of future climate scenarios for the UK devel-

oped by the UK Met Office Hadley Centre. This

development implements a probabilistic framework, where

users will be able to select scenarios by their likelihood of

occurrence from calculated probability density functions

of a given weather variable, and so are not limited to sce-

narios associated with a particular single RCM simulation.

e Hourly variables: the rainfall and WG models already

have an hourly capability for a limited number of sites,

so extension of the UK model to the hourly level is

straightforward provided that hourly meteorological data

can be sourced for model calibration.

e Incorporation into GIS: operational use would be facili-

tated by embedding the modelling system within a GIS

such as ARCGIS�, where full use can be made of outputs

within catchment modelling frameworks using other live

data sets.

e Spatial models: whilst the models described here can be

used for small catchment-average applications (e.g. less

than 1000 km2), they are essentially single-site models ap-

plied over aggregated areas. True spatial or multi-site

models would produce multiple series at sites within

a catchment and allow simulation of larger catchment

areas with spatially consistent inputs of, for example, rain-

fall. This would be a requirement for simulation of flood

events where the spatial distribution and timing of rainfall

within a catchment or collection of sub-catchments is

important.
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