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SUMMARY
It is common practice to refer to three independent stages of creep under static loading
conditions in the laboratory: namely transient, steady-state, and accelerating. Here we
suggest a simple damage mechanics model for the apparently trimodal behaviour of
the strain and event rate dependence, by invoking two local mechanisms of positive
and negative feedback applied to constitutive rules for time-dependent subcritical crack
growth. In both phases, the individual constitutive rule for measured strain e takes the
form e(t)=e0[1+t/mt]m, where t is the ratio of initial crack length to rupture velocity.
For a local hardening mechanism (negative feedback), we find that transient creep
dominates, with 0<m<1. Crack growth in this stage is stable and decelerating. For a
local softening mechanism (positive feedback), m<0, and crack growth is unstable and
accelerating. In this case a quasi-static instability criterion e�2 can be defined at
a finite failure time, resulting in the localization of damage and the formation of a
throughgoing fracture.

In the hybrid model, transient creep dominates in the early stages of damage and
accelerating creep in the latter stages. At intermediate times the linear superposition
of the two mechanisms spontaneously produces an apparent steady-state phase of
relatively constant strain rate, with a power-law rheology, as observed in laboratory
creep test data. The predicted acoustic emission event rates in the transient and
accelerating phases are identical to the modified Omori laws for aftershocks and
foreshocks, respectively, and provide a physical meaning for the empirical constants
measured. At intermediate times, the event rate tends to a relatively constant back-
ground rate. The requirement for a finite event rate at the time of the main shock can
be satisfied by modifying the instability criterion to having a finite crack velocity at
the dynamic failure time, dx/dt� VR , where VR is the dynamic rupture velocity. The
same hybrid model can be modified to account for dynamic loading (constant stress rate)
boundary conditions, and predicts the observed loading rate dependence of the breaking
strength. The resulting scaling exponents imply systematically more non-linear behaviour
for dynamic loading.
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resulting strain as a function of time. Fig. 1 shows a schematic
INTRODUCTION

textbook example of how such results are typically interpreted,
involving three individual stages of creep, labelled transientThe time-dependent properties of microscopically brittle rock
(primary or decelerating); steady-state (secondary or constantdeformation are of first-order importance for understanding
rate); and accelerating (tertiary or unstable). The deformationthe long-term behaviour of rocks in the Earth’s upper crust.
may be distributed throughout the sample in the first twoTraditionally, the most common way of investigating these is
phases, but the phase of accelerating creep results in theto carry out a static load, or ‘creep’, test; that is, holding a
eventual failure of the sample by localization of deformationconstant differential stress on a cylindrical rock sample, with

a radially symmetric confining pressure, and measuring the onto a single plane.
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by stress intensity reduction at the crack tip as the crack

grows. Costin (1987) reviewed the application of damage

mechanics to the time-dependent failure of rock, including the

case of constant stress (creep) loading. He describes models

which also assume a reduction in stress intensity prior to crack

interaction—for the case of axial microcracks—and includes

time dependence via the rate equations for subcritical crack

growth by stress corrosion. This class of model predicts the

strain rate dependence of the ultimate strength and Young’s

modulus, typical non-linear stress–strain curves for axial and

volumetric strain, and the dynamic failure time in creep

experiments.

In a detailed study on granite samples at room temperature,

Lockner (1993a) developed a similar model for time depen-

dence based on stress corrosion reactions and stress intensity
Figure 1. Schematic plot of the time-dependent strain component reduction for the ‘wing-crack’ model. The model results were
on a rock sample, after application of an elastic strain at time zero, in good agreement with experimental observations of the strain
redrafted after Hobbs et al. (1976). The behaviour separates into three

rate dependence on differential stress, and the forms of the
phases of transient, steady-state and accelerating creep.

primary and secondary creep phases. In a microstructural

analysis of granite samples from an earlier test on granite

samples, Moore & Lockner (1995) showed, from direct obser-
Classical models to explain this behaviour have included vation of microcrack statistics, that crack interactions implying

the linear superposition of a small number of viscous and a stress intensity increase only become significant very late in
elastic elements, for example the linear Burgers body (e.g. the secondary creep stage. This microstructural inference is con-
Ranalli 1995). However, all of these models exhibit a short- sistent with the acoustic emission study of Reches & Lockner
lived exponential transient, rather than the longer-tailed power- (1994), who showed that macrocrack formation inferred by
law transients observed in the Earth, for example Omori’s law planar-aligned acoustic emission (AE) locations occurred very
for the decay of seismic event rate in aftershock sequences late in the loading cycle for Westerley granite.
discussed below. Similarly, none of these simple linear models

In order to account more accurately for the interactions
can explain the final stage of non-linear, unstable accelerating

leading to microcrack coalescence, Okui & Horii (1997)
creep, due to the progressive localization of deformation in the

developed an explicit bifurcation model for the localization of
final stages of macroscopically brittle behaviour. In order to

a shear failure from an interaction field theory which accounted
explain this, more complex models with very large numbers

explicitly for crack interactions for both dilute and strongly
of Newtonian elastic and viscous elements are required (e.g.

interacting populations. The model, applied to a finite-element
Davy et al. 1995). In such models, localization results from

numerical grid, is also based on the assumption of stress
the co-operative behaviour of a system with a large number

corrosion cracking and a reduction in the stress intensity factor
of degrees of freedom, with non-linearity introduced by the

as the stabilizing mechanism. In accounting explicitly for late-
threshold behaviour of local failure and stress drop. In practice,

stage positive feedback due to crack interactions, Lockner
we are unable to invert for such a large number of parameters

(1998) was able to obtain a good fit to the whole cycle of the
based on the limited data available, although such conceptual

creep curve in Fig. 1, including the final dynamic phase notmodels provide valuable insight into the processes involved in
under consideration here.the localization of deformation.

Here I develop a simpler model for the full creep cycle,In the mean-field theory of damage mechanics, the basic
and the resulting event rate for acoustic emissions or earth-concept is a two-stage failure process, representing a transition
quakes, based on existing non-linear constitutive rules forfrom distributed damage by tensile microcracking, up to a
time-dependent subcritical crack growth, combined with localcritical threshold where microcracks begin to interact to form
hardening and softening feedback mechanisms from fracturea throughgoing fracture or fault (e.g. Reches & Lockner 1994,
mechanics. In the tradition of damage mechanics, the modelFig. 2). This class of model is based on laboratory observation
involves the linear superposition of local negative and positiveof acoustic emissions and sample dilatancy related to micro-
feedback of crack growth, leading to local hardening andcracking during the failure of low-porosity crystalline rock in a
softening, respectively, associated with two characteristic timecompressive stress field (Scholz 1968a). Horii & Nemat-Nasser
constants. At short times the transient phase dominates,(1985) developed a mean field theory for this observation by
resulting in stable deformation. At long times the acceleratingconsidering a population of initially weakly interacting micro-
phase dominates, resulting in the localization of deformationcracks, with a transition to strong interactions and failure
onto a ‘system-sized’ crack. This transition occurs via a longwhen the mean crack density reached a critical threshold. The
phase of apparent ‘steady-state’ creep, which is not assumedstable growth of tensile microcracks in a compressive stress
a priori. The steady-state creep phase has a power-law rheologyfield is also a feature of the damage model based on analytical
between the applied stress and the resulting strain rate, assolutions for the development of ‘wing-cracks’ (including an
observed. The predicted AE event rate follows a form similarelement of local shear displacement) proposed by Ashby &
to that of laboratory experiments, and reduces exactly to theHallam (1986), Sammis & Ashby (1986) and Ashby & Sammis
modified Omori law for earthquake aftershock and foreshock(1990), which includes some frictional sliding as well as a

tensile component. In such models, crack growth is stabilized sequences, with an intervening ‘background’ rate due to the
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T he transition from stable to unstable damage 153

superposition of the two processes. The main advantage of reactions also allow crack growth to occur at stress intensities

below Kc , at a velocity that is non-linearly dependent on K.the constitutive rules obtained here over the models discussed
above is their analytical simplicity, making it easier in principle Experimental data for subcritical crack growth in rocks,

minerals and ceramics can often be fitted to the power-lawto fit the model to data from the laboratory and the field.

In addition, power-law creep is an emergent property of the form of Charles’ law:
model, rather than a constraint.

The same model is then applied to the case of dynamic dx

dt
=V

0A K

K
0
Bn ; Kmin<K<Kc , (2)

loading at a constant rate. This decreases the predicted failure
time compared with conditions of static loading, and produces

where V0 is the starting velocity at time t0=0, K0 is the initiala more rapid acceleration in the final stages of failure, given
stress intensity at time t0 , and the exponent n—a quantitativethe same material constants. The model predicts a non-linear
measure of the non-linearity of the chemically assisted processdependence of breaking strength as a function of loading
of crack growth—is known as the stress corrosion index (e.g.rate, as observed in constant strain rate experiments, and in
Atkinson & Meredith 1987). Typically, n varies experimentallyparticular provides a better fit at low strain rates than alter-
between 20 and 50 for crack growth by stress corrosion innative models that ignore the finite threshold for subcritical
ceramic materials (Atkinson & Meredith 1987), and takescrack growth. A similar two-stage evolution for the AE event rate
on the value n=30 for basalt. The presence of a thermallyis also predicted, as observed by Liakopoulou-Morris et al. (1994).
activated chemical weakening processes introduces a minimum
stress intensity Kmin below which the velocity of crack growth

is zero or negative (Rice 1978). For a given initial maximumPositive and negative feedback in crack growth
crack length, x0 , representing the typical initial flaw size in the

The Griffith criterion for unstable crack growth can be derived material, this implies a minimum stress smin=Kmin/(Y xq
0
) for

from the field of linear elastic fracture mechanics. In this the activation of the subcritical crack growth mechanism.
formulation, the criterion for crack growth can be expressed Thermal processes change this minimum stress, but not the
as a function of the stress intensity K at the tip of a crack of exponent n, which is more sensitive to the chemical environment
half-length x, resulting from an applied stress s at a remote (e.g. Atkinson & Meredith 1987).
boundary, which we will write in the general form In order to solve the first-order differential equation (2),

given (1), we need to know the stress history s(t). The two
K=Y sxq , (1)

main types of laboratory test involve either static fatigue
(constant load or ‘creep’ test), or dynamic fatigue (constantwhere the constant Y depends on the loading configuration
strain rate). In theoretical treatments, it is often more con-and the mode of failure. The crack will grow stably for a finite
venient to solve the relevant equations by assuming constantincrement when ∂K/∂x<0 (Lawn 1993, eq. 2.3), or q<0. Thus
stress rate loading (e.g. Sano et al. 1981; Costin 1987), implicitlynegative q corresponds to stress intensity reduction as a
assuming a constant elastic modulus. Since we are interestedfunction of increasing crack length. Such negative feedback
in first-order properties, we follow the latter approach for themay arise from the external loading conditions, or from local
case of dynamic loading here, but acknowledge that modifi-stress relaxation or hardening mechanisms at the crack tip. In
cations will be necessary when there are strong deviationscontrast, unstable crack growth occurs when ∂K/∂x>0, or
from linearity in the modulus (Lockner 1998).q>0. This positive feedback introduces a fundamental non-

linearity that results in accelerating crack growth. In the

classical Griffith crack loading conditions, q=1/2, Y =√p,
Static loading (creep test)and instability occurs when K>Kc , where the critical stress

intensity Kc is known as the fracture toughness. Lawn (1993) In this section I first describe how secondary creep emerges as
also describes examples of external loading conditions in a consequence of the linear superposition of the two processes
laboratory tests on ideal, homogeneous materials where q=0 of stable and unstable crack growth due to local negative and
(no feedback), and q=−1/2 (negative feedback) for the case positive feedback. The model is then used to derive a relation-
of a single crack. For a crack population, the effective value of ship between the exponents for subcritical crack growth and
q will be an average over a population at different stages of the power-law rheology of the emergent steady-state phase. I
growth, corresponding to different local values of q which may also show how the modified Omori law for foreshock and
itself be a function of crack length (e.g. Ashby & Hallam 1986). aftershocks sequences can be derived from the same theoretical
Here q is therefore allowed to take on a continuum of values treatment.
that need not be i/2, where i is an integer.

The behaviour described so far, assuming vacuum conditions
and material homogeneity, is time-independent. However, (a) T ime-dependent crack growth
ceramic materials (including rocks and minerals) are both

The boundary condition for creep during constant stressheterogeneous and porous, making them sensitive to stress-
loading is s(t)=s0>smin , whence the general solution of (1)enhanced chemical reactions with the interstitial pore fluid,
and (2) takes the formand also to local negative feedback processes due to stress

relaxation or dilatancy hardening on the grain scale. Such
x=x

0
[1+t/(mt)]m ; m≠0 , (3)

‘internal’ negative feedback can result from stabilizing changes

in pore volume which may accommodate the strain without where
requiring further crack growth (Horii & Nemat-Nasser 1985;
Ashby & Hallam 1986; Costin 1987). Chemical (stress corrosion) m= (1−nq)−1 , t=x

0
/V
0

(4)
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[see Das & Scholz (1981) for the case q=1/2, or equivalently source of dynamic instability occurs when the fault weakening

rate becomes comparable with the elastic unloading rate ofm=2/(2−n)]. Here x0 and V0 are the starting crack length
and velocity, respectively. For s(t)<smin there is no time- the surrounding material, thereby increasing t* further.

The general form of eq. (3) implies that the quasi-staticdependent crack growth, and x(t)=x0 . For the special case

m=0, an exponential dependence is predicted (Main 1999). stability/instability conditions for time-dependent crack growth
(irrespective of whether strain or crack length is used as theEq. (3) holds for the specific case of crack length increase.

However, it is also a solution to Voight’s (1988, 1989) more measured variable) depend on the sign of m, which in turn

depends on the values of both q and n. In the case of nogeneral second-order differential equation for precursory strain
V, in a material undergoing damage in the form of a crack feedback (q=0), m=1 for all values of n, and eq. (3) predicts

crack growth at a constant rate x=x0/t. For positive feedbackpopulation, of the form

(q>0), there are two regimes of behaviour. For nq>1, the
d2V/dt2−a(dV/dt)a=0 , (5) instability criterion m<0 holds, and eq. (7) can be used to

a good approximation. For nq<1, m>1, and crack growth
where a is a constant, and a is an exponent which measures

according to eq. (3) is accelerating but stable, in the sense thatthe degree of non-linearity (related in turn to a globally
there is no system-sized event. Finally, for a negative feedback

averaged value of m). Strain may be measured directly, using
process (q<0), eq. (4) predicts 0<m<1, and stable, decelerating

strain gauges in laboratory tests, or satellite or geodetic studies
crack growth according to eq. (3).for crustal strain. In situations where direct measures are not

available it is common to use a proxy measure of strain, often
based on the properties of a population of earthquakes, the

(b) T he hybrid modelmost appropriate of which is the sum of moment tensors using

the definition provided by Kostrov (1974), as discussed in It is possible to use the above theory to develop a three-stage
Main (1999). model for the three phases of creep seen in Fig. 1. This involves

Voight’s equation has a general solution, a linear superposition of three distinct processes with exponents
0<m1<1, m2=1, m3<0; timescales T1 , T2 and tf ; and initial

V=V
0
[1+t/(mt)]m ; m≠0 , (6) weights VI , VII , VIII , where VI+VII+VIII=V0 , and V0 is the

total elastic strain at time zero. However such a model requiresidentical to the form of eq. (3) and also for a simple percolation
nine independent parameters and it is not clear whether amodel for time-dependent crack growth (Main 1999). From
separate distinct mechanism is required for secondary creepthis comparison, we expect the same analytical form to hold
(Varnes 1983; Lockner 1998). In damage mechanics it isfor measured strain and crack length, although we would not
typical to assume a two-stage process involving initial negativeexpect m to be the same. The precise value of m will depend
feedback due to local hardening processes, and later positiveon the dependence of stress intensity on crack length (expressed
feedback due to crack interactions (see discussion in theby the parameter q), and on the effect of averaging over a
Introduction). We therefore consider a linear superposition ofpopulation of many cracks that may be of different lengths.
only two different processes, based on the general formsWhen considering the effect of a population of cracks, it is more
of the constitutive rules for subcritical crack growth discussedappropriate to use eq. (6), with strain as the appropriate
above. The model parameters are then the time constants t1variable.
and t3 , respectively, for the processes of stable, transient creepWhen m<0, the general solution takes the special form
associated with negative feedback and local material hardening
(0<m1<1), and unstable, accelerating creep associated withx=x

0
[1−t/tf]m ; tf=−mt, m<0 . (7)

positive feedback and material weakening (m3<0). In order
The presence of a negative sign in the term in square brackets to keep all parameters positive we define n=−m3 , and for
changes the behaviour completely. This results in a quasi-static convenience drop the subscripts for T1 and m1 . The resulting
instability that can be expressed in two commonly derived hybrid model for the measured strain due to a crack population
forms. The first criterion uses the approximation x, dx/dt�2 has the form
as t� tf , resulting in the localization of damage onto a ‘system-
sized’ (effectively infinite) fault at the failure time tf . Alternatively, V=VI[1+t/T ]m+VIII[1−t/tf]−n , (9)
instability may be defined when the velocity of crack growth

where T =mt1 , tf=nt3 , and the sum of the constantsapproaches the inertial limiting rupture velocity dx/dt� VR , VI+VIII=V0 , that is, the elastic strain applied at time zero.whence
This equation is based on a linear superposition of solutions

x=x
0
[1−t/(tf−t*)]m , m<0 , (8a) that independently satisfy (5), so it is also a solution to (5).

The model then requires only six independent parameters, one
where of which is the (fixed) elastic strain, and the remaining five

describe the inelastic strain. A more complex fit to actual datat*=−mt(V
0
/VR )[1/(1−m)] . (8b)

would have to be justified in terms of a finite penalty for the
extra number of parameters required (e.g. Main et al. 1999).In this case, the failure occurs earlier (dx/dt=VR , cf. dx/dt=2),

and the crack length remains finite at the failure time, hence An example of a calculation of the total strain from eq. (9)
is given in Fig. 2 (a), for VI=VIII=V0/2, with V0=1, m=0.2,preserving finite strain. For the usual case VR&V0 , m<0,

t*#0, and (8) reduces to the form (7). Thus we expect t* to n=0.2, T =0.05 and tf=1. The graph shows both the individual

components and the sum, all normalized to unit initial strainbe a small correction compared with the absolute magnitude
of the failure time, although a finite t* is required to keep the for comparison. The shape of the hybrid curve follows the

classical curve in Fig. 1. There is an early phase dominated bycrack length finite at t=tf . In laboratory tests an additional
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(c) Derivation of Omori ’s law for foreshocks and aftershocks

It has long been recognized that acoustic emissions due
to microcracking in the laboratory could provide a useful

analogue for the examination of earthquake foreshock and
aftershock sequences (Scholz 1968b; Lockner 1993b). However,
the straining mechanism in the laboratory for crystalline rocks

occurs by local dilatant microcracking, and natural seismicity
occurs by shear on pre-existing faults, so the quantitative
behaviour may be significantly different in detail. For example,

laboratory tests typically produce more foreshocks than after-
shocks, contrary to the case observed in seismicity data. In
this section the specific model developed above is related

quantitatively to the occurrence of foreshocks and aftershocks.
The modified Omori law for earthquake aftershocks is

described in terms of the time dependence of the seismicity

rate Ra , which has the form

Ra~ (ca+t−tM )−p , (10)

where ca is a constant and tM is the time of the main shock
(Utsu et al. 1995). A similar behaviour has also been proposed
for foreshocks:

Rf~ (cf+tM−t)−p∞ , (11)

where the subscript f here refers to foreshocks, and p∞ is the
exponent for foreshocks. This rate law has been determined
from a statistical analysis involving the superposition of data,

and carried out in retrospect, because of the difficulty in
identifying such a law in prospective mode from individual
foreshock–mainshock sequences (Kagan & Knopoff 1978).

Both p and p∞ are positive, and are found empirically to be
close to 1 (Utsu et al. 1995; Hainzl et al. 1999).

In order to determine the rate dependence, we differentiate

eq. (9), to obtain

V̇=
mVI
T

[1+t/T ]m−1+ nVIII
t f

[1−t/tf]−n−1 . (12)

This can be regarded as a general equation for the seismic
event rate because of the observation of proportionality

between AE event rate R and crack velocity V : R=aV
(Meredith & Atkinson 1983). The form of eq. (12) assumes
loading at time t0=0. Using the proportionality between event

rate and crack growth rate, and making the timescale arbitrary
relative to a starting time t0 , eq. (12) reduces with some
manipulation to

R=
amVI
T m

[T + (t−t
0
)]m−1+ anVIII

(tf−t
0
)−n [tf−t]−n−1 . (13)

This equation holds for the definition of failure time given
Figure 2. (a) Strain versus time plot for eq. (9), showing the individual above for an infinite crack velocity at t=tf . In order to match
components of transient and accelerating creep, as well as the total, the observed finite event rate at the time of the main shock,
all shown on normalized units for comparison. (b) Strain rate versus define t=tM when dx/dt=VR , with VR finite according to
time from eq. (12). (c) Strain acceleration versus time from the equation

eq. (8). In this case (13) reduces to
obtained from differentiating eq. (9) twice. In all plots the values of

the parameters are m=0.2, n=0.2, VI=VIII=1/2, T =0.05tf .
R=

amVI
T m

[T +t−t
0
]m−1+ anVIII

(tM+t*−t
0
)−n [tM+t*−t]−n−1 ,

transient creep, a final phase dominated by accelerating creep (14)
leading to instability, and most importantly, since it was not
an a priori assumption of the model, an intermediate phase of where t* is defined in eq. (8b). The first term describes

the occurrence of aftershocks in the same form as (10), withapparent steady-state creep.
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Ra=amVI/T m, T =ca>0, p=1−m, and t0 the time of the pre- conclude that a hybrid process can give a good explanation for

the emergence of secondary creep, requiring five independentvious main shock. The second term describes the occurrence of
parameters for the inelastic component, and producing aforeshocks as in (11), with Rf=anVIII/(tM+t*−t0 )−n, t*=cf>0
transient creep phase consistent with the modified Omori lawand p∞=1+n. Although the functional forms of (10) and (11)
for aftershock and foreshock sequences.appear very similar, we note from (14) that the origins of the

two terms ca and cf are completely different. ca=T results

directly from the time constant t1=T /m from the general
(d) T he emergence of a ‘power-law’ rheology for steady-state

solution to eqs (1) and (2) for local negative feedback
creep

(0<m<1). The constant term ca is typically of the order of
Eq. (1) suggests a possible relationship between the exponent n0.5 days (e.g. Reasenberg 1999). The negative feedback here
for subcritical crack growth and the exponent g for power-lawmay be related to the local stress relaxation during aftershocks,
creep, which takes the formor to time-dependent healing in the post-seismic phase. In

contrast, cf=t* results from the requirement of a finite rupture
V̇=Asg , (15)

velocity at the time of the main shock for local positive
where V̇ is the strain rate and A is a constant. A full analyticalfeedback (n>0). Small positive values for both m and n can
derivation of (15) from (12) is not possible in the general case,be inferred from the empirical observation that p and p∞ are
although for the purposes of illustration this is undertakenboth near 1. This implies that earthquake behaviour is more
here with some simplifying assumptions. The strain rate in thenon-linear than other types of critical-point phenomena, where
steady-state phase is estimated by taking VI=VIII=V0/2 asthe exponent n is of the order of 0.6–1 (Stanley 1971, Table 3.4).
before, and assuming a constant ratio r=T /tf . The slope ofThe predicted behaviour of strain rate (eq. 12), or AE event
the strain rate during this phase is reasonably constant in therate (eq. 14), for a laboratory creep test, or the interseismic
middle part of the curve (Fig. 2), so the strain rate duringperiod between two main shocks, is shown in Fig. 2(b), using
secondary creep is estimated at time t=tf/2. In this case,the same parameters as in Fig. 2(a). The AE rate is predicted
eq. (10) predicts that the strain rate isto decay according to a power law with exponent m−1<0,

to a relatively flat ‘background’ level, before accelerating once
V̇(tf/2)=

V
0

2tf
{m[1+0.5/r]m−1+n[1−0.5]−n−1}=const

V
0

tf
.more to a maximum at the dynamic failure time. A major

difference between earthquake data and laboratory data is the
(16)greater relative proportion of foreshocks (accelerating strain

phase) than aftershocks (decelerating strain phase) in laboratory
Eq. (2) holds for any starting stress s0≥smin , so that

experiments. This may be accounted for in a straightforward V
0
/Kn

0
=Vmin/Knmin , or V0=Vmin[(Y s0xq0 )(Y sminxqmin)]n from

way by differences in the model parameters, either via the (2). Since the geometric factor Y is constant, and the starting
weights VI,III, or the exponents m and n. In particular, laboratory flaw size x0 is the same for any starting stress, the failure time
tests show a more gradual acceleration of seismic event rate is then
up to the dynamic failure time (Liakopoulou-Morris et al.

1994), implying a significantly larger value of n compared with
tf=n

x
0

V
0
=n

x
0

Vmin
A s

0
smin

B−n ; s
0
≥smin , (17)

n#0 inferred for earthquake foreshocks discussed above. This

implies that the appropriate constitutive rule for the final stage
where the subscripts 0 refer to zero time, and the subscriptof earthquake occurrence is more non-linear than that often
min refers to the minimum or threshold value for subcritical

found in the laboratory. A more precise comparison is given
crack growth at a finite velocity. Vmin is assumed to be a

in the discussion.
constant for a given fluid–rock system. Fig. 3 shows the

Fig. (2b) clearly shows that the strain rate during ‘secondary’
predicted curve for the hybrid model for three values of tf , and

creep is not actually constant in any part of the secondary
hence s0 , each normalized to the starting strain, given the

phase, although with a degree of statistical noise a good fit is
assumptions above. From (16) and (17), the ratio of strain

likely to be obtained to a flat line in this part. The power-law
rates during the period of steady-state creep for starting stresses

decay results in a fatter ‘tail’ than the corresponding exponential
s0 and smin is then

transient predicted by the Burgers model, and leads to signifi-

cant mixing of the two distributions in the middle range. Quite V̇(tII )
V̇min

=
V
0

Vmin

tminf
tf

=
V
0

VminA s
0

sminBn . (18)often, laboratory results for measured acoustic emissions have

been interpreted with this ‘background’ phase interpreted as
For the elastic phase the stress s is proportional to the strainambient noise. Here the finite ‘background’ seismicity during
V, sosecondary creep is a ‘signal’ that occurs due to the combination

of two processes with long tails. This signal may be missed if V̇(tII )
V̇min

=A s
0

sminBn+1 ; s
0
≥smin , (19a)the acoustic threshold for recording is set too high, or if the

ambient signal-to-noise ratio in the laboratory or field is less

than one. =0 ; s
0
<smin . (19b)

Finally, the acceleration calculated from the second derivative
Eq. (19a) is identical to (15) for

of eq. (9) is shown in Fig. 2(c). In this case, the distinction

between the three phases is most evident, with a long flat A=V̇min/sn+1min , (20)

phase of nearly zero acceleration corresponding to apparent
and

steady-state creep, but produced as a result of the superposition

of two non-linear processes with time constants T and tf . We g=n+1 . (21)

© 2000 RAS, GJI 142, 151–161



T he transition from stable to unstable damage 157

(a) T ime-dependent strain

The conditions for crack growth with a finite threshold are

ẋ=0 ; t<tmin , (26a)

ẋ(xmin/x)nq=VminC ṡt

sminDn ; t≥tmin , (26b)

where tmin=smin/ṡ is the time when the stress is sufficiently
high to activate the stress corrosion mechanism. At this time,
the starting velocity, crack length and stress take on their

minimum values (e.g. Lawn 1993). Before then there is no
crack growth. A general solution relevant for either case can be
obtained by the substitution y=t/t0 , dy/dt=t/t0 , and integrat-

Figure 3. Plot of the acceleration of strain to failure from differ- ing as before to give, for m≠0,
entiating eq. (9) twice for various values of tf . In each case the strain

is normalized to its starting value. As the failure time decreases, or x=x
0
; t<t

0
, (27a)

equivalently the starting stress increases, the slope in the apparently

‘steady-state’ phase increases. The rate of this increase as a function

of stress forms the basis for the power-law creep rheology. x=x
0G1+A 1

m(n+1)BAV
0
t
0

x
0
BCA t

t
0
Bn+1−1DHm ;

t≥t
0
. (27b)

These relations apply strictly to the set of simplifying assump-
tions stated above. In the more general case, the constant term This exact solution replaces the approximation derived in Main
in (16) is not appropriate, and a numerical solution is required, (1988). There are two sources of non-linearity here, one from
given appropriate input for the distribution parameters from the exponent m of the term in curly brackets, m=[1−qn]−1,
curve fits to time-dependent strain data. i.e. identical to that found for constant stress loading, and one

For normal laboratory experiments on single crystals, it is from the non-linearity in time t introduced as an exponent
sometimes possible to measure the minimum crack velocity into the term within the curly brackets. For m<0, qn>1, the
for subcritical crack growth (e.g. Lawn 1993). However, for crack grows without limit when the term in curly brackets in
polycrystalline aggregates, the strain rate is always much faster (27b) becomes zero, or when
than the minimum strain rate needed to promote subcritical

crack growth (Atkinson & Meredith 1987). To examine the
t=tf=t

0G1+m(n+1)A x
0

V
0
t
0
BH1/(n+1) ; m<0 . (28)behaviour in this case we rearrange equation (19a) in the form

s
0
−smin=sminGAV̇(tII )

V̇min B1/(n+1)−1H . (22)
The normalized failure time, tf/t0 , and the rate of acceleration
to failure depend on the value of the exponents q and n, and

For the case of strain rates that are rapid compared to the on the ratio of the characteristic times t/t0 . The time constant
threshold strain rate V̇(tII )/V̇min(tII )&1, so this reduces to t=x0/V0 is inversely proportional to the reaction rate for

the initiation of subcritical crack growth, and t0 is inverselyV̇(tII )
V̇min (tII )

=As
0
−smin
smin Bn+1 , (23) proportional to the loading rate. Fig. 4(a) shows the behaviour

for eq. (27) (curve A), compared with that for eq. (3) (curve B),
for the case n=1, normalized to the same failure time. Inor

curve A, crack growth only starts at time t0=1, whereas for
V̇(tII )=A(s

0
−smin )n , (24)

B it begins immediately on loading. Apart from this threshold
effect, the main difference is that eq. (27) is more non-linear,where g and A are as defined above. Eq. (24) is currently being

fitted to steady-state creep test data on sandstones of varying resulting in a curve A that resembles the constant stress
curve B, but with an apparently smaller apparent exponent n.strength and cohesion.

In earthquake foreshock sequences, with a finite loading rate,
this correction leads to more non-linear behaviour than for
the case of constant load, consistent with the apparently lower

Constant stress rate (dynamic) loading
value of n inferred above from field data.

In practice it may be hard to discriminate on statisticalI now consider the effect of loading in the form of a stress or
strain ramp of the form grounds between eqs (3) and (27), because both show very

similar non-linear divergence near the failure time, and because
s(t)= ṡt , (25)

of the paucity of foreshocks generally. In the laboratory,
however, it might be feasible to attempt such a discriminationwhere the dot indicates a first derivative with respect to time.

Since the starting stress is now zero, it is necessary to take for controlled tests at different finite loading rates. The pre-
dicted difference between the two types of behaviour (constantexplicit account of the finite threshold for subcritical crack

growth (e.g. Lawn 1993). load and constant loading rate) from eqs (3) and (27) is shown
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Figure 5. Plot of normalized breaking strength sf/s0 as a function of

loading rate for the case n=1; ṡt/s0=1, from eq. (29).

The main difference between (29) and (30) is at small loading

rates, where the breaking stress reaches a finite threshold
stress s0 asymptotically. In fact, some of the plots of data
from uniaxial compression tests reported in Sano et al. (1981,

Fig. 11) do show evidence of such asymptotic curvature at low
stress rates, and hence were not included in the curve fits to
eq. (31) in that paper. Equivalent strain rates for the laboratory

tests in Sano et al. (1981, Fig. 11) are between 10−9 and
101 s−1, with only the lowest strain rate data showing some
evidence of threshold effects. However, this is likely to be more

significant for the lower strain rates that pertain to the
deformation of the Earth’s brittle crust, resulting in a finite
residual strength even after geological time periods.Figure 4. Plot of normalized crack length x/x0 versus normalized

The alternative damage model summarized by Costin (1987,time t/t0−1, for A constant loading rate (eq. 27), and B constant load
Fig. 5.15) also has a finite threshold for low strain rates, but(eq. 3) for the case of a finite failure time.
does not accurately predict the curvature observed in the data

used to validate the model (Costin 1987, Fig. 5.15), or that of
Sano et al. (1981, Fig. 11). Eq. (29) therefore accounts for the

for the transient creep phase in Fig. 4(b). The effect of constant observed deviations between the data and the observations in
loading rate is to introduce a threshold, and to increase the either case, preserving the threshold nature of the model of
non-linearity in the curve for transient or decelerating creep Costin (1987) at low strain rates, and the power-law scaling
(m=0.2 assumed in both curves). The effect of dynamic loading observed by Sano et al. (1981) at high strain rates in a single
is therefore to increase the rate of acceleration in the tertiary model.
phase. For the case where t&t0 , The predicted strain for the hybrid

model, with a transition from distributed to localized damage
as above, would then take the form

(b) Rate dependence of failure strength V=VI[1+ (t/T )[3−(2/m)]]m+VIII[1− (t/tf)[3−(2/n)]]−n , (31)

Eq. (28) can be used to predict the loading rate dependence of with all parameters positive as before. Again, a reasonable fit
the breaking strength (stress at time tf), from to eq. (9) might be obtained, but with smaller apparent values

of n and m (e.g. see Fig. 4a).
sf= ṡtf=s

0C1+m(n+1)A ṡt

s
0
BD1/(n+1) . (29)

The predicted curve is shown in Fig. 5 for the case n=1. For
DISCUSSIONhigh loading rates, tṡ/s0&1, this reduces to

Comparison of laboratory and field exponents
log(sf)=

1

n+1
log (ṡ)+D , (30)

The results presented here show that the type of crack growth
depends both on the feedback parameter q and on the materialwhere D is a constant. This is identical to forms suggested by

Sano et al. (1981), and Lankford (1981). constant measuring the degree of non-linearity in crack growth
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n. The results can be generalized to a population of cracks, the fault weakening rate equals the elastic unloading rate of

since they also satisfy Voight’s more general equation for the surrounding material. This in turn predicts the sudden
strain, albeit with different magnitudes of the exponents, and and dynamic increase in strain rate observed at the dynamic
requiring mean field values for q which allow for variations in failure time, in a more realistic way than the quasi-static model
crack length and positive or negative interactions between presented here.
individual cracks. This approach differs from previous damage Lockner’s (1998) model can be applied to a wide range of
models which assume q=1/2 a priori, and project local stress experimental protocols, and requires two additional free para-
shielding effects into variations in the stress corrosion index meters for the behaviour at different confining pressures. Like
(Liakopoulou-Morris et al. 1994; Renshaw & Park 1997) in Costin (1987) and Lawn (1993), he assumes an exponential
two-stage models for the growth of a crack population. In form for stress corrosion crack growth rather than the power-
particular, the transition from n<2 to n>2 observed in the law form (eq. 2) used here, and hence his predicted strain rate
AE data for a dynamic loading experiment in Liakopoulou- dependence on the differential stress is an exponential rather
Morris et al. (1994), assuming q=1/2, can be generalized to a than a power law. A similar result can be obtained here by
transition from nq<1 to nq>1, or from m>0 to m<0 in replacing Charles’ law with the reaction rate equation, although
eq. (3). This previously observed transition from stable to this is not carried out explicitly here. This question is important,
unstable damage is therefore exactly consistent with the hybrid since the reaction rate theory gives a better theoretical match
model proposed above, appropriately modified to take account to the exponential strain rate dependence on stress predicted
of the dynamic loading boundary conditions. In detail, the by time-dependent dynamic friction models (e.g. Dieterich 1978;
data of Liakopoulou-Morris et al. (1994, Fig. 8) show a Ruina 1983). Ruina (1983) writes the constitutive rule in the
transition from a stable crack growth phase with nq#0.7 to form
an unstable phase with nq#2.5. If we consider that n>10

is a likely ‘true’ value for the stress corrosion index (Atkinson t=s[m
0
+h+A ln (V /Vc)] , (32a)

& Meredith 1987), then these laboratory results correspond

to q<0.7 for stable crack growth, and to 0.7<q<0.25 dh/dt= (−V /dc)[h+B ln (V /Vc )] , (32b)
for unstable crack growth. The small but positive value of q

implies a reduced positive feedback (0<q<0.5) for these tests,
where t is the shear stress, s is the normal stress, m0 is the

rather than q<0 assumed in the various creep models described
static coefficient of friction, h is the state variable representing

above, including the one presented here. The most likely physical
the history of indentation healing, V is the sliding velocity,

reason for this difference is that the finite loading rate in this
proportional to the strain rate on the fault, dc is the critical

case more than compensates for the decrease in stress intensity
slip distance for velocity-weakening friction, Vc is a charac-

in a particular growth increment. For the experiments of
teristic velocity, and A, B and are the model parameters

Liakopoulou-Morris et al. (1994) n>2.5, a value much greater
whose relative size defines velocity strengthening or weaken-

than that assumed for earthquake foreshock sequences, n#0,
ing behaviour. Dieterich (1978) and Ruina (1983), who added

discussed above. This implies that earthquake foreshock occur-
a second state variable, predict the observed exponential

rence accelerates more rapidly as t� tM than the acceleration of
dependence of healing (related to hold time between sliding

event rate in the laboratory. The low absolute value of n inferred
increments) on the peak shear stress.

for foreshock sequences is also low compared to that for any
Predictions outside the laboratory values are strongly depen-

critical phenomenon (Stanley 1971).
dent on the precise mathematical form of the crack velocity

on stress intensity. However, in practice it may be difficult to

distinguish between the exponential and power law dependence
Alternative models forms, given the bandwidth of the stress intensity data imposed

by the minimum strain rates achievable in the laboratoryThe model presented here is not the first to show that steady-
(Atkinson & Meredith 1987). A similar observation holds forstate creep may not be an intrinsic process, but rather results
the strain rate dependence of differential stress in frictionalfrom a superposition of different local processes. Varnes (1983)
slide-hold tests (Ruina 1983, Fig. 6), or in triaxial deformationderived a form based on the special solution to (1) and (2),
tests (Costin 1987, Fig. 5.15; Lockner 1998, Fig. 8). Thefor q=1/2 and m<0, for both processes. This assumption has
resolution of this question may therefore require an extra-the rather unphysical consequence of requiring the timescale
polation of scale, stress and strain rate outside the constraintsto be reversed in the transient phase (as plotted in Bufe &
of laboratory conditions, for example an examination of defor-Varnes 1993). In contrast, the general solution provided here
mation and failure in induced seismicity associated with miningpredicts the full range of behaviour in an internally consistent
or hydrocarbon production.way, and also predicts emergent properties not considered by

In theory, we might expect an exponential law to be betterVarnes (1983).
suited to the early stages of damage. In this phase, crackIn a more comprehensive analysis than presented here
growth occurs independently of neighbouring cracks, and isLockner (1998, Fig. 10) also used the constitutive rules for
hence likely to be reaction-limited. In constrast, a power-lawsubcritical crack growth, combined with a stress intensity
form may better describe the stage where cracks grow byreduction mechanism at the crack tip, to predict the three
coalescence, for example the simple percolation model suggestedstages of creep in Fig. 1 for the case of Westerley Granite.
by Main (1999). One of the main practical consequences ofIn his model steady-state creep is also an emergent process,
the model presented here is that power-law steady-state creepoccurring in a region where the processes of microcrack growth
is an emergent property of the model, rather than a constraint,and fault nucleation exactly balance. His model includes an

explicit instability criterion for dynamic failure, namely when as in Lockner (1998).
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