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A DAMPED HYPERBOLIC EQUATION ON THIN DOMAINS 

JACK K. HALE AND GENEVIEVE RAUGEL 

ABSTRACT. For a damped hyperbolic equation in a thin domain in R3 over a 
bounded smooth domain in R2 , it is proved that the global attractors are upper 
semi continuous. It is shown also that a global attractor exists in the case of the 
critical Sobolev exponent. 

1. INTRODUCTION 

Let .0 c Rn for n ::; 2, be a bounded domain; let Qe c Rn+1 , with e > 0, be 
a bounded domain which converges in some sense to .0 as e -+ 0 and consider 
a damped hyperbolic equation on Qe with some boundary conditions. If Qe 
is to be regarded as a thin domain in Rn+l, then the dynamics on Qe should 
be determined from the dynamics of some appropriate hyperbolic equation on 
the n-dimensional domain .0. 

One objective in this paper is to extend our previous work [12] on thin do-
mains for a reaction-diffusion equation to a damped hyperbolic equation; in 
particular, we consider the upper semicontinuity of the attractors for n = 1 , 2 . 
In addition, for thin domains in R3 , we prove the existence of attractors in the 
critical case where the growth rate of the nonlinearity is cubic. Existence in the 
general case in R3 remains an open problem. 

To describe the results, we first define carefully the domains Qe. We assume 
always that .0 is at least a C2-polygonal domain; that is, a bounded open set in 
Rn with 8.0 a curvilinear polygon of class CI [9, Definition 1.4.5.1]. Suppose 
that eo is a positive number and g: .0 x [0, eo] -+ R is a function of class C3 
satisfying 

(1.1 ) 
g(X, 0) = 0, 8g 

go(X) = 8e (X, 0) > 0 for X E .0, 

g(X,e»O forXE.o, eE(O,eo]. 

For 0 < e ::; eo , let Qe be the domain 

( 1.2) Qe = {(X, Y) E Rn+l; 0 < Y < g(X, e), X E .o} 

and denote by Ve the outward normal to 8Qe. Choose 0 > 0 so that Q = 
.0 x (0, 0) contains Qe for 0 < e ::; eo . 
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186 J. K. HALE AND GENEVIEVE RAUGEL 

For a a positive constant and G a function belonging to Wi, 00 (2), we 
consider the equation in variational form 

(1.3). (Utt + PUt + au, v) + (V'u, V'v) = (-J(u) - G, v) \Iv E H1(Q.) 

where (', .) is the inner product in L2(Q.). The initial values for a solution 
(u, Ut) of (1.3). are in Hl(Q.) x L2(Q.). The function J: R --t R is a C 1_ 

function satisfying 

( 1.4) 

(1.5) 

lim sup -J(x) ~ 0, 
Ixl-++oo x 

IJ'(x)1 ~ c(l + Ixlii) for x E R 

where 0 ~ ji < +00 if n = 1, 0 ~ ji ~ 2 if n = 2. 
If the initial values are sufficiently regular, then equation (1.3). is equivalent 

to 

( 1.6). 
Utt + PUt - flu + aU = - J(u) - G in Qe, 

au/avo = 0 in aQ •. 
To describe the results and, at the same time, to provide motivation for the 

equation onn , we make the change of variables 

(1.7) X=x, Y = g(x, e)y 

which takes Qe into the fixed domain Q = n x (0, 1). 
For 0 < e ~ eo, let X. be the space L2(Q) endowed with the norm II· !Ix, 

induced by the inner product 

(v, w)x, = r !I..vw dx dy. i Q e 

This is an equivalent norm in L2(Q) since (1.1) implies that there are positive 
constants CI, CI such that cle ~ g(x, e) ~ Cle for x En, 0 < e ~ eo. 

To rewrite equation (1.3)e, we need the bilinear form a.(·, .) on (HI(Q))2 
(which is derived from the form: (UI' U2) 1--+ JQ,(V'UI V'U2 + aUlu2) dX dY by 
the change of variables (1.7)): 

( ) ( =1/2 071/2) ( ) ae v, w = -Z-. V ,-Z. W X, + a v , w x, 

where £7.1/2 is the gradient operator on HI(Q), 

=1/2 _ (gXl gX2 1) -z-. w - W X1 - -YWy, W X2 - -YWy, -Wy . g g g 

If we use this notation and let 

( 1.8) G.(x, y) = G(x, g(x, e)y), 

then equation (1.3). is equivalent to 

(1.9)e (Utt + PUt, v)x, + a.(u, v) = (-J(u) - G., v)x, \Iv E HI (Q). 

If the initial data are sufficiently regular, then (1.9). is equivalent to 

(1.10). Utt + PUt + L.u + aU = - J(u) - Ge in Q 
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A DAMPED HYPERBOLIC EQUATION 187 

with the boundary conditions 

(1.11)e aU/aVB, == Beu, v = 0 on aQ 
where v is the unit outward normal to aQ and Le is the operator: 

( 1.12) Le = -~ div Beu 

where 

Beu = [~::: = ~::;:: 1 
I 2 2· - gX1YUXI - gx2YUX2 + g(1 + (gx1Y) + (gx2Y) )uy 

( 1.13) 

We also need to write equation (1.9)e as an abstract evolutionary equation. 
For notation, we let II· II 0, Q, II . 111, Q and II· 112, Q denote respectively the 
classical norms in L2(Q) , HI(Q) and H2(Q). Relation (1.1) implies that 
there are constants C2 and 81, 0 < 81 :::; 80, such that, for 0 < 8 :::; 81 , X E Q, 
we have 

{
(i) 1 g;l 1 + 1 g;21 :::; C2, CI :::; f :::; C2, 

(1.14) 2 2 

(ii) ~ _I gXl 1 -I gX21 ;::: _1_ . 
g2 g g 2C~82 

According to [12], ae(·, .) defines an unbounded linear operator Ae on HI(Q) 
which is selfadjoint, positive, Ae = Le+aI with Neumann boundary conditions, 
and 9'(A~/2) ~ HI(Q). By the definition of A~/2 , we have, for all U E HI(Q), 
the following relation: [ae(u, U)]1/2 = IIA;/2ullx, . Furthermore, 

( 1.15)(i) 

2 1 2 1/2 2 1 2 ( )
1/2 ( ) 1/2 

C3 lIulll,Q+ 8211uy1l0,Q :::; IIAe ullx, :::;C4 IIulh,Q+ 8211uy1l0,Q 

For s = 1,2, let X% be the space HI(Q) endowed with the norm II u II x: 
= IIA~/2ullx, and let Yf = 9'(A~/2) x 9'(A~s-I)/2) endowed with the norm 
II({O, 1fI)lIy.' = (II{OIIi: + 1I1fI1I~:_1)1/2. Clearly, Ye l is isomorphic to HI(Q) x 
L2(Q). Let us point out that, if the following hypothesis 

(H) Q is a bounded domain which is a curvilinear polygon of 
class C 2 whose angles are all convex [9, Definition 1.3.4.1] 

holds, then the regularity results of [4, 6, 9] (see also [12, Appendix AD imply 
that 

9'(Ae) = {u E H2(Q): aU/aVB, = 0 in aQ} 
and Ye2 is isomorphic to {u E H2(Q): aU/aVB, = 0 in aQ} x HI (Q). Further-
more, by Theorem A.2 of the Appendix, we have the more precise inequalitie~ 
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188 J. K. HALE AND GENEVIEVE RAUGEL 

~ (2 1 2 1 ~ 2 1 2) 1/2 
IIAtuI/x, S C4 I/UI/2,Q + 82 IIuyllo,Q + 82 B I/uxiyllo,Q + 8411UyyllO,Q 

With this notation, equation (1.9)e, with initial data (rp, 1fI) E Yf is equivalent 
to the abstract evolutionary equation 

(1.16)e Utt + PUt + Aeu = - feu) - Ge. 

To describe the results more precisely, we need more notation. For any 
Banach space Z and any subsets C, D of Z , let 

t>z(C, D) = sup inf IIc - dl/z . 
cEcdED 

We say that a semigroup T(t) on Z has a global attractor .Sit' in Z if .Sit' 
is a compact, invariant set (T(t).Sit' =.Sit' for t ~ 0) and t>z(T(t)B,.Sit') -+ 0 
as t -+ 00 for each bounded set B in Z. By definition, .Sit' is unique in Z. 
We say that T(t) is bounded dissipative in Z if there is a bounded set $0 in 
Z such that, for any bounded set B in Z, there is a to = to(B, $0) such that 
T(t)B C $0 for t ~ to. 

We introduce the operator Te(t): (uo, ud t-> (Ut(t) , uHt)) E Yel , where ue(t) 
is the solution of (1.16)e with initial data (ue(O) , uHO)) = (uo, ud. Under 
the hypotheses (1.4), (1.5), Te(t) is a CO_group on Yel and the positive orbits 
of bounded sets are bounded (see, for example, [18, 20, 2, 3 or 22]). Moreover, 
the semigroup Te(t) is bounded dissipative in Yel and has a global attractor 
.We in Y/ if n = 1 or n = 2 and y < 2 (see [10]). 

Let us now turn to the limit equation that should correspond to (1.9)e at 
8 = O. After some careful consideration, one begins to suspect that the solutions 
of (1.9)e or, equivalently, for regular initial data, of (1.10)e, (1.11)e, for 8 
small, should depend very little upon y. To obtain the variational form of the 
limit equation, let Xo be the space L2(O) endowed with the inner product 

(v, w)xo = In govw dx. 

If we introduce the bilinear form 

ao(v, w) = (V' Xv, V' xw)xo + a(v, w)xo' 

then the variational form for the limit equation is 

(1.17) (Utt+ PUt, v)xo +ao(u, v) = (-f(u) - G(x, 0), v)xo Vv E HI(n). 

If the initial values are sufficiently regular and if we let Go(x) = G(x, 0) , then 
equation (1.17) is equivalent to the following equation on n, 

( 1.18) 
1 n 

Utt + PUt - - L(gOUXJXi + au = - feu) - Go in 0 
go i=1 

with the boundary conditions 

( 1.19) au/an = 0 on aO, 
where n is the unit outward normal to an. 
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A DAMPED HYPERBOLIC EQUATION '89 

We also need to write (1.17) as an abstract evolutionary equation. The bi-
linear form ao defines a unique unbounded operator Ao on H' (0.) which is 
selfadjoint, positive, Ao = Lo + aI with Neumann boundary conditions, with 

and g(A~/2) ~ H'(n). 

1 n 
Lou = -- L(gouXih 

go i=' 

As above, we can define the space Y&' = g(A~2) x g(AS-')/2) with the 
norm II(IP, I{I)lIyg = (IIA~21PIlio + IIA~-')/2lJ1llio)'/2. Clearly, Yd is isomorphic 
to H'(n) x L2(n). If, in addition, hypothesis (H) holds, then 

g(Ao) = {u E H2(n): au/an = 0 on an}, 
and Yc? is isomorphic to {u E H2(Q.): au/an = 0 in an} x H'(n). Equation 
(1.17) is equivalent to the abstract evolutionary equation 

(1.20) Utt + PUt + Aou = - f(u) - Go. 

Equation (1.20) has a global attractor .wo in Yd if n = 1 or n = 2 and y :c:; 2. 
The attractor is naturally embedded in Ye'. 

If we assume that the domain 0. satisfies the hypothesis (H), then the oper-
ators Te(t), t ~ 0, are CO-semigroups on Ye2 (see [2, 3, 7, 14]), are bounded 
dissipative in Ye2 and the global attractor J1tfe in Ye' described above is also 
the global attractor in Ye2 (see [14, 7, 11, 23] for instance). In the case n = 2, 
Y = 2 for e > 0, the semigroup Te(t) has a global attractor .w;;2 in Y/ [13] if 
f: R -+ R is moreover a C2-function. If there is an attractor J1tfe in Ye' and if 
the equilibrium points are hyperbolic, then J1tfe = .w;; 2 because of the gradient 
structure (see Remark 4.3). 

One of our results is 

Theorem 1.1. Suppose 0. satisfies hypothesis (H). 
(i) If n = 1 or n = 2 and y < 2, the attractors J1tfe are upper sernicontinuous 

at e = 0; that is, 
Jyl (J1tfe , .wo) -+ 0 as e -+ o. , 

(ii) If n = 2 and y = 2, and if f: R -+ R is a C2-function the attractors 
.w;; 2 are upper sernicontinuous at e = 0; that is, 

J yl(.w;;2,.wo) -+ 0 as e -+ O. , 
In a subsequent paper, we analyze the lower semicontinuity of the attractors 

as well as the equivalence of the flows. 
Under the general hypotheses (1.4), (1.5) in the case n = 2, Y = 2, it is not 

known if a global attractor exists for (1.3)e on a general domain in R3. If 
the nonlinear function f satisfies some additional conditions (see Remark 1.6 
below), we can use the arguments in Babin and Vishik [24, Chapter II, §6] to 
show that the global attractor does exist on a general smooth domain. For the 
thin domains Qe, we prove that the additional restrictions on f of Babin and 
Vishik are unnecessary to obtain the existence of a global attractor provided 
that e is sufficiently small. When the domain Qe is Q. x (0, e) , we can say 
even more. Precise statements are contained in the following theorems. 
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Theorem 1.2. If n = 2, Y = 2, then, for any Po > 0, there is an 61 = 61 (Po) , 
such that, for 0 < 6 ~ 61, P 2:: Po, there is a global auraetor ~ in Yel for 
Te(t) . 

Let us point out that, if n satisfies the hypothesis (H), then ~ = ~2 (see 
Remark 4.3), and, by Theorem 1.1, the attractors ~ are upper semicontinuous 
at 6 = O. 

Theorem 1.3. If n = 1 or n = 2, Y ~ 2 and g(x, 6) = 6, then the auraetors 
~ are upper semieontinuous at 6 = 0; moreover, if G(X, Y) = Go(X), then, 
for any Po > 0, there exists a positive constant 61 = 61 (Po) such that, for 
o ~ 6 ~ 61, P 2:: Po, we have ~ = .% . 

In the case where g(x, 6) = 6 and G(X, Y) is independent of Y, Theorem 
1.3 asserts that, on the cylindrical domain n x (0, 6) , the flow defined by (1.3)e 
is equivalent to the flow defined by the same equation on the n-dimensional 
domain n. 

It is possible to consider other boundary conditions. The extension of the 
above results to periodic boundary conditions is made in an obvious way. We 
also can study mixed boundary conditions or Dirichlet ones. Let us denote 
by r j , e (respectively r j ), ) = 0, 1 , 2, the portions of the boundary of Qe 
(respectively Q) given by 

ro,e = n x {O} (resp. ro = n x {O}), 
rl,e={(X, Y)ERn+I;XEQ, Y=g(X,6n (resp.r l =Qx{l}), 
r 2 ,e = {(X, Y) E Rn+l; X E an, 0 < Y < g(X, 6n 

(resp.r2 = an x (0, 1)). 
We may define the corresponding unit outward normals Vj,e on r j ,8 (resp. Vj 
on r j ). 

The mixed problem that we consider is homogeneous Neumann conditions on 
rj,e, ) = 0, 1 and Dirichlet conditions on r 2 ,e. To avoid excessive notation, 
we do not formulate the variational form of the equation. If the initial data are 
sufficiently regular, the equation is 

(1.6bis)e 
Utt+put-~u+au=-f(u)-G inQe, 

u=O 
aujaVj,e =0 

in r 2 ,e, 

in rj,e, )=0,1. 
In the new variables (x, y) of the fixed domain Q, this boundary value prob-
lem is 

Utt + PUt + Leu + aU = - f(u) - Ge in Q 

with the boundary conditions 
u = 0 in r 2 , 

aujavj,Be=Beu,vj=O inrj, )=0,1, 
(1.11 bis)e 

where Le and Be are defined, respectively, by (1.12) and (1.13). For 6 small, 
the solutions of (1.1 O)e, (1.11 bis)e can be compared with those of the equation 
(1.18) on n with the boundary conditions 
( 1.19bis) u = 0 in an. 
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A DAMPED HYPERBOLIC EQUATION '9' 
Let Vo be the subspace {v E H'(Q); v = 0 in r 2} and let Ae be the unique 

selfadjoint unbounded linear operator on Vo defined by the form ae(·, .) and 
the space Xe. We remark that Ye' = D(A~/2) X Xe is isomorphic to Vo x L2(Q). 
We denote by Te(t) the CO_group on 1';;' generated by the abstract equation 
associated with (1.1O)e, (1.11 bis)e. Likewise, we denote by Ao the operator 
Lo+a.I with Dirichlet boundary conditions on 80 and by To(t) the CO_group 
generated on Yd = D(A6/2) x Xo (Yd is isomorphic to HJ (0) x L2(0)) by the 
abstract equation associated with (1.18) and (1. 19bis). We still denote by .w;, 
0< G ~ GO, and by ~ the global attractors of Te(t) and To(t) in Ye' and Yd, 
respectively. Then Theorems 1.2, 1.3, as well as Theorem 3.1 and Corollary 3.2 
below, hold for the case of mixed boundary conditions. Let us now assume that 
the domains 0 and Qe satisfy the stronger hypothesis (Ef): 

Hypothesis (Ef): 

o is a bounded domain which is a curvilinear polygon of class 
C2 whose maximal angle w satisfies w < n12. If e is the 
maximum of the dihedral angles determined by r 2, e and r" e , 
we suppose that e < n 12 . 

Then Te(t) and To(t) are CO_groups on Ye2 == D(Ae) x D(A~/2) and on Y6 == 
D(Ao) x D(A6/2) , respectively. Moreover, Theorems 1.1 as well as Theorem 3.4 
and Corollary 3.5 below are true for mixed boundary conditions. We remark 
that Ye2 and Y02 are isomorphic to {u E H2(Q): u = 0 in r 2 , 8uj8vj,B, = 0 
in r j , j = 0, I} x Vo and to (H2(0) n HJ (0)) x HJ (0) , respectively. 

Let us now tum to homogeneous Dirichlet conditions; that is, after hav-
ing made the change of variables (1.7), we consider the equation (1.1 O)e with 
boundary conditions 

( 1.11ter)e u = 0 in 8Q. 

Let Ae be the unique selfadjoint unbounded linear operator on HJ (Q) de-
fined by the form ae(·,·) and the space Xe. We remark that Ye' =D(A~/2)xXe 
is isomorphic to HJ(Q) x L2(Q). We still denote by Te(t) the CO-group on 
Ye' generated by the abstract equation associated with (1.1O)e, (1.11 ter)e. It 
is well known that the attractors .w; exist in Ye' if n = 1 or n = 2, Y < 2 
(see [10]). In the case n = 2, Y = 2, there is a partial answer to the question 
of the existence of the attractor due to Babin and Vishik (see [24] and Remark 
1.6). Here, we prove 

Theorem 1.4. If n = 2, Y = 2, then, for any Po > 0, there exists a positive 
number G, = G, (Po) > 0 such that, for P ;::: Po, 0 < G ~ G, , the semigroup Te(t) 
has a global attractor .w; in 1';;'. 

For the Dirichlet case, the attractors are very small if G is small as stated in 
the following result. 

Theorem 1.5. (i) The attractors .w; of Te(t) are upper semicontinuous at G = 0; 
that is, 

Oyl (.w;, 0) -+ 0 as G -+ o. , 
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(ii) Moreover, if Ge + 1(0) = 0 lor a positive number 8 with 0 < 8 ~ 81 (Po) , 
P ~ Po, then .w; = 0 . 

In §7, we indicate some generalizations of the above results to systems of 
Sine-Gordon equations which, with Dirichlet boundary conditions, have been 
used as models for Josephson Junctions. Also, we remark that our proofs do 
not rely on the gradient structure and can be applied to equations considered 
by [7]. 

It is possible to replace the Laplacian operator by a more general selfadjoint 
operator. Also, the theory can be adapted to other types of thin domains; for 
example, the domain could be a cylinder with a thin wall. These topics will be 
discussed in a subsequent paper. 

In the sequel, the proofs of the results will be given mainly in the case n = 2 , 
since the case n = 1 is simpler. 

Remark 1.6. After this paper had been written, we became aware of the recently 
published book of Babin and Vishik [24, Chapter II, §6] in which they have 
proved the following result. 

Let & be a smooth three-dimensional domain. Assume that the nonlinear 
function I can be written as 1= fo + fi , were fo, fi are CI-functions with 
fi satisfying the growth condition (1.5) with 51 < 2 and fo satisfying 

10(0)=0, 10(0)=0, 16(u)~0 foruER, 
11O(ud - 1O(u2)1 ~ clul - u21(1 + Iud + IU2i). 

Under these assumptions and for any G in L2(&), the equation 
Utt + PUt -l1u + aU = - I(u) - G in &, 

U = 0 in a& 
has a global attractorin Hd(&)xL2(&) which is compact in (Hd(&)nH2(&)) x 
Hd (&). Although this result is interesting, not every function satisfying the 
general hypotheses (1.4), (1.5) with 51 = 2 can be written in the above form. 
For example, we can choose a CI-function I(u) satisfying 

I(u) = u3(1 + cos(log(uj3k))) for lui large 
which does not have the above decomposition if k > 2. Therefore, in the 
general case, the question of the existence of a global attractor in HJ (&) xL 2 (&) 
remains open. 

2. BACKGROUND MATERIAL 

Let Ae be the operator in (1.16)e, suppose that hE C([O, 00); L2(Q)) and 
consider the nonhomogeneous linear equation 
(2.1)e Utt + PUt + Aeu = h(t). 

In this section, we derive some inequalities which will yield estimates for the 
solutions of (2.1)e. Let 8 ~ 0 and let AI,e > 0 be the first eigenvalue of Ae. 
Arguing as in §4.1 of [12], there is a positive constant 80 > 0 such that, for 
o < 8 ~ 80 , we have 

(2.2) 0 < iAI,o ~ AI,e ~ iAI,O, 
where AI,O is the first eigenvalue of the operator Ao given in (1.20). Through-
out the remainder of the paper, 80 will be chosen so that (2.2) is satisfied. 
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A DAMPED HYPERBOLIC EQUATION 193 

Lemma 2.1. If P > 0 and b is a nonnegative real number satisfying 

b . (P AI,e ~) (2.3) :$mm 8' 4P '-4- , 

then the following inequalities hold for (rp, 1fI) E Yel , 

(2.4) ill(rp, 1fI)11~1 :$ !111fI11i. + 2b(rp, lfI)x, + !lIrpllil :$ ~11(rp, 1fI)11~1 , " 
and 

(2.5) 

If we observe that Al ,ellrplll, :$ IIrpllil , the proof of this lemma is obvious. 
Our estimates for the solutions of (2: l)e will be obtained from the following 

energy functional on Yel , 

(2.6) Ve(rp, 1fI) = !lIrpllil +2b(rp, IfIh, + tillfllll, , 
with b satisfying (2.3). From (2.4), (Ve(rp, 1fI))1/2 is equivalent to the norm in 
Yel • 

Lemma 2.2. Suppose that 0 :$ e :$ eo, P > 0, b satisfies (2.5), and let 
(u(t) , Ut(t)) beasolution of (2.1)e. Then, for t2::0, 

d P 2 b 2 (2.7) dt Ve(u(t) , Ut(t)):$ - IlIut(t)llx, - lIu(t)lIx,t 

+ Ilh(t)lIx,(2bllu(t)lIx, + Ilut(t)lIx'). 
Proof. Let us recall that, if u is a function such that (u, Ut) belongs to 
L2«0, T); Yel ) and Utt+Aeu belongs to L2«0, T); Xe), where T is a positive 
constant, then 

(2.8) 

(see [7 or 23, Chapter II, Lemma 4.1]). Arguing as in [23, Chapter II, Lemma 
4.1] (see also [11, §4.8]), and using the identity (2.8) and a density argument, 
one shows that, if the initial data (u(O), Ut(O)) belongs to Yel , then, for t 2:: 0, 
we have 

:t Ve(U(t) , Ut(t)):$ - (P - 2b)llutlll. - 2bllulli1 - 2bP(u, ur)x. 

+ Ilh(t)llx,(2bllu(t)llx, + IIUt(t) II x.) . 
This inequality together with (2.5) implies (2.7) and the proof is complete. 

It is worthwhile to remark that, if h == 0, then (2.7), (2.3) and (2.4) yield an 
estimate for the solutions of the linear damped wave equation. In fact, in this 
case, they imply that dVe(u(t) , Ut(t))/dt:$ -1bV(u(t) , Ut(t)). Integrating this 
relation and using (2.4) again, we obtain, for t 2:: 0, 

II(u(t), ut(t))llyl < v'3e-2bt/3 II (u(O) , ut(O))lIyl . , - , 

3. UNIFORM BOUNDED DISSIPATIVENESS 

The results of this section are concerned with bounded dissipativeness of 
(1.16)e uniform with respect to P and e. The first result is concerned with 
Y/ . We give the proofs in the case n = 2. 
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Theorem 3.1. Fix eo > 0, Po > O. For 0 < e :S eo, P ~ Po, the system 
(1.16)e is uniformly bounded dissipative in Y/; that is, there is a constant Ko = 
Ko(eo, Po) such that, for any P ~ Po and any ro > 0, there is a constant 
to = to(ro, Po) such that, for 0 < e :S eo, any solution U(t) = (u(t) , Ut(t)) of 
(1.16)e with IIU(O)llyl :S ro, the following estimate holds , 
(3.1) IIU(t)llyl :S Ko for t ~ to· , 

From Theorem 3.1 and the invariance of the global attractor sIe (if it exists), 
we deduce at once the following result. 
Corollary 3.2. For fixed eo > 0, Po > 0, there is a constant KI > 0 such that, 
for 0 :S e :S eo, P ~ Po, if the global attractor sIe exists, then 

II(IJ' , 1fI)llyl :SKI forall(lJ', 1fI) Esle. , 
Proof of Theorem 3.1. The proof follows closely the one of Theorem 2.2 of [13] 
for a corresponding result on singularly perturbed hyperbolic equations. We 
introduce the following energy functional on Y/, 

V/(IJ', 1fI) = !lIlf1llt + 2b(lJ', lfI)x, + !lllJ'lIil + (Ge, 1J')x. + (F(IJ') , 1)x, , 
where F(u) = f; f(s) ds, 1 is the constant function one, and 

(3.2) 0 < b < min(p 18, SAl ,0/16P, ~/8). 

To simplify the notation, c with or without any subscripts will denote a 
positive constant independent of b, e, P , with 0 < e :S eo, P ~ Po. Arguing 
as in [23] and in the proof of Lemma 2.2, by using the identity (2.8) and a 
density argument, one shows that, if U(O) = (u(O), Ut(O)) belongs to Yel , 
then, for t ~ 0, 

dd ~b(U(t)) = - (P - 2b)lIutll~ - 2bllullil - 2bP(u, Ut)x t ,,' 
(3.3) - 2b(f(u) , u)x, - 2b(Ge , u)x. 

:S - ~IIUtllt - bllulli1 - 2b(f(u) , u)x, + 2bl(Ge, u)x,l, 

by (2.5). 
From hypothesis (1.4), for any r, > 0, there is a constant c" > 0 such that, 

for v E R, 

(3.4) { (i) - f(v)v :S r,v 2 + c", 
(ii) -F(v):sr,v 2 +c", 

(see [15], for example). Using the inequalities (3.4)(i), (2.3) and (3.3) and 
letting r, = 3AI,0/32, we obtain 

dd V/( U(t)):S - bll U(t)llil + b (12r, Iluilil + 2C"lll ll x,) 
t ' 11.1 , e ' 

+b (A~~ellullil + 21r,IIGII~o(Q)1I111~,) 
or, 

(3.5) 
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from the definition of 17 and (2.2). From the inequalities (2.4) and (3.4), the 
definition of 17 and by the property (2.2), we see that 

(3.6) ~b(U(t)) 2: lIlU(t)II~1 - Cz· , 
On the other hand, if condition (1.5) is satisfied, then 

(3.7) IF(s)1 < c3(lsl4 + 1) for s E R. 
Thanks to the fact that HI (Q) is continuously embedded in V (Q) for 1 ~ 
p ~ 6, it follows from (3.7) that 

(3.8) I(F(tp) , 1)x.1 ~ c4(lltpllil + 1) for tp E Xi . • 

If we use (3.6) and let V(tp, 1fI) = ~b(tp, IfI)+Cz, then the last inequality implies 
that 
(3.9) 

Using (3.5) and (3.9), we obtain 

:t V(U(t)) ~ - bC8(V(U(t)))I/Z + bC9 

A simple exercise in differential inequalities (see, for example, [13]) shows that 
there is a constant Ko independent of e, p, b such that for any ro > 0, 
there is a to = to(ro, b) such that V(U(t)) ~ Ko for t 2: to(ro, b). Since 
V(U(t)) 2: lIlU(t)II~1 , Theorem 3.1 is proved. 

We also need the 'following result. 

Lemma 3.3. Fix eo > 0, Po > O. For any ro > 0, there is a constant co(ro) 
such that, for 0 < e ~ eo, P 2: Po, the solution U(t) = (u(t) , Ut(t)) of (1.16)e, 
with IIU(O)IIy'1 ~ ro, satisfies , 

(3.10) 1000 lIut(s)lll ds ~ co(ro) , 

(3.11) IIU(t)IIy'1 ~ co(ro) for t 2: o. , 
Proof. Using the classical Liapunov function ~o (tp, 1fI) and arguing in the same 
way as in the proof of Theorem 3.2, one shows that 

~o(U(t)) ~ ~o(U(O)) for t 2: 0, 
roo z 2 0 10 Ilut(s)llx. ds ~ 7i~ (U(O)), 

and, for any (tp, 1fI) E Yel , 

~o(tp, 1fI) ~ II(tp, 1fI)11~1 + c(lItpllil + 1), . , 
~o(tp, 1fI) 2: ill(tp, 1fI)11~1 - c. , 
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These inequalities prove the lemma. 
If we assume that Q satisfies hypothesis (H), then we know that the global 

attractor .>afe belongs to the space Ye2 if n = 1 or n = 2 with )i < 2 (see [14 
and 7]). Using a proof following the lines of Theorem 2.5 in [13], we prove 
that .>afe is uniformly bounded with respect to e in the space Y/. 
Theorem 3.4. Assume that Q satisfies the hypothesis (H) and.fix eo > O. Then 
there exist a constant K > 0 and, for any rl > 0, r2 > 0, two positive constants 
Kt(rd, Ki(rl, r2) such that, for 0 S e S eo, any solution U(t) = (u(t) , Ut(t)) 
of (1.16)e with IIU(O)IIy'i S ri, i = 1,2, satisfies the following estimate for 
t> 0, ' 

(3.12) lIuttlli, + IIU(t)lIi2 S Kt(rd + Ki(rl ,r2)e-Kt . , 
In particular, the system (1.16)e is bounded dissipative in Ye2 uniformly in e, 
in the sense that there is a constant K3 > 0 such that, for any bounded set B in 
Y/' there is a constant t~ = to(B, e) such that 

IITe(t)Uolly'2 S K3 for t ~ t~, Uo E B. , 
Using the invariance property of the attractors .>afe (or s(,?), we deduce from 

Theorem 3.4 the following result 

Corollary 3.5. Fix eo > O. For 0 S e S eo, the following estimates hold, 

( 3 .13) II ( {o, 1jI) II y'2 S K 3 for ({O, 1jI) E .>afe if n = 1 or n = 2 and )i < 2, • 
(3.14) II({O, 1jI)1Iy'2 S K3 for ({O, 1jI) E.w;;2 ifn = 2, )i = 2 . • 
ProofofTheorem 3.4. By hypotheses (1.4) and (1.5), the mapping f: w E xiI---> 
f( w) E Xe is a e1-mapping. Moreover, we show below that, for w E X; , 

(3.15) IIf'(w)II..2"(x, ;X.) S c(1 + IIwll~/lIwll~/). 
In fact, IIf'(w)II..2"(x.,x.) S c(l + IIwllt,"'(Q»)' Using the Gagliardo-Nirenberg 

inequality and (1.15), we have 

IIwllv"'(Q) S cllwll~~(Q)lIwll~;(Q) S cllwll~2I1wll~/, 

which gives (3.15). 

If Uo = (uo, ut}, IlUollYi S ri, i = 1, 2, then the solution (u(t) , Ut(t)) 
= Te(t)Uo belongs to eO ([0 , 00); Y/), the function f'(u)ut belongs to 
eO([O, 00); Xe) and one may consider the following linear hyperbolic equation 

(3.16) Ztt+PZt+Aez=-f'(u)ut 
with z(O) = Ul, Zt(O) = - f(uo) - Ge - Ul - Aeuo. There is a unique so-
lution Z(t) = (Z(t) , Zt(t)) of (3.16) which belongs to eO ([0 , 00), yn (see, 
for example, [19, Chapter 3, §8.4 or 23, Chapter 3]). It is easily seen that 
Z(t) == (Z(t) , Zt(t)) = (Ut, Utt). 

Our next objective is to obtain a bound on 1If'(u)utllx. using (3.15) applied 
to w = u(t). To estimate lIu(t)lIx2, we use the fact that Aeu = - f(u) - Ge -
PUt - Utt to obtain ' 

(3.17) lIu(t)lIxi S c(lIf(u(t))lIi, + IIGelli, + Pllz(t)lIi, + II zt(t)lIiY/2. 
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Using (1.5) and the continuous imbedding of H'(Q) into L6(Q), we have, for 
1 ~ 0, 
(3.18) II/(u(t))IIi. ~ c(1 + II u(t) 111-.) . 
If we recall that z(t) = Ut(t), then property (3.15) with w = u(t) together with 
the properties (3.11), (3.17) and (3.18) imply, for 1 ~ 0, 

(3.19) 1I/'(u(t))z(t)IIi. ~ K3'(rd II z(t) IIi, (1 + IIz(t)IIi, + IIzt(t)lIiJ 
where K3'(r,) is a constant depending only on r" Po. 

Let Ve(qJ, 1fI) be the energy functional on Ye' defined by (2.6) with b sat-
isfying (3.2). Since (z(O), Zt(O)) belongs to Ye', the Lemma 2.2 implies that, 
for 1 ~ 0, 

:1 Ve(z, Zt) ~ - ~lIztlli, - bllzlli1 + IIf'(u)zllx.(2bllzll x• + IIztllx.) 

b 2 2 ( 1 8b) 11 2 
~ - 2(IIztllx, + II z ll x1 ) + 7i + 3A, ,0 II (u)zllx" 

where all functions are evaluated at I. This inequality together with (3.19) and 
(2.4) gives 

:1 Ve(z, Zt) ~ ( - 2: + K4'(rdll z lli,) Ve(z, Zt) + K4'(rdllzlli. ' 

where K4'(rd is a positive constant depending only on r, and Po. Integrating 
this differential inequality, we obtain, for 1 ~ 0, 

Ve(z(t), Zt(t)) ~ e-2bt/3eJooo K4'(rIlllz(s)lIi. dsVe(z(O)', Zt(O)) 

+ K4'(rdeJooo K4'(rIlllz(s)lIi. ds. roo IIz(s)lIi ds. 
10 • 

Since J:' IIz(s)lIi. ds < 00 by (3.10), the above inequality together with Lemma 
2.1 implies that 

where K;(rd is a positive constant depending only on r, and Po. Using this 
inequality as well as (3.17) and (3.18) and the definition of Z(O), we infer that, 
for 1 ~ 0, 
(3.20) 

lIuttlli. + IIU(t)lIi2 ~ K;(rd . 
+ K7'(rde-2bt/3[lIu,lIil + IIGelli, + lIu,lIi. + IIAeuolli. + II/(uo)IIi,]' 

where K;(rd and K7'(rd are positive constants depending only on r, and Po. 
Now inequality (3.12) is a direct consequence of (3.20). The bounded dissipa-
tiveness in Y/ is a consequence of (3.12) and Theorem 3.1. This completes 
the proof of Theorem 3.4. 

4. THE ATTRACTOR FOR CRITICAL EXPONENTS 

In this section, we prove Theorem 1.2 about the existence and properties of 
the attractor in the critical case n = 2, )i = 2. For any u E L2(Q) , let 

(4.1) Mu = l' u(x, y) dy. 
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Lemma 4.1 [12, Lemma 3.1]. If u belongs to Hi (Q), j 2: 0, then M u belongs 
to Hi(n) and 
(4.2) IIMullm(Q) :::; Ilullm(Q). 
Moreover, there is a positive constant C such that, for each e 2: 0, we have 

(i) for any u E HI(Q), 
(4.3) 

(ii) for any u E H2(Q) with 8u(x, O)/8y = 0, 
(4.4) lIu - Mullx. + ellu - Mulixi :::; Ce211ullx2. • • 

We will need the following interesting result showing that the embedding 
constant for the space {w E Xi: Mw = O} into L6(Q) approaches zero as 
e -+ O. 
Proposition 4.2. If n = 2, there is a constant c > 0, independent of e such that, 
for any w E Xi with Mw = 0, we have 
(4.5) IIwIIL6(Q) :::; celf3llwllx.1 . 
Proof. We follow the proof of the Sobolev embedding theorem given in [1, 
Chapter V]. We denote by x = (XI, X2, X3) the points of Q (instead of X = 
(XI, X2, y) as before). Since n has the cone property, by Theorem 4.8 of [1], 
n may be expressed as a union of finitely many subdomains each of which 
has the strong local Lipschitz property (and therefore the segment property) 
and each of which is itself a union of parallel translates of a corresponding 
parallelepiped. As we want, at first, to show that, for any u E HI(Q), 

(4.6) lIuIlL'(Q) ~ c ("uIL'(Q) + II;;, t,(Q) l/lllulI~;(Q: 
it is sufficient to assume that n is one of these subdomains. By Theorem 3.35 
of [1] and a suitable nonsingular linear transformation, we may assume that the 
parallelepiped involved is, in fact, a square S having edge length 1 unit and 
having edges parallel to the coordinates axes el, e2. Accordingly, we assume 
hereafter that n = U(XI ,X2)EB((XI , X2) + S) where B is a subset of Q and that 
n has the segment property. Therefore, we have 

Q= U (x+Sx(O,I)). 
xEBx(O, I) 

We point out that we have not made any change of variables in the X3 direction. 
Of course, it is sufficient to establish (4.6) for u in Coo (Q). For X E Q, let 
Wi(X) denote the intersection of Q with the straight line through X parallel 
to the Xi coordinate axis. Clearly, Wi(X) contains a segment of length i with 
one endpoint at x, say the segment X + tei, 0 :::; t < i, where ei is a unit 
vector along the Xi-axis. Integration by parts gives, for u E Coo (Q) , 

101
/
2 U (X + (~ - t) eir dt 

=~IU(X)14_4 101
/
2 t (u (x+(~ - t) ei)r :t (u (X + (~- t) ei)) dt. 
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If we let XI = (X2, X3), X2 = (XI, X3), X3 = (XI, X2) and set 

Fi(xd = sup lu(z)1 2 , 
ZEWi(X) 

then we obtain from the last inequality: 

lFi(Xi)12 ~ 21 lu(x)1 4 dXi + 41 lu(x)1 3IDiu(x)ldxi. 
Wi(X) Wi(X) 

199 

Integrating over Qi, the projection of Q onto the plane Xi = 0, now leads to 

1. lFi (X)1 2 dx ~ 21IU(X)14 dx + 41IU(X)13IDiU(X)1 dx. 
~ Q Q 

An application of Holder's inequality gives 

hi lFi(X)12dx ~ 4 [h (lu(x)1 + ID iU(X)I)2 dX] 1/2 x [h IU(X)16dX] 1/2 

By Lemma 5.9 of [1], we can write 

which becomes 

( 2 2 )1/2XI/3 2/3 
(4.7) IluIIL6(Q) ~ 8 IluII L2(Q) + 118u/8x31I L2(Q) IluIIHi(Q) 

which gives the estimate (4.6). 
Let now consider an element w E xl such that M w = o. By Lemma 4.1, 

we have 

(4.8) 

The proposition is a direct consequence of (4.6) and (4.8). 

Proof of Theorem 1.2. To simplify notation, we let c denote a generic constant 
independent of e, p, 0 < e ~ eo, P ~ Po where eo, Po are given positive 
constants. Let ~o be the energy function used in the proof of Lemma 3.3. Let 
Ko be as in Theorem 3.1 and choose RI so large that the set 

;?!II = {(q>, 1fI) E Yel : ~o(q>, 1fI) ~ Rd = (~o)-I(Rd 
contains the ball B Ko == {( q>, 1fI): II (q>, 1fI) II yi ~ Ko}. The set ;?!II is positively 
invariant and is contained in a ball BR2 C Yel . 

We show that the global attractor J4fe exists by showing that Te(t) is an a-
contraction on ;?!II and then J4fe is the (V-limit set of ;?!II (see [11]). We use the 
method of [21] (see also [11]) to show that Te(t) is an a-contraction. 

We first estimate the norm of f(u + t5u) - f(u) in Xe for Ilu + t5ull x i ~ 
R2, Ilullxi < R2. If u = v +w, t5u = t5v +t5w, with v, t5v E MXl:w, , -
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r5w E (1- M)Xe' , then using a Taylor formula, hypothesis (1.5) with ji = 2 and 
Holder inequalities, we obtain 

II/(u + Ju) - l(u)II~. = 11f.' f'(u + 'JU)JUd'[ 

::; c k (1 + lu + r5u1 4 + luI4)(r5U)2 dx dy 

::; c[II r5u lli2(Q) + (IIw + r5w!li6(Q) + IIw IIi6(Q)) II r5u lli6(Q) 

+ (liv + r5vlli12(n) + IIvlliI2(n))IIr5ullL6(Q)IIr5ullL2(Q)J. 

Using the continuous embedding of H'(Q) into L6(Q) and H'(n) into L'2(0) 
together with Proposition 4.2 and the fact that IIu + r5ullxl ::; R2 and IIulixl ::; 
R2, we prove the existence of constants c and C*(R2) s~ch that ' 

IIf(u + r5u) - f(u) II x, 

::; cllr5ullx, + C*(R2)[e2/311r5ullxl + IIr5ull~211r5ull.v.2J. (4.9) 

Let Ve(qJ, /{I) be defined by (2.6) and choose b as in the proof of Theorem 
3.1 satisfying (3.2). Let U(t)+r5U(t) and U(t) be solutions of (1.16)e in ~" 
with initial data Uo + r5 Uo and Uo, respectively. The function r5u(t) satisfies 
the equation (2.1)e with h = -(f(u + r5u) - f(u)). To apply Lemma 2.2, we 
use (4.9) to obtain the following estimate 
( 4.10) 

IIf(u + r5u) - f(u) II x, (2bllr5ullx, + II(r5uMx') 

::; (3: + 3 C*(R%2e4/3) II r5u lli-1 + ~ II(r5u)tlli. 

+ (2bC + 3;2 + C*(R2)2 (8be4/3 + J:..:o + 36C;;:2)2) ) II r5ulli,. 

We now choose e, so that 

(4.11) 

We note that we can always choose b so that bP ::::: c(Po) for all P ::::: Po, where 
c(Po) is a positive constant depending only on Po and A." o. Therefore, (4.11) 
can be satisfied bye, = e, (Po). Likewise, we can show that the coefficient of 
IIr5ulli. in (4.10) can be bounded, for P ::::: Po, by a constant c,(Po) depending 
only on Po. If we now apply Lemma 2.2, taking into account the estimate 
(4.10), we have, for 0 < e ::; e, (Po) , for P ::::: Po, and for t ::::: 0, the following 
inequality 

d P 2 b 2 2 dt Ve(r5u, (r5u)t)::; -4'"(r5u)t"x, - i"r5u"xl + bc,(Po)II r5u llx.· 

Using (2.3) and the inequality (2.4) of Lemma 2.1, this implies that 

d 2b 2 dt Ve(r5u, (r5u)t) ::; -3 Ve(r5u, (r5U)t) + bc, (Po)II r5u llx,· 
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Integrating this inequality and using (2.4) of Lemma 2.1 again, we infer that, 
for t ~ 0, for P ~ Po, and for 0 < 8 ~ 81 (Po) , 

IltSU(t)llil ~ 4e-2bt/3I1tSuollil + pt(U + tSu, U) , , 
where 

pt(U + tSu, U) = sup (6cI(Po)lItSu(s)lIi.). 
0~s9 

We now show that pt (., .) is a compact pseudo-metric on Yel • It is obviously 
a pseudo-metric. To show that it is compact, suppose that UnO is a bounded 
sequence in Yel and let Un(t) = Te(t) UnO . Since positive orbits of bounded 
sets are bounded, the sequence Un (t) is bounded in 1';,1 uniformly in t. This 
implies that UtER+ Un>o un(t) is precompact in Xe and the family of mappings 
un(·) E CO(R+; Xe), -n ~ 0, is equicontinuous from R+ into Xe. This is 
enough to imply by the Arzela-Ascoli theorem that pt is precompact. 

If we choose tl so that 2e-bt1 /3 < I ,then Te(t)I;?I1 is an a-contraction for 
t ~ tl (see [21] or [11, p. 16]). This completes the proof of Theorem 1.2. 

Remark 4.3. As we have remarked in the introduction, if Q satisfies hypothesis 
(H) and if f is a C2-function, then, in the case n = 2, Y = 2 , there is a global 
attractor .w;2 in Yl for Te(t). Obviously, .w;2 C ~ . Since Te(t) is a gradient 
system, if all of the equilibrium points are hyperbolic, then they are finite in 
number, say No, and bounded in 1';,2 (since (H) holds). Moreover, 

~ = U ~U(rpj, 0) 
l~j~No 

where ~U(rpj, 0) is the unstable manifold of the equilibrium point (rpj, 0). 
Using Lemma 6.7 of [2], one easily shows that ~U(rpj, 0) c Yl and hence ~ 
is bounded in Yl. Therefore ~ c ~ = .w; 2 . 

Proof of Theorem 1.3. Assume that g(x, 8) = 8. If u = v + w in (1.16)e, 
v = Mu, w = (I - M)u, then v, w satisfy the equations 

{ (i) Vtt + PVt + Aov = - f(v) - M[f(v + w) - f(v)] - MGe, 
(4.12) (ii) Wtt + PWt + Aew = -(1- M)[f(v + w) - f(v)] - (1- M)Ge, 

with initial data given, respectively, by (vo, vJ) = (Muo, MuJ) and (wo, wJ) = 
((I - M)uo, (I - M)uJ). 

We recall that Aev = Aov. There is positive constant k3 such that the first 
eigenvalue VI,e of Ael(1 - M) satisfies 

(4.13) 

We use the same notation as in the proof of Theorem 1.2, restricting the 
solution U(t) to ;?II and selecting the ball BR2 in Yel so that ;?II c BR2. Let 
Ve( rp, '1') be defined by (2.6) and choose b as in the proof of Theorem 3.1. If 
(uo, uJ) E ;?II ,then (u(t) , Ut(t)) E ;?II C BR2 and (w(t) , Wt(t)) belongs to BR2 
and is a solution of (4. 12)(ii). To apply Lemma 2.2 to equation (4.12)(ii), we 
must estimate the quantity 

P(t) == [11(1- M)[f(v + w) - f(v)]lIx, + 11(/ - M)Ge IIx,](2bllw II x, + Ilwtllx'). 
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If we use (4.9), (4.11), (4.13) and considerations as in the proof of Theorem 
1.2 (see (4.10)), we obtain the following estimate 

p(t) ~ (3: + 3C*(R;)2e4/3) IIwlli1 + ~IIWtlli. 

(2b 3C2 C*(R)2 (8b 4/3 16b 36C*(R2)2)) II 112 + c + P + 2 e + ~ + p2b W Xe y.u\o[,o 

b 2 P 2 ( 2 16be2 ) 2 + gllwllxl + gllwtllxe + 7i + ---;z;- 11(1 - M)Gell x,· 

In the proof of Theorem 1.2, we have already remarked that we can choose b 
satisfying (3.2) such that bP ~ c(Po) > O. Taking into account this remark, we 
infer from the above inequality that, for 0 < e ~ el (Po) , 
( 4.14) 

5b 2 3p 2 
p(t) ~ gllwllxl + gllWtllxe 

( 3C2 * 2 (4/3 16 36C*(R2)2)) 2 + b 2c + c(Po) + C (R2) 8e + ~ + C(PO)2 IIwllx, 

( 2 16be2) 2 + 7i + ---;z;- 11(1 - M)Gell x, . 

From (4.13), it follows that IIwlli--e ~ (e2 /k3)lIwlli1 . From this inequality and 
(4.14), we deduce that there exists a positive constant e2(PO) ~ el(po) such 
that, for P ~ Po, for 0 < e ~ e2(PO) , and for t ~ 0, we have, 

3b 2 3P 2 (l+e 2)c 2 
(4.15) p(t) ~ T"wl x1 + gllwtll x, + P 11(1 - M)Gell xe · 

If we now apply Lemma 2.2, making use of (4.15) and Lemma 2.1, we deduce 
that, for t ~ 0 , 

d 1 (1+e 2 )c 2 
(4.16) dt Ve(w, Wt) ~ -JbVe(w, Wt) + P 11(1 - M)Gell xe · 

Since (1 - M)Ge = (1- M)(Ge - Go) and 

t 8G 
Ge(x, y) - Go(x, y) = yg(x, e) 10 8Y(x, sg(x, e)y) ds, 

we conclude that 

( 4.17) 11(1- M)Gellx, ~ ce. 

Integrating the inequality (4.16) from 0 to t and using (4.17) together with 
(2.4) of Lemma 2.1, we obtain, for 0 < e ~ e2(PO) , for t ~ 0, 

(4.18) IIW(t)lIil ~ 3e-bt/3I1W(0)lIil + c2(PO)e2 
e , 

where W(t) = (w(t) , Wt(t)). 
From (4.18) and the invariance of the attractor ~ , it follows that 

(4.19) 1I(1-M)(tp, 1fI)lIil ~c2(Po)e2 if(tp, IfI)E~. , 
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Let US now suppose that U(t) = Te(t)Uo = V(t) + W(t) belongs to ~I and 
that IIW(t)lIil :::; c2(PO)e2 for all t. Then, by (4.18), 

e 

(4.20) 11(1- M)U(t)llil :::; 4c2(PO)e2. 
e 

Let T be a positive constant. We now want to estimate the term 
II Te(t)Uo - To(t)MUollyl for 0 :::; t:::; T. 

e 

If To(t)MUo = Yo(t) == (vo(t) , VOt(t)) and Z(t) == (z(t), Zt(t)) = V(t) - Yo(t), 
then z(t) is a solution of the equation 
(4.21) Ztt + PZt + Aoz = -M(f(u) - f(vo)) - M(Ge - Go) 
Taking the inner product of (4.21) by Zt, using the equality (2.8) and arguing 
as in [23, Chapter IV, §1], we prove that, for t ~ 0, 

1d 2 2 Id 2 "2 dt IIZtllvcn) + Pllztllvcn) + "2 dt IlzIlHI Cn) 
= -(M(f(u) - f(vo)) + M(Ge - Go), Zt)Xe . 

Using (4.9) and (4.20), together with the fact that IIGe - Goll xe :::; ce, we deduce 
that, for T ~ 0, 

d 2 d 2 C(R2) 2 2 c3(PO)e2 
dt IlzllL2cn) + dt IlzllHl Cn) :::; -p-[llzIlHIcn) + c3(PO)e ] + P 

Integrating this inequality from 0 to t and using (4.20) again, we see that there 
is a constant K(R2' T, Po) that depends only on R2 , T and Po, such that, 
for 0:::; t:::; T, 

2 K(R2' T)e2 2 (4.22) II Te(t)Uo - To(t)MUoIIYel :::; P + 4c2(PO)e . 

Using the same type of argument as in [12] (see also the proof of Theorem 1.1), 
the upper semicontinuity of ~ at e = 0 follows from the attractivity property 
of .wo and the estimate (4.22). 

Now suppose that G(X, Y) = Go(X). Then (1 - M)Ge = 0 and the in-
equality (4.16) implies that II w (t) II yl approaches zero exponentially as t -+ 00 • 

Thus, (1- M)(rp, 1fI) = 0 for all (~, 1fI) E ~. Thus, ~ c .wo. Since .wo is 
contained in ~, we have ~ =.wo and Theorem 1.3 is proved. 

5. UPPER SEMICONTINUITY OF THE ATTRACTORS 

In this section, we prove Theorem 1.1. We need the following result. 
Proposition 5.1. Let 0 < e :::; eo, P > 0 and assume that Q satisfies hypothesis 
(H). For any r > 0, there is a constant k(r) > 0 such that, for any solution 
ue(t) = (ue(t) , u~(t)) of (1.16)e, ue(o) = Uo, with IlUolly2 :::; r, we have, for 
t ~ 0, e 

(5.1) IIUe(t) - U°(t)llil :::; ek(r)ekCr)t 
e 

where U°(t) = To(t)MUo. 
Proof. Let U°(t) = (u°(t) , u~(t)). The function UO(t) satisfies, for all VI E 
HI(.Q) , 

(u?t, vdxo + P(u? , vdxo + ao(uo , vd = (- f(uo) - Go, vdxo· 
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If V, = gvjego with V in H'(Q), then 

[ ¥...u?tvdx+P [ ¥...u?vdx+ [ ¥...Vxuo,Vxvdx+a. [ ¥"'uovdx in e in e in e in e 

= [ ¥...( - f(uo) - Go)v dx - [ ¥... t (gXi - gOXi) u~v dx. in e in e i=' g go I 

Since Mz belongs to H'(Q) if z is in H'(Q), and UO is independent of y, 
this equality becomes, for any z E H' (Q) , 

(u?t, z)x, + P(u? , z)x, + ae(uo , z) = (- f(uo) - Go, z)x, 

_ ~ ((gXi _ gOXi) uO z) _ ~ (gXiUO, yz) . 
~ g g, x, ' ~ g x,, Y 
i=' ° X, j=, x, 

(5.2) 

If we let z(t) = ue(t) - u°(t) , then Zt belongs to H'(Q) and (5.2) implies, for 
t ~ 0, 

(Ztt, Zt)x, + (PZt, Zt)x, + ae(z, Zt) 
= -(f(z + uo) - f(uo, zt)x. - (Ge - Go, Zt)x, 

+ t ((gXi - gOXi) U~i' Zt) + t (gXi U~i' YZyt) . 
i=' g go X, i=' g x. 

If we use inequalities (4.17), (1.14) and the facts that G E W"OO(Q) and g E 
C3(Q x [0, eo] ; R) , we obtain, for t ~ 0, 

d 2 2 d 12 
(5.3) dt IIztllx. + Pllztllx. + dt liz Ix} 

s c[lIf(z + uo) - f(uo) IIi-. + e2 + e211uollici + II UO II xci lIu~tIlL2(Q)]' 

From Lemma 4.1, we have IIMUoll y2 S cllUolly2. By Theorem 3.4, this implies o • 
that there is a constant k, (r) such that, for t ~ 0, i = 1, 2, 

(5.4) 

The inequality (5.4) also implies that, for t ~ 0, 

(5.5) lIu~t(t)II£2(Q) S cek,(r). 

Arguing as in the proof of (4.9) and using (5.4), one shows that there is a 
constant k2 (r) such that, for t ~ 0, 

(5.6) IIf(z(t) + u°(t)) - f(u°(t))II~. S k2(r)lIz(t)lIil . . 
Integrating (5.3) from 0 to t, and taking into account (5.4) to (5.6), we 

deduce that there is a constant k3(r) such that, for t ~ 0, 

(5.7) Ilzt(t)lIi-. + Ilz(t)lIi} S k3(r) [lot Ilz(s)lIi} ds + 11(1 - M)Uolih + e] . 

Remarking that, by (4.3), 11(1 - M)Uollyl S ce and applying Gronwall's in-
equality to (5.7), we obtain (5.1). • 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A DAMPED HYPERBOLIC EQUATION 205 

Proof of Theorem 1.1. Assume that n = 1 or n = 2 and y < 2. From Corollary 
3.5 and the equivalence of norms (1.15), we deduce that there is a constant R 
such that, for 0::; 8 ::; 80 and any (rp, I{I) E ~, 

lIn 1 
IIrpIIH2(Q) + elirpyllv(Q) + e L II rpx;yIIV(Q) + 821IrpyyIIV(Q) 

(5.8) ;=1 
1 + III{IIIH1(Q) + elll{lyIlV(Q) ::; R. 

Let ~o = {(rp, I{I) E Y6: (rp, I{I) satisfies (5.8)}. If (rp, I{I) E~, then, by 
Lemma4.1, (Mrp, MI{I) belongs to ~o. Since ~ is the attractorof To(t) and 
the norms 11·11 yl and 11·11 yl are equivalent on Yd with constants of equivalence o , 
independent of 8, for any 11 > 0, there is a r'l > 0 such that To(r'l)~o c 
A'"yl(~, 11/2), the 11/2 neighborhood of~. If (rpll' 1{I1l) = Til (r'l)(rpo, l{Io) 
bel'ongs to ~, then, due to Proposition 5.1, we obtain 

IITIl(r'l)(rpo, l{Io) - To(r'l)(Mrpo, Ml{lo)IIY,l ::; 8k(r)ek (r)Y q ::; 11/2 

if 0 < 8 ::; 81 , with 81 small enough. Thus, for 0 < 8 ::; 81 , we have (rpll' 1{I1l) E 
A'"yl (~, 11) and upper semicontinuity is proved. 

The proof is the same in the case n = 2, Y = 2 . 

6. OTHER BOUNDARY CONDITIONS 

We do not prove the results stated in the Introduction concerning the problem 
(1.1O)Il' (1.11 bis)1l for mixed boundary conditions since they are so similar to 
the Neumann case. We do point out that by [12, §4] the property (2.2) of the 
first eigenvalue of Ae is still true. Likewise, the first eigenvalue VI, e of the 
operator Ael(I - M)9(~) satisfies the inequality (4.13). 

For the Dirichlet boundary conditions (1.11 ter)e , Theorem 3.1 and Corollary 
3.2 hold and, if Q satisfies (H), then Theorem 3.4 and Corollary 3.5 hold. The 
proofs are the same as the ones for the Neumann case with minor modifications 
if one observes (see [12]) that there is a positive constant k such that 

(6.1) Al ,e ~ k/82 ~ k/85 for 0 < 8::; 80 

and then replace the condition for b in (2.3) by 

(6.2) . (P k v'k) 
b < mf "8' 4P85 ' 480 • 

To prove Theorems 1.4 and 1.5, we need the following Sobolev inequality. 

Lemma 6.1. Fix 80 > O. There exists a positive constant C such that, for 
o < 8 ::; 80 and any u E Xi ' we have 

(6.3) lIuIlL6(Q) ::; C81f3llullx} . 
Proof. Let us denote by Q; the open set 

Q; = {(x, Y) E Rn+1 ; x En, 0 < Y < 8} . 

If u belongs to xi, then u(x, Y) = u(x, Y/8) = u(x, y) belongs to the space 
HJ (Q;) and we have 

(6.4) - I 
Uy = eUy, 
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Since Q; has a Lipschitzian boundary, we can extend the function u by 0 to 
the open set Qi = Q = {(x, Y) E Rn+l; X E n, 0 < Y < I}. We denote by it 
this extension of u. On Qi, we have the Sobolev inequality 

Il it 11 L 6(Qn :::; cllitllHl(Qn 
which becomes, by restriction to Q;, 
(6.5) 

Now notice that, by (6.4) and the definition of the norm in xl, we have 

lIuIlL6(Q:) = 81/6I1uIIL6(Q) and lIuIlHl(Q:l:::; c81/211ullxl . 

These relations and (6.5) imply (6.3). 

Proof of Theorem 1.4. As in the proof of Theorem 1.2, we confine our attention 
to the set 

~I = {(tp, 1fI) E Yel : Vg0(tp, 1fI) :::; Rd 
and choose R2 so that ~I C BR2 , the ball in Yel of center zero and radius 
R2. As in the proof of Theorem 1.2, we only need to show that Te(t)I~1 is an 
a-contraction by using the method of [21] (see also [11]). 

We first estimate IIf(ud - f(U2)lIx. when IIUillx1 :::; R2, i = 1, 2. Arguing 
as in the proof of inequality (4.9) and using a Hold~r inequality, we have 

Ilf(ud - f(U2)llx. :::; c (10 (1 + IUl14 + IU214)(UI - U2)2 dx dY) 1/2 

:::; c[lIuI - u2l1x. + (li u dli6(Q) + II U21Ii6(Q))ll u I - u21IL6(Q)]. 
Thanks to Lemma 6.1 and (6.1), we have 

(6.6) Ilf(ud - f(U2)lIx. :::; c(1 + K*(R2))8I1uI - u211x1 . • 
Let Ve(tp, 1fI) be defined by (2.6) and let b be a positive number satisfying 

(6.2). Let V(t) + tJv(t) , V(t) be two solutions of (1.10)e, (1.1lter)e which 
belong to ~I' with initial data Vo + tJ Vo and Vo, respectively. The function 
tJu satisfies the equation (2.1)e with h = -(f(u+tJu)-f(u)). To apply Lemma 
2.2, we use (6.6) to obtain the following estimate 

IIf(u + tJu) - f(u)lIx.(2blltJullx. + II(tJu)rllx.) 

:::; IIf(u + tJu) - f(u) II x, ( J~~ ,e Il tJu ll xl + II (tJu)rllx. ) 

:::; ~82(1 + K*(R2))lItJulli1 
(6.7) 

c ~ 2 + 28 (1 + K*(R2))(lI tJu ll x1 + II (tJu)rllxJ . 

For P ~ Po, there is a positive number 81 = 81 (Po) :::; 80, such that, for 
o < 8 :::; 8 I , we have 

2bc c b Jk82(1 + K*(R2)) + 28 (1 + K*(R2)) :::; 2' 
(6.8) 
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If we now apply Lemma 2.2, take into account (6.7), (6.8), integrate the 
resulting inequality and use (2.4) of Lemma 2.1, we obtain, for t ~ 0, 0 < 8 :::; 

IIJu(t)11 :::; v'3R2e-bt/3 • 

Thus, Te(t) is an a-contraction for t large enough. The remainder of the 
argument is the same as the one in the proof of Theorem 1.2. 
Proolol Theorem 1.5. As in the proof of Theorem 1.3 and Theorem 1.4, we 
consider Te(t)I~I' Fix Po> 0 and choose 0 < 8 :::; 81 with 81 as in Theorem 
1.4. Let b satisfy (6.2) and introduce the functional on ~I 

Vg*(qJ, 1fI) = !(lIlfIlli, + IIqJllid + 2b(qJ, lfI)x, + (Ge + 1(0), qJ)x,. , 
Let U(t) = (U(t) , Ut(t)) be a solution of (1.10)e, (1.llter)e with initial con-
dition Uo = (uo, ut} E ~I • Arguing as in the proof of Theorems 3.1. and 1.4, 
we prove that, for t ~ 0, 

(6.9) ;t Vg*(u, Ut) :::; -?lIutlli. - bllulli1 + P(t), 

where 

(6.10) 
pet) = II/(u) - 1(0) II x, (~8I1Ullx1 + IIUtllx,) 

2b 
+ ff811Ge + 1(0)lIx.llullx1 • vk ' 

Therefore, for 0 < 8 :::; 8I(Po), we deduce from (6.7), (6.8), (6.9), (6.10) and 
(6.2) that, for t ~ 0, 

d * b 2 2 8b 2 I 2 (6.11) dt Vg (u, Ut) :::; -4"(lI utllx, + lIull x1) + T8 IIGe + (0) II x, . 

If we integrate (6.11) from 0 to t and use (2.4) of Lemma 2.1, we easily 
deduce the following inequality 
(6.12) IIU(t)lIyl :::; v'3R2e-bt/2 + c811Ge + I(O)lIxl . , , 
Inequality (6.12) and the invariance of the attractor implies the first statement 
in Theorem 1.5. If there is an 8 such that Ge + 1(0) = 0, then the same 
reasoning implies that ~ = 0 . 

7. FURTHER GENERALIZATIONS 

The equation (1.3)e was a model equation. It can be replaced by more 
general equations or even systems. For instance, (1.6)e can be replaced by a 
system of Sine-Gordon equations on Qe, where k ~ 0 , 

{ 
a;pl + P~ _ .!lUI = -sinul - k(UI - U2) - GI , 

(7.1) 
a;p2 + P~ - .!lu2 = -sinu2 - k(U2 - ut} - G2, 

with Neumann or Dirichlet boundary conditions. In the case of Dirichlet bound-
ary conditions, we have the above results. In the case of Neumann boundary 
conditions, the above results still hold, the limit equation on n being 

(7.2) 0 I I { 
~ + p~ - _g,I (E7=I a~ (gO~)) = - sin VI - k(VI - V2) - GlO , 

~ + P ~ - -k (E7=I a~j (gO~)) = - sin V2 - k( V2 - VI) - G20 , 
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with Neumann boundary conditions, where 

GlO (x) = G1 (X, 0) , G20 (x) = G2 (X , 0) . 

In the case of Dirichlet boundary conditions, this is a system occurring in 
Josephson junctions. Other examples are given in [7] or [23, Chapter IV]. 

In the proofs of Theorems 3.1 and 3.4, we used the fact that the equation 
was a gradient system (that is (F(u))' = J(u)). However, this property is not 
essential, and at least in the case ji < 2 , we can generalize the above results to 
the case where the more general hypotheses of [7, §2.2] hold (see also Example 
5.4 of [7]). 

The results above in the case of Neumann boundary conditions are general-
ized to the case of periodic boundary conditions in an obvious way. 

ApPENDIX 

We recall that, for 0 < e ::; eo, Qe denotes the domain 

Qe = {(e;I, ... , e;n+d E Rn+l; 0 < e;n+1 < g(e;I, ... , e;n, e), (e;I, ... , e;n) E n} 

where n is a C 2-polygonal domain in Rn, n = 1 or 2, and the function 
g: n x [0, eo] -+ R is a function of class C3 satisfying the conditions (1.1). 
The boundary a Qe of Qe can be written as 

aQe = ro,e ur1,e U r 2,e 
where 

ro,e = n x {O}, 
r 1 ,£ = {(e;l , ... , e;n+d E R n+1 ; (e;l , ... , e;n) En, e;n+l = g(e;l , ... , e;n, en, 
r 2,e = {(e;!, ... ,e;n+d E Rn+l; (e;l, ... ,e;n) E aQ, 

0< e;n+l < g(e;l , ... , e;n, en· 
Given HE L2(Qe) , we are interested in the following problems: 

(I)N Find U E Hl(Qe) such that, for any WE Hl(Qe) , 

1 (V'UV'W + aUW) de; = 1 HW de;, 
Q, Q, 

(I)D Find U E HJ(Qe) such that, for any WE HJ(Qe) , 

1 (V'UV'W + aUW) de; = 1 HW de;, 
Q, Q, 

(I)M Find U E VQ£ == {W E H!(Qe); W = 0 in r 2 ,£} such that, 
for any WE VQ£, 

1 (V'UV'W + aUW) de; = 1 HW de;. 
Q, Q, 

In the case n = 2, the following regularity result is proved in [6]. In the case 
n = 1, one can prove this regularity result, by arguing as in [9, Chapter V] and 
using the regularity results contained in [9, Chapter IV]. 
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Theorem At. (i) If n satisfies the condition (H), then there exists a real number 
Po > 2, such that, for any junction HELP (Qe), 2:::; p :::; Po, the unique solution 
U of the problem (I)N (resp. (I)D) belongs to W 2,P(Qe). 

(ii) If Qe satisfies the hypothesis (II), then there exists a real number Pe > 2, 
such that, for any function HE V(Qe), 2:::; P :::; Pe, the unique solution U of 
the problem (I)M belongs to W2,p(Qe). 

The change of variables 

(2) r;i = Xi, r;n+1 = g(xi , ... , Xn , e)xn+1 

takes Qe into the fixed domain Q = n x (0, 1). The boundary 8Q of Q can 
be written as 

8Q=rOUr I Ur2 

where r 0 = n x {o}, r I = n x {I}, r 2 = 8 n x (0, 1). 
If we define h(xl' ... , xn+d = H(XI' ... , Xn , g(XI' ... , Xn , e)xn+d, then 

the problems (I)N, (I)D and (I)M become: given hE L2(Q) , 

(3)N find u E H1(Q) such that, for any WE H1(Q), 

ae(u, w) = (h, W)x, , 

(3)D find u E HJ(Q) such that, for any WE HJ(Q) , 

ae(u, w) = (h, w)x" 

(3)M find u E Va == {w E HI(Q); W = 0 in r 2} such that, for any WE Va, 
ae(u, w) = (h, W)x,. 

According to [12, §2], the solution u of (3)N' (3)D or (3)M 
inequalities (1.15)(i), i.e., 

(4) ( 1 )IP 
C3 lIullI,Q + e2I1uxn+lllfi,Q :::; Ilhllx •. 

satisfies the 

Moreover, by Theorem A.l, if the hypothesis (H) (resp. (II)) holds, the so-
lution u of (3)N or (3)D (resp. (3)M) belongs to H2(Q) and the problems 
(3)N' (3)D (resp. (3)M) are equivalent to 

{ Leu + aU = h in Q, 
iJ~~, == Beu , v = 0 in 8Q. 

(5)D { Leu + au = h in Q, 
u=O in8Q. 

resp. 

(5)M 

where 
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and 

[ 
gUxl - gXI X3/.lX3 1 

Beu = gUX2 - gX2 X3UX3 

- gxIX3UxI - gX2X3UX2 + ~(1 + (gXIX3)2 + (gx2X3)2)uX3 

if n = 2 , for instance. 
In this appendix, we want to prove the following result. 

Theorem A.2. If the hypothesis (H) (resp. (H)) holds, then there exist three pos-
itive constants 80, C3, C4 such that, for 0 < 8 ::; 80, for any h E L2(Q), the 
solution U of (3)N' (3)D (resp. (3)M) satisfies 

IIhlli. 2: C3 (IIUII~'Q + 812 lI u xn+1 116,Q 
( 6)(i) 

and 

( 6)(ii) 
1 ~ 2 1 2 ) + 82 ~lIuxixn+IIIO,Q+ 841Iuxn+IXn+IIIO,Q • 

i=1 

Due to the equivalence of the problems (3) and (5), the estimate (6)(ii) is a 
straightforward consequence of the properties (1.1) of g. We shall prove the 
estimate (6)(i) in the case of Neumann or Dirichlet boundary conditions. The 
proof in the case of mixed boundary conditions is very similar and is left to 
the reader. Also, in order to simplify the notation, we shall consider the case 
n = 2. The proof in the case n = 1 is the same and can even be simplified. 

Before proving the estimate (6)(i), we need to recall some properties related 
with the curvature of the boundary of a domain (see [9, Chapter 3, §3.1]). We 
consider a bounded domain 0 of Rm, m = 2, 3 with a C2 boundary r = a 0 
and denote by 1/ the unit outward normal to ao. We denote by !B the second 
fundamental quadratic form of ao. An elementary definition of !B is recalled 
in [9, Chapter 3, p. 133]; if P is a point of r, then we have, for any tangent 
vectors ~ and Yf to r at P, 

(7) 

where a / a~ denotes differentiation in the direction of ~. Following [9], an-
other possible local definition is the following. If P is a point of r, we consider 
related new orthogonal coordinates {Yl, ... ,Ym} with origin at P as follows: 
there exist a hypercube V = {(Yl,'" , Ym) ; -aj < Yj < aj, 1 ::; j ::; m} 
and a function rp of class C2 in V' where V' = {(Yl, ... ,Ym-d; -aj < 
Yj < aj, 1 ::; j ::; m - I} such that Irp(y')1 ::; am/2 for every Y' E V', 
o n V = {y = (y', Ym) E V; Ym < rp(y')} , r n V = {y = (y', Ym) E V; 
Ym = rp(y')}. We can even choose the new coordinates so that the hyperplane 
Ym = 0 is tangent to r at P, which implies that Vrp(O) = O. Then, if ~ 
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and 11 are tangent vectors to r at P with components (el,"" em-d and 
(111, ... , 1Im-d in the direction of {YI, ... , Ym-d, we have 

m-I 82rp 
.5Wp (e, 11) = L 8y 8y. (O)ek1lJ . 

J ,k=1 k j 

(8) 

Hereafter, we shall drop the subscript P. We remark that, when 0 is convex, 
the function rp is convex and the form .5W is nonpositive. Also, if the domain 
o has a C2 boundary, the form .5W is uniformly bounded on r, i.e., there 
exists a positive constant K such that 
(9) 

for any tangent vectors e and 11 to r at P. We need the following notation. 
Let v be any vector field on r; we denote by V y == v . v the component of v 
in the direction of v and by VT == V - vyv the projection of v on the tangent 
hyperplane to r and we set: divT v = div v - 8v / 8 v . v. We also introduce the 
notation 

'VTU = 'Vu - 8u/8v· v. 
Finally we denote by tr.5W the trace of the form .5W • 

Let us now consider less regular domains 0 of Rm. We say that the domain 
o of Rm with a Lipschitz boundary r has a piecewise C2 boundary if r = 
f U U~=I r J , where 

(i) f has zero measure (for the surface measure da). 
(ii) rJ is open in r and each point P of rJ has the property described 

above with a function rp of class C2. 
Arguing as in [9, Chapter 3, Theorem 3.1.1.2], we prove the following result. 

Theorem A.3. Let 0 be a bounded domain oj Rm with a Lipschitz boundary 
r. Assume, in addition, that r is piecewise C2 and that each rJ in the above 
decomposition has a Lipschitz boundary 8rJ . Then,jor all v E Hs(o)m, s> 1, 
or jor all v E WI,p(o)m, p > 2, we have: 

(10) 

1 I divvl2 de - f 18Vi 8vJ de 
o .. I 0 8eJ 8ei 

l,j= 

I 

= L i {divT(vyvT) - 2VT' 'VTVy} da 
J=I P 

I 

- L i{(tr.5W)v; +.5W(VT; vT)}da. 
J=I P 

Remark AI. One proves Theorem A.3 by showing at first that the identity (10) 
holds for v E C2(o)m and then by extending it to v E Hs(o)m or WI,p(o)m. 
Since, in both cases, the bracket VT' 'V TVy has a meaning on r J , this gives a 
sense to Irj divT(vyvT) da by density. Note that, in general, one cannot extend 
the equality (10) to v E HI (o)m since VT. 'V TVy has no meaning on rJ . Let us 
just show that, if p > 2, VT' 'V TVy has a sense on r J . Indeed, if p > 2 , then 
q < 2 where q = p/(P - 1) and vTlrJ belongs to the space WI-I/p,p(rJ)m 
and thus to the space WI/2,q(rJ)m which coincides with WoI/2,Q(rJ)m. On 
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the other hand, V'TvvlrJ belongs to the space W-1/2,p(rJ)m which is the dual 
space of »o1/2,Q(rJ)m. Therefore VT· V'TVv has a meaning on rJ. 

From Theorem A.3, we at once deduce the following result. 

Corollary A.4. Assume that the hypotheses of Theorem A.3 hold. Let v be an 
element of Hs(o)m, s> 1, or of Wl,p(o)m, p > 2. 

(i) If vvlrJ == 0, 1 ~ j ~ I, we have 

We now come back to our problem. As n has piecewise C2 boundary, we 
can write an as an = U~=I (an)i u an where an has zero surface measure 
and (an)i is of class C2, 1 ~ i ~ I. Thus, the domain Qe has a piecewise 
C2 boundary and 

aQe = rO,e url,e ui\ u (ur~,e) 
1=1 

where re has zero surface measure and q e is the face "generated by (an)/,. 
Thanks to the regularity Theorem A.l, ~e can deduce the following result 

from the Corollary A.4, by using a density argument. 

Proposition A.S. Assume that the hypothesis (H) holds. 
( 1) if U is the solution of the problem (1) N, then 

r 2 3 r 1 a2 u 12 JQ,IL\UI de; - i~1 JQ, ae;iae;J de; 
I 

= - L l fB(V'U, V'U) da - r fB(V'U, V'U) da. 
i=1 Jq " Jr l " 

(13) 

(2) If U is the solution of the problem (1) D, then 

r 3 r 1 a2u 12 J Q, IL\UI2 de; - i ~I J Q, ae;iae;J de; 
( 14) 

I 

= - E fr~" (tr fB)(V'U • ve )2 da - frl., (tr fB)(V' U . ve )2 da . 

Proof. (1) We recall that the problem (l)N is equivalent to 

{ 
-L\U + aU = H in Qe, 

g~ = 0 in rO,e url,e U (U~=I q,e) . 
For any function H in L2(Qe) , there exists a sequence of functions Hn E 

VO(Qe) such that Hn converges to H as n goes to infinity, wher.e Po > 2 is 
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given in Theorem A.l. Hence, by Theorem A.l and the open mapping theorem, 
there exists a sequence of functions Un in W 2,po(Q.) such that Un converges 
to U in H2(Q.) as n goes to infinity and Un is the solution of (I)N (or 
(15)N) with H replaced by Hn. 

Let us set Vn = '\IUn . Since Vn • v. == 0 in ro,. Uri,. u (U~=I q,.), we can 
apply the formula (11) of Corollary A.4 to Vn • Using the local definition (8) 
of .5Ip , we at once see that .51 vanishes identically on ro, •. Therefore, the 
equality (11) becomes 

1 2 3 11 a2Un 12 IdUnl d~ - L a):-f)):. d~ 
Q. i ,j=1 Q. '01 'oj 

(16) 
I 

= - L 1; .51 ('\I Un , '\I Un) da -1 .51('\1 Un , '\I Un) da. 
i=1 r 2 ,. r l ,. 

Now, passing to the limit in (16), we obtain the equality (13). 
(2) The proof is similar in the case of the problem (I)D' We only remark 

that the problem (1) D is equivalent to 

(15)D { 
-dU + aU = H in Q. , 

U = 0 in ro,. Uri,. u (U~=I q,e) . 
Again there exists a sequence of functions Un in W2,po(Q.) such that Un 
converges to U in H2 (Qe) as n tends to infinity and Un is the solution of (1) D 

(or (15)D) with H replaced by Hn. Let us set Vn = '\IUn . Now vnT = '\ITUn 
vanishes in ro,. U rl,e U (UL q .) and one can apply the formula (12) of 
Corollary A.4 to Vn • One then finishes the proof as above. 

We are now able to prove Theorem A.2. 
Proof of Theorem A.2 in the case of Neumann boundary conditions. The proof of 
the estimate (6)(i) will be done in three steps. By Proposition A.5, the solution 
U of (I)N satisfies 

3 I 2U 12 I 
(17) i~1 h. a~ia~j d~ ~ h. IdUI2 d~ + ~ [L .5I('\IU, '\IU) da 

+ [I,' .5I('\IU, '\IU) da. 

(1) Our next objective is to estimate the integrals L:~=I fr ; .5I('\IU, '\IU) da 
2,. 

and fr .51 ('\I U , '\IU) da. 
I,. 

Let (~?, ~~) be a point of (a n) i. Since (a n) i is of class C2, we define new 
orthogonal coordinates {ZI' Z2} with origin at (~?, ~~) as follows. There exist 
a rectangle Vi,o = {(ZI' Z2): - aj < Zj < aj, j = 1, 2} and a function "'i,O 
of class C2 in V;',o, where V;',o = {ZI: -al < ZI < ad such that l"'i,O(zdl ~ 
a2/2, for all ZI E V;',o, n n Vi,o = {(ZI' Z2) E Vi,o: Z2 < "'i,o(zd}, (an)i n 
Vi,o = an n Vi,o = {(ZI' Z2) E Vi,o: Z2 = "'i,o(zd} and '\I"'i,O(O) = O. Let 
now P = (~?, ~~, ~~) be a point of q,e' Thanks to the above property, we 
may consider the new coordinates {ZI' Z2, Z3 = ~3 - ~~} ; indeed, there exists 
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a positive number a3 (which depends on e) such that, if Vi = {(ZI , Z2, Z3): 
- aj < Zj < aj, 1 :::; j :::; 3} and V/ = {(ZI , Z2): - aj < Zj < aj, j = 1, 2}, 
then Qe n Vi = {(ZI' Z2, Z3) E Vi: Z2 < lfIi,O(Zt}} , n,e = {(ZI' Z2, Z3) E 
Vi: Z2 = lfIi,O(ZI)}. Therefore, by (8), we have, for any tangent vectors VT and 
VT to n,e at P, 

( 18) 
a2 . 

t'72J ( ~) IfII ,0 (0) ~ .::;i6p VT, VT = -a 2 '11 • '11 
ZI 

where '11, iit are respectively the first components of VT and VT in the new 
coordinates system (ZI' Z3) and are independent of e. From this property as 
well as from property (18), we deduce that there exists a positive constant K i , 
independent of e , such that 

( 19) IlL, g(VU, VU)dal :5 Ki k., IVUI'da. 

Likewise, we derive from (18) that 

(20) 

Let now Po == (~?, ~~, ~~ == g(~?, ~~, e)) be a point of r 1 ,e' By the change of 
variables Ci = ~i - ~? ' the new origin is at Po and we have 

We introduce the following notation 

g~ = g(~? , ~~, e), 
ag~ ag 0 0 
a~i = a~i(~I' ~2' e), 

Now we replace the usual orthonormal basis (el, e2, e3), where 

by the orthonormal basis (Tl' T2, ve ) where 

and 
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If we denote by (z, , Z2, Z3) the coordinates in this new basis, then the equation 
(21) becomes F(z" Z2, Z3, e) = 0, where 

_ 1 a g~ 1 a g~ 1 
F(z, , Z2, Z2, e) = - £l): Z, + -P £l): Z2 + -Z3 no u,=, 0 U,=2 Yo 

(22) _ g (~ (1 + (Og~)2) Z, - ~ og~ Z3, 
no Oe;2 Yo oe;, 

1 og~ og~ 1 1 og~ ) 
- no oe;, Oe;2 Z, + Po Z2 - Yo Oe;2 Z3 ,e . 

Since of (0, 0, 0, e) / a Z 3 ~ 1 , the implicit function theorem implies that there 
exist a neighbourhood V = Hz, , z2, Z3): - aj < Zj < aj, 1 ~ j ~ 3} of ° in 
R3 and a function g* such that 

{ F(z" Z2, g*(z" Z2, e), e) = 0, 
(23) g*(O, 0, e) = 0, 
and g*: V' x [0,1] --+ R is of class C 3 where V' = Hz" Z2): - aj < Zj < 
aj, j = 1, 2}. We have 

a g* a g* 
(24) ~(O, 0, e) = ~(O, 0, e) = 0. uZ, UZ2 
Moreover, an easy calculation gives 
(25) 

o2g* 
--;:;--z (0, 0, e) uZ, 

~ a:yo [(1 + (~~:n 2 a;f{ 
agO agO ( (OgO)2) o2g0 (agO OgO)2 o2g0] 

-2 oe;: oe;~ 1 + oe;~ oe;, Oe2 + oe;: oe;~ oe;i' 

o2g* (0 ° e) __ 1_ [(1 + (Og~)2)2 o2g~ - og~ og~ 02g~l 
OZ,OZ2 ' , - nopoYo Oe;2 Oe;,Oe;2 oe;, Oe;2 oe;? ' 

o2g* _ 1 o2g~ 
--;:;--z (0, ° , e) - -p2 ---;'2 . uZ2 oYo 0'=2 

Since, for any tangent vectors VT, VT to r, ,e at Po, 

2 0 2 * 
(26) fBpo(VT, v) = i~' OZi!Z/O, O)tli~j 

where (tI, , tl2), (iI, , i'l2) are the components of VT and VT in the basis (!" !2), 
and since the above change of coordinates is orthonormal, we at once deduce 
from (25), (26) as well as from the properties (1.1) ofthe function g that there 
exists a positive constant Jfj (independent of e) such that 

(27) Ill .. fB(VU, VU) dO'l ~ Jfje l .. IVUI2 dO'. 
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Likewise, we show that 

(28) 

From (17), (19) and (27), we finally infer that 

3 11 a2u 12 i ~I Q, ae;iae;j de; 
(29) 

where K is a positive constant independent of e . 
(2) We now make the change of variables (2) in the formula (29) and denote 

by U(XI' X2, X3) the function U(XI' X2, g(xI , X2, e)x3). We have 

~(a2U)2 ~(a (au gXj au) 
~ ae;·ae; = ~ ax' ax' - g-X3 aX3 i,j=1 1 J i,j=1 1 J 

(30) _ gX'X3~ (. au _ gXj X3 au ))2 g aX3 aXj g aX3 
1 (a2u)2 2 ~ (a (au gx. au ))2 

+ g4 aX3 + g2 ~ aX3 aXi - -:X3 aX3 
1=1 

Thanks to the properties (1.1) of the function g, we at once infer from (30) 
that there exist two positive constants eo and Po such that, for 0 < e :::; eo , 

( 2 ( au )2 1 2 ( a2u)2 1 (a2u)2) 
Po i~1 aXiaXj + e2 ~ aXiaX3 + e4 axi 

3 (a2u)2 1 (au)2 
:::; i~1 ae;iae;j + e2 aX3 

(31 ) 

Thanks to the estimate (31), we deduce from (29) that, for 0 < e :::; eo, 

r ((au)2 (au)2 1 (au)2) + Jr, ax] + aX2 + e2 aX3 dx] dX2 

~ 1 (( au )2 (au )2 1 (au )2) g 1 + ~ - + - +- - - dsdx3, 
. ri ax] aX2 e2 aX3 e 
1=] 2 

where K is a positive constant independent of e (and u) and q = (aQ)i x 
(0, 1). 
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(3) By [9, Theorem 1, 5.1.10], there exists a positive constant K* depending 
only on the domain Q such that 

Irl ( (::J 2 + (::2r + e12 (::J 2) dXI dX2 

+ ~ [ ((~)2 + (~)2 + ~ (~)2) dsdx3 
~ Jri aXI aX2 e2 aX3 
1=1 2 

(33) <:; K' [~1/' 10 (, ~1 (8~::XJ' + ,I, t (8 ~i;X,) , 
1 (a2u)2) + e2 axi dx 

+~-1/2 ~ ((::J 2 
+ (::J 2 

+ e12 (::J 2
) dX] , 

for any ~ E (0, 1). Since CI :::; gle :::; C2 (see (1.14)), we at once deduce from 
the inequality (32), by applying the estimate (33) with ~ = cf 14(KK*c2)2 , that 

(34) 
10 (,t (8~i;XJ' + ,I, t (8~i;XJ' + ,~ (::~)') dx 

[ 2 2 1 au 2 ] 
:::;co IILBUllx,+llull"Q+e21Iax31Io,Q . 

The estimate (6)(i) is now a direct consequence of (34) and (4). 

Proof of Theorem A.2 in the case of Dirichlet boundary conditions. By Proposi-
tion A.5, the solution U of (l)D satisfies 

(35) 

Arguing as in the case of Neumann boundary conditions and using the estimates 
(20) and (28), one proves that the inequality (29) still holds. The steps 2 and 3 
are the same as in the case of Neumann boundary conditions. 

We end this Appendix by an estimate of second derivatives in the case of 
convex C2 domains. Let 0 be a domain of R3 with a C2 boundary. In [9, 
Chapter 3, Theorem 3.1.1.1], it is shown that we have, for any v E HI(O)3, 

(36) 
1 3 1 avo avo r 

I divvI2 dx - L axl. a;. dx = -2 Jil VT' V'T(V' v) da 
o i ,j=1 0 J 1 ao 

- r {~(VT;vT)+(tr~)[v.vf}da. Jao 
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We now consider the following problems: given h E L2( 0) , 

(37)N Find U E HI(O) such that 

{ Leu + aU = h 
Beu·v = 0 

where v is the outward normal to 0, and 

in 0, 
on 80, 

(37)D Find u E Hd (0) such that 

{ Leu + aU = h 
u=o 

in 0, 
on 80. 

The problems (37)N (resp. (37)D) have a unique solution u and since 0 has 
a C2 boundary, u belongs to H2( 0). We now assume that 0 is, in addition, 
a convex domain. Let us set v = Beu in the equality (36). If u is the solution 
of (37)N (resp. (37)D, then V·V = 0 on 80 (resp. VT = 0 on 80). Using the 
equality (36) with v = Beu and remarking that ~p is nonpositive, one easily 
shows the following results. 

Theorem A.6. Assume that 0 is a convex domain with a C2 boundary. Then 
there exist three positive constants eo, (3 ,(4 such that, for 0 < e ::; eo, for any 
h E L2( 0), the solution u of (37)N (resp. (37)D) satisfies 

~(2 1 2 1~ 21 2) 2 (38) c3· Il u I12.0+ e21IuxJo,0+ e2 ~IIUxjxJo,o+ e41lux3xJo,o ::; Ilhllo,o· 

The inequality (38) has been used in [12, Remark 2.6]. 
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