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Abstract

We introduce a stochastic process that describes a finite-velocity damped motion on the
real line. Differently from the telegraph process, the random times between consecutive
velocity changes have exponential distribution with linearly increasing parameters. We
obtain the probability law of the motion, which admits a logistic stationary limit in a
special case. Various results on the distributions of the maximum of the process and of
the first passage time through a constant boundary are also given.
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1. Introduction

The (integrated) telegraph process has been studied in the past by many authors aiming to
describe a random motion at constant speed on the real line, whose velocity alternates according
to a Poisson process. Problems related to this process, such as absorption and first passage times,
have been treated, for instance, by Foong [6] and Orsingher [16], [17]. Restricting our attention
to one-dimensional models, various kinds of generalizations of the telegraph process have been
proposed in the literature towards

• motions characterized by more than two velocities (see [9] and [18]) or by random
velocities (see [22]);

• velocity changes governed by an inhomogeneous Poisson process (see [8]) or by an
alternating renewal process (see [24]);

• velocities alternating at gamma- or Erlang-distributed random times (see [2], [3], and
[19]);

• exponential transformations leading to market models (see [4] and [21]).

However, the explicit law of the resulting processes has been obtained in few cases.
In this paper we aim to modify anew the telegraph process by assuming that the random times

separating consecutive velocity changes are still exponentially distributed, but with linearly
increasing parameters λk and µk. The resulting process Xt describes a random motion with two
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A damped telegraph random process 85

velocities, c and −v, that alternate at stochastically decreasing times. This is a kind of damped
motion, in the sense that the continuous sample paths of Xt are composed of line segments that
become stochastically smaller and smaller. The idea of a ‘damped telegraph random process’
seems to be new in the literature, whereas in the realm of probability theory can be found
several works dealing with damped diffusion processes. These are based on the modification of
the infinitesimal moments of a continuous-time diffusion process by introduction of a damping
function. Damped diffusion processes have been applied in a broad class of financial models,
such as models of stock prices. For instance, the case of a flexible process able to break
many types of asset price bubbles and preserve the martingale pricing approach is proposed
in [11]. Damped diffusion processes have also been used in the physics literature, for instance, to
describe inertial motions driven by dichotomous Markov noise in the absence of a potential [13].

General damped processes are frequently exploited to describe the random evolution of
physical systems. In particular, damped telegraph random processes can model damping
behavior appearing in particle systems characterized by finite velocities. We recall that the
usefulness of finite-velocity random motions emerges in various applied fields, such as (i) single-
server queueing systems characterized by queueing room of size 1 (see Application 1.1 of [2],
and [5]) and multi-files queueing systems (see Section 2 of [10]); (ii) alternating renewal
processes governing repairable systems in reliability theory (see Application 1.2 of [2]); and
(iii) stochastic processes in mathematical finance with alternating growth rates, such as the
geometric telegrapher’s process [4].

In Section 2 we formally define the process Xt , and give some preliminary results on the
transition densities in the more general case when the random times between consecutive
changes of velocities have general distributions. In Section 3 we introduce the case when such
random times have exponential distribution with linear parameters. In this framework we obtain
the probability law of Xt , which is characterized by a discrete component on the extremes of
the domain [−vt, ct], and by an absolutely continuous component over its interior. We discuss
the limit behavior of the probability density of Xt . The specific assumption of stochastically
decreasing switching times allows the existence of a stationary distribution. Indeed, differently
from other finite-velocity random motions, in a special case of our model the transition density
of Xt tends to a logistic density as time diverges. Such stationary density emerges when the
ratios between the parameters characterizing the forward and the backward motions are equal
(i.e. λ/c = µ/v). We also obtain the mean of Xt (when λ = µ) conditional on the initial
velocity. In Section 4 we deal with the maximum of Xt . We develop a procedure based on
an iterative definition of nested integrals of distribution functions, which allows us to obtain
(when λ/c = µ/v) the distribution of the maximum of Xt , the first passage time distribution
of Xt through a fixed boundary β, and the corresponding first crossing time probability.

2. A stochastic model of random motion

We aim to study the motion on R of a particle starting at the origin, and moving with
two velocities c and −v (c, v > 0) that alternate randomly in time. The sign of the velocity
determines at each instant the direction of motion (forward or backward). We denote by Uk and
Dk the durations of the kth time intervals during which the motion goes forward and backward,
respectively, with {Uk; k = 1, 2, . . .} and {Dk; k = 1, 2, . . .} mutually independent sequences
of independent nonnegative random variables. Differently from the cases treated in [2] and [3],
the random variables of each sequence {Uk} and {Dk} are not necessarily identically distributed.

The random motion is described by a stochastic process {(Xt , Vt ); t ≥ 0}, having state space
R × {−v, c}, where Xt and Vt respectively denote the position and velocity of the particle at
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86 A. DI CRESCENZO AND B. MARTINUCCI

time t . We assume that the motion starts from the origin, i.e. X0 = 0, and that the initial
velocity is random, with

P{V0 = −v} = P{V0 = c} = 1
2 . (2.1)

Note that, for any fixed t > 0, Xt takes values in [−vt, ct]. Denoting by Tn the nth random
instant in which the motion changes velocity, we have

T2k = U(k) + D(k), T2k+1 = T2k +
{

Uk+1 if V0 = c,

Dk+1 if V0 = −v,
k = 0, 1, . . . ,

where U(0) = D(0) = 0 and

U(k) = U1 + U2 + · · · + Uk, D(k) = D1 + D2 + · · · + Dk, k = 1, 2, . . . . (2.2)

The position and velocity of the particle at time t are expressed respectively as

Xt =
∫ t

0
Vs ds, Vt = c − v

2
+ sgn(V0)

c + v

2
(−1)Nt ,

where {Nt ; t ≥ 0} is the alternating counting process, characterized by random times T1, T2, . . .,
which counts the number of velocity reversals of the particle in [0, t]. In other terms, we have

N0 = 0, Nt =
∞∑

n=1

1{Tn≤t}, t > 0.

Assuming that Uk and Dk are absolutely continuous random variables, the conditional
probability law of {(Xt , Vt ); t ≥ 0} possesses a discrete component

P{Xt = yt, Vt = y | X0 = 0, V0 = y}
and an absolutely continuous component

p(x, t | y) = f (x, t | y) + b(x, t | y),

where

f (x, t | y) = ∂

∂x
P{Xt ≤ x, Vt = c | X0 = 0, V0 = y}, (2.3)

b(x, t | y) = ∂

∂x
P{Xt ≤ x, Vt = −v | X0 = 0, V0 = y}, (2.4)

with t > 0, −vt < x < ct , and y ∈ {−v, c}.
Hereafter, we formally express the probability law of {(Xt , Vt ); t ≥ 0} in terms of the

density functions of (2.2), say f
(k)
U and f

(k)
D , and of the survival functions of Uk and Dk ,

denoted respectively as FUk
and FDk

.

Proposition 2.1. Let V0 = c. For all t > 0, we have

P{Xt = ct, Vt = c | X0 = 0, V0 = c} = FU1(t); (2.5)
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moreover, for −vt < x < ct ,

f (x, t | c) = 1

c + v

∞∑
k=1

f
(k)
D (t − τ∗)

∫ t

t−τ∗
f

(k)
U (s − t + τ∗)FUk+1(t − s) ds, (2.6)

b(x, t | c) = 1

c + v

∞∑
k=0

f
(k+1)
U (τ∗)

∫ t

τ∗
f

(k)
D (s − τ∗)FDk+1(t − s) ds, (2.7)

where τ∗ = τ∗(x, t) = (vt + x)/(c + v).

The proof proceeds similarly to that of Theorem 2.1 of [2] and is thus omitted. Furthermore,
in analogy with Proposition 2.1 of [2] we have

P{−vt ≤ Xt ≤ ct | X0 = 0, V0 = c} = 1.

Remark 2.1. The probability law of {(Xt , Vt ); t ≥ 0} conditional on V0 = −v can be
expressed as in Proposition 2.1 by interchanging f with b, Uk with Dk , c with v, and x

with −x.

3. Exponentially distributed intertimes with linear rates

In the sequel we assume that the random times Uk and Dk separating consecutive velocity
reversals of the particle have exponential distribution with parameters

λk = λk, µk = µk, k = 1, 2, . . . ; λ, µ > 0, (3.1)

respectively. Under this hypothesis, the reversal rates λk and µk increase linearly with the
number of reversals, so that the random intertimes T2k+1 − T2k and T2k − T2k−1 stochastically
decrease with k. It follows that the sample paths of Xt are subject to an increasing number of
changes of velocity when t increases, so that Xt exhibits a damped motion. Figure 1 shows
simulated sample paths of Xt stopped after 200 changes of velocity.

The classical approach to finite-velocity random motions is based on the resolution of
hyperbolic systems of partial derivative equations for the probability density of the process
{(Xt , Vt ); t ≥ 0}. In this case we are led to define the following conditional densities, for

1 2 3 4 5 6 7
t

–2

–1

1

2
Xt

1 2 3 4 5 6 7
t

 –2

2

4

6

Xt

Figure 1: Simulated sample paths of Xt for λ = µ = 1 and v = 1, with c = 1 (left) and c = 2 (right).
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t > 0, −vt < x < ct , and n = 1, 2, . . . :

fn(x, t | c) = ∂

∂x
P{Xt ≤ x, Vt = c, T2n−2 ≤ t < T2n−1 | X0 = 0, V0 = c},

bn(x, t | c) = ∂

∂x
P{Xt ≤ x, Vt = −v, T2n−1 ≤ t < T2n | X0 = 0, V0 = c},

fn(x, t | − v) = ∂

∂x
P{Xt ≤ x, Vt = c, T2n−1 ≤ t < T2n | X0 = 0, V0 = −v},

bn(x, t | − v) = ∂

∂x
P{Xt ≤ x, Vt = −v, T2n−2 ≤ t < T2n−1 | X0 = 0, V0 = −v}.

Making use of a customary procedure (see, for instance, [15]), it is not hard to see that the
following system of differential equations holds:

∂

∂t
fn(x, t | c) = −c

∂

∂x
fn(x, t | c) − nλfn(x, t | c) + (n − 1)µbn−1(x, t | c), n ≥ 2,

∂

∂t
bn(x, t | c) = v

∂

∂x
bn(x, t | c) − nµbn(x, t | c) + nλfn(x, t | c), n ≥ 1,

∂

∂t
fn(x, t | − v) = −c

∂

∂x
fn(x, t | − v) − nλfn(x, t | − v)

+ nµbn(x, t | − v), n ≥ 1,

∂

∂t
bn(x, t | − v) = v

∂

∂x
bn(x, t | − v) − nµbn(x, t | − v)

+ (n − 1)λfn−1(x, t | − v), n ≥ 2.

Unfortunately, solving the above equations is a very hard task. In order to obtain the condi-
tional probability law of {(Xt , Vt ); t ≥ 0}, we are thus led to pursue the approach based on
Proposition 2.1. If Uk and Dk are exponentially distributed with parameters (3.1), the densities
of U(n) and D(n) for n ≥ 1 are given by

f
(n)
U (x) = n(1 − e−λx)n−1λe−λx, x > 0, (3.2)

f
(n)
D (x) = n(1 − e−µx)n−1µe−µx, x > 0. (3.3)

Hence, U(n) and D(n) are distributed as the maximum of n independent and identically dis-
tributed random variables having exponential distributions with parameters λ and µ, respec-
tively. The formal proof follows from Lemma 1 of [23]. However, it can also be obtained
by noting that, under assumption (3.1), Uk and Dk can be regarded as the spacings of random
samples of independent random variables with exponential distributions, whose probability
densities are given, for instance, in [20]. We recall that densities (3.2) and (3.3) belong to the
generalized exponential class of distributions (see [7] and the references therein).

We are now able to obtain the probability law of {(Xt , Vt ); t ≥ 0} conditional on V0 = c

when the random times Uk and Dk have exponential distributions with parameters (3.1).

Theorem 3.1. Let Uk and Dk be exponentially distributed with parameters λk and µk, k ≥ 1,
respectively. For all t > 0, we have

P{Xt = ct, Vt = c | X0 = 0, V0 = c} = e−λt ; (3.4)
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moreover, for −vt < x < ct ,

f (x, t | c) = µ

c + v

e−λτ∗e−µ(t−τ∗)(1 − e−λτ∗)

[e−λτ∗ + e−µ(t−τ∗)(1 − e−λτ∗)]2
, (3.5)

b(x, t | c) = λ

c + v

e−λτ∗e−µ(t−τ∗)

[e−λτ∗ + e−µ(t−τ∗)(1 − e−λτ∗)]2
, (3.6)

where

τ∗ = τ∗(x, t) = vt + x

c + v
. (3.7)

Proof. Since U1 is exponentially distributed with parameter λ, (3.4) follows from (2.5).
Furthermore, making use of (3.2) and (3.3), and recalling that Uk+1 is exponentially distributed
with parameter λ(k + 1), from (2.6) we have

f (x, t | c) = µ

c + v

+∞∑
k=1

ke−µ(t−τ∗)[1 − e−µ(t−τ∗)]k−1

×
∫ t

t−τ∗
λke−λ(s−t+τ∗)[1 − e−λ(s−t+τ∗)]k−1e−λ(k+1)(t−s) ds

= µ

c + v
e−µ(t−τ∗)e−λτ∗(1 − e−λτ∗)

+∞∑
k=1

k[1 − e−µ(t−τ∗)]k−1(1 − e−λτ∗)k−1,

which yields density (3.5). Equation (3.6) can be obtained similarly from (2.7).

Making use of (3.5)–(3.7) we now analyse the behavior of the probability density functions
(PDFs) f (x, t | c) and b(x, t | c) when x tends to the endpoints of the state space [−vt, ct].
Corollary 3.1. Under the assumptions of Theorem 3.1, we have

lim
x↓−vt

f (x, t | c) = 0, lim
x↑ct

f (x, t | c) = µe−λt

c + v
(1 − e−λt ),

and

lim
x↓−vt

b(x, t | c) = λe−µt

c + v
, lim

x↑ct
b(x, t | c) = λe−λt

c + v
.

Note that the limits obtained in Corollary 3.1 are very close to those concerning the case
when the random times Uk and Dk are identically distributed and have exponential distribution.
(See Corollary 3.1 of [2] for n = r = 1). This suggests that the effect of the velocity reversals
on the PDFs (3.5) and (3.6) is more pronounced when x is far from the endpoints of the
interval [−vt, ct].

Now it is not hard to obtain the probability law of {(Xt , Vt ); t ≥ 0}, which is characterized
by a discrete component over points ct and −vt , and by an absolutely continuous component
on (−vt, ct) with PDF

p(x, t) = ∂

∂x
P{Xt ≤ x | X0 = 0}. (3.8)

Theorem 3.2. Under the assumptions of Theorem 3.1, for all t > 0, we have

P{Xt = ct, Vt = c | X0 = 0} = 1
2 e−λt ,

P{Xt = −vt, Vt = −v | X0 = 0} = 1
2 e−µt ;
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Figure 2: Densities p(x, t) for t = 5 (left) and t = 20 (right) with c = 2, v = 1, µ = 1, and
λ = 1, 1.5, 2, 2.5, 3 (from right to left).

moreover, for −vt < x < ct ,

p(x, t) = e−λτ∗e−µ(t−τ∗)[2(λ + µ) − µe−λτ∗ − λe−µ(t−τ∗)]
2(c + v)[e−λτ∗ + e−µ(t−τ∗)(1 − e−λτ∗)]2

, (3.9)

where τ∗ is defined in (3.7).

Proof. The proof immediately follows from (2.1), (2.3), (2.4), and (3.8), by recalling
Theorem 3.1, and noting that the PDFs f (x, t | − v) and b(x, t | − v) can be obtained
from (3.5) and (3.6) by the symmetry expressed in Remark 2.1.

Let us now evaluate the limits of density (3.9).

Corollary 3.2. Under the assumptions of Theorem 3.1, we have

lim
x↓−vt

p(x, t) = e−µt

2(c + v)
[µ + λ(2 − e−µt )],

lim
x↑ct

p(x, t) = e−λt

2(c + v)
[λ + µ(2 − e−λt )].

Plots of density (3.9) are given in Figure 2 for various choices of λ and t .

Corollary 3.3. Under the assumptions of Theorem 3.1, if λv = µc then

lim
t→+∞ p(x, t) = θ

4
sech2

(
θ
x

2

)
, x ∈ R, (3.10)

where

θ = µ

v
= λ

c
; (3.11)

if λv 	= µc then
lim

t→+∞ p(x, t) = 0, x ∈ R.

Proof. Recalling (3.7) and (3.9), for x ∈ R and t → +∞, we have

p(x, t) ∼ 1

4

λ + µ

c + v
sech2

(
x(λ + µ) + t (λv − µc)

2(c + v)

)
.

The proof then immediately follows.
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Figure 3: Plots of E[Xt | V0 = c] for (a) λ = 1 and c = v = 1, 2, 3, 4 (from bottom to top) and
(b) c = 1 and v = 0.5, 1, 1.5, 2 (from top to bottom).

The right-hand side of (3.10) is a logistic density with mean 0 and variance π2/(3θ2) (cf. [12]
and [14] for recent characterization results on the logistic distribution).

Hereafter, we shall obtain the mean of Xt conditional on the initial velocity in the special
case when the random times Uk and Dk are identically exponentially distributed with parameter
λk = λk.

Theorem 3.3. Under the assumptions of Theorem 3.1, if λ = µ then, for all t > 0, we have

E[Xt | V0 = c] = (c − v)t

2
+ c + v

λ
√

4eλt − 1
arctan

(
(eλt − 1)

√
4eλt − 1

3eλt − 1

)
. (3.12)

Proof. Making use of (3.4)–(3.6) and by setting y = (vt + x)/(c + v), we have

E[Xt | V0 = c] = cte−λt +
∫ t

0
[(c + v)y − vt] d

dy

{
− e−λy

e−λy + e−λ(t−y)(1 − e−λy)

}
dy

= −vt + (c + v)

{
t

2
− 1

λ
√

4eλt − 1

[
arccot(

√
4eλt − 1)

+ arctan

(
1 − 2eλt

√
4eλt − 1

)]}
.

Hence, recalling Equations 4.4.36 and 4.4.16 of [1], (3.12) immediately follows.

The conditional mean given in (3.12) is shown in Figure 3 for λ = 1 and some choices of
the velocity.

Remark 3.1. Under the assumptions of Theorem 3.3, the mean of Xt conditional on V0 = −v

can be easily obtained from (3.12), noting that, due to symmetry,

E[Xt | V0 = −v] + E[Xt | V0 = c] = (c − v)t, t > 0.

4. Distribution of the maximum

A topic of interest within the field of random motions with finite velocities is the determina-
tion of the probability law of the maximum of the particle’s position. We recall, for instance,
the papers by Orsingher [16] and Foong [6] concerning the telegraph random process.
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Let us now introduce the distribution function of the maximum of the damped motion process
Xt conditional on initial velocity:

F(β, t | y) = P
{

max
0≤s≤t

Xs < β

∣∣∣ X0 = 0, V0 = y
}
, t ≥ 0, (4.1)

with 0 < β < ct and y ∈ {−v, c}. Aiming to obtain a closed-form result for F(β, t | y)

we need to define a sequence of stochastic processes {(X〈n〉
t , V

〈n〉
t ); t ≥ 0}n=1,2,... describing

finite-velocity random motions similar to that studied in Section 3. As before, X
〈n〉
t and V

〈n〉
t

respectively give the position and velocity of a particle at time t , with V
〈n〉
0 identically distributed

to V0 for all n ≥ 1. The only difference between (X
〈n〉
t , V

〈n〉
t ) and (Xt , Vt ) is that the random

times U
〈n〉
k and D

〈n〉
k separating consecutive velocity reversals of the particle have exponential

distributions with parameters

λ
〈n〉
k = λ(k + n − 1), µ

〈n〉
k = µ(k + n − 1), k = 1, 2, . . . ; λ, µ > 0,

respectively, for n = 1, 2, . . . . This implies that X
〈1〉
t and Xt are identically distributed. Let us

now introduce the distribution function of the maximum of X
〈n〉
t :

F 〈n〉(β, t | y) = P
{

max
0≤s≤t

X〈n〉
s < β

∣∣∣ X
〈n〉
0 = 0, V

〈n〉
0 = y

}
, n = 1, 2, . . . , (4.2)

with 0 < β < ct and y ∈ {−v, c}. Hereafter, we present some useful integral equations
involving the distribution functions (4.2).

Proposition 4.1. For all n ≥ 1, t > 0, and 0 < β < ct ,

F 〈n〉(β, t | c)

= FUn

(
β

c

)
F̄Dn

(
ct − β

c + v

)

+
∫ β/c

0
dFUn(u)

∫ (ct−β)/(c+v)

0
dFDn(σ )F 〈n+1〉(β − cu + vσ, t − u − σ | c),

(4.3)

F 〈n〉(β, t | − v)

= F̄Dn

(
ct − β

c + v

)

+
∫ (ct−β)/(c+v)

0
dFDn(σ )

×
∫ (β+vσ)/c

0
dFUn(u)F 〈n+1〉(β − cu + vσ, t − u − σ | − v). (4.4)

The proof of Proposition 4.1 is similar to that of Theorem 5.1 of [2] and is thus omitted. We
are now able to obtain closed-form expressions for the distribution function (4.1) in the special
case λv = µc.

Theorem 4.1. If λv = µc, the conditional distribution functions of the maximum of Xt , for
0 < β < ct , are given by

F(β, t | c) = 1 − e−θβ

1 + e−θβ − e−θβe−µ(ct−β)/(c+v)
(4.5)

https://doi.org/10.1239/jap/1269610818 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610818


A damped telegraph random process 93

and

F(β, t | − v) = 2 − e−µ(ct−β)/(c+v)

1 + e−θβ − e−θβe−µ(ct−β)/(c+v)

+ eθβ [θβ − log(1 + eθβ − e−µ(ct−β)/(c+v))], (4.6)

where θ is defined in (3.11). Moreover, for β ≥ ct , we have F(β, t | c) = F(β, t | − v) = 1.

Proof. Starting from (4.3) with n = 1, and performing an iterative procedure, when V0 = c,
we obtain

F 〈1〉(β, t | c)

= FU1

(
β

c

)
F̄D1

(
ct − β

c + v

)

+
∫ β/c

0
dFU1(u)

∫ (ct−β)/(c+v)

0
FU2

(
β − cu + vσ

c

)
F̄D2

(
ct − β

c + v
− σ

)
dFD1(σ )

+
∫ β/c

0
dFU1(u)

∫ (ct−β)/(c+v)

0
dFD1(σ )

∫ (β−cu+vσ)/c

0
dFU2(x)

×
∫ (ct−β)/(c+v)−σ

0
F 〈3〉(β − c(u + x) + v(σ + y), t − u − x − σ − y | c) dFD2(y).

(4.7)

By repeating substitution of F 〈n〉(·, · | c) into the last integral of (4.7), we express F 〈1〉(β, t | c)

as a series whose ith term is a 2(i − 1)-dimensional integral (i = 2, 3, . . . ). For λv = µc,
recalling densities (3.2) and (3.3), by means of straightforward calculations we obtain

F 〈1〉(β, t | c) = (1 − e−µβ/v)e−µ(ct−β)/(c+v)

×
+∞∑
k=0

[(1 − e−µ(ct−β)/(c+v))(1 − e−µβ/ve−µ(ct−β)/(c+v))]k,

so that (4.5) immediately follows, noting that F 〈1〉(β, t | c) = F(β, t | c), t ≥ 0. When
V0 = −v, similarly to the previous case, from (4.4) we have

F 〈1〉(β, t | − v) = e−µ(ct−β)/(c+v)

+ e−µβ/v−2µ(ct−β)/(c+v)

(
1 − µ(ct − β)

c + v
− e−µ(ct−β)/(c+v)

)
+ e−µ(ct−β)/(c+v)(1 − e−µ(ct−β)/(c+v))(1 − e−µβ/ve−µ(ct−β)/(c+v))

+
+∞∑
k=2

Ak(β, t),

where

Ak(β, t) = e−µ(ct−β)/(c+v)(1 − e−µβ/v−µ(ct−β)/(c+v))k−1

×
{
(1 − e−µ(ct−β)/(c+v))k

+ ke−µβ/v−µ(ct−β)/(c+v)

[
−µ(ct − β)

c + v
+

k−1∑
j=1

1

j
(1 − e−µ(ct−β)/(c+v))j

]}
.

After some calculations, (4.6) finally follows.

https://doi.org/10.1239/jap/1269610818 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610818


94 A. DI CRESCENZO AND B. MARTINUCCI

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

ββ

( )β t cF |, v( )β tF |, -

Figure 4: Distribution functions of the maximum of Xt given by (a) (4.5) for θ = µ = 1, 3, 5 (from
bottom to top) and (b) (4.6) for θ = µ = 1, 3, 5 (from top to bottom near β = 0), with v = c = t = 1.

Hereafter, we present the limit behavior of the distribution functions of the maximum of Xt

obtained in Theorem 4.1.

Remark 4.1. If λv = µc, for any fixed t > 0, from (4.5) and (4.6) we have

lim
β→ct

F (β, t | c) = 1 − e−µct/v, lim
β→ct

F (β, t | − v) = 1,

lim
β→0

F(β, t | c) = 0, lim
β→0

F(β, t | − v) = 1 − log(2 − e−µct/(c+v)).

The first limit is in agreement with (3.4). Moreover, for any fixed β > 0, the following limits
hold:

lim
t→+∞ F(β, t | c) = tanh

(
θβ

2

)
, (4.8)

lim
t→+∞ F(β, t | − v) = 2

1 + e−θβ
+ eθβ [θβ − log(1 + eθβ)], (4.9)

where θ is defined in (3.11).

Plots of the distribution functions obtained in Theorem 4.1 are shown in Figure 4.

4.1. First passage time

Let us now define the first passage time of Xt through the boundary β > 0:

T β = inf{t ≥ 0 : Xt ≥ β}.
We point out that if V0 = c then the distribution of T β possesses a discrete component on β/c,

P

{
T β = β

c

∣∣∣∣ V0 = c

}
= e−λβ/c, (4.10)

and an absolutely continuous component on (β/c, +∞), whose density will be denoted by
gβ(t | c). When V0 = −v, the distribution of T β is absolutely continuous on (β/c, +∞), with
density gβ(t | − v). Hereafter, by differentiation of (4.5) and (4.6), we obtain such densities
in closed form for the special case of Theorem 4.1.
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Figure 5: First passage time probabilities (4.13) for θ = 1, 2, 3 (from top to bottom), with initial velocity
c (left) and −v (right).

Theorem 4.2. If λv = µc, the first passage time densities of Xt through β > 0, conditional
on initial velocities, are given by

gβ(t | c) = µc

c + v

(1 − e−θβ)e−θβ−µ(ct−β)/(c+v)

(1 + e−θβ − e−θβ−µ(ct−β)/(c+v))2
, t >

β

c
, (4.11)

and

gβ(t | − v) = µc

c + v

eθβ−µ(ct−β)/(c+v)(2 − e−µ(ct−β)/(c+v))

(1 + eθβ − e−µ(ct−β)/(c+v))2
, t >

β

c
, (4.12)

with θ defined in (3.11).

Let us now introduce the first crossing time probability

π(β | y) = P

{
T β ≥ β

c

∣∣∣∣ V0 = y

}
.

From (4.10)–(4.12), it is not hard to see that if λv = µc then

π(β | y) =

⎧⎪⎪⎨
⎪⎪⎩

e−θβ

[
1 + tanh

(
θβ

2

)]
, y = c,

eθβ [log(1 + eθβ) − θβ] − tanh

(
θβ

2

)
, y = −v.

(4.13)

This result is in agreement with probabilities (4.8) and (4.9) that Xt never reaches boundary β

when V0 = c and V0 = −v. Moreover, from (4.13) we have π(0 | c) = 1 and π(0 | − v) =
log 2. In conclusion, some plots of (4.13) are given in Figure 5.
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