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A DARK ENERGY CAMERA SEARCH FOR MISSING SUPERGIANTS IN THE LMC
AFTER THE ADVANCED LIGO GRAVITATIONAL-WAVE EVENT GW150914
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ABSTRACT

The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a
luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova
and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was
detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large
Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg2 of the localization area,
including 38 deg2 on the LMC for a missing supergiant search. We construct a complete catalog of LMC luminous
red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates:
less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf–Rayet
stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance
is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event
result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914
was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO
Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger.
We discuss how to generalize this search for future very nearby core-collapse candidates.

Key words: galaxies: individual (LMC) – gravitational waves – Magellanic Clouds – supergiants – supernovae:
general

1. INTRODUCTION

On 2015 September 14 the Advanced LIGO interferometer
network detected a high significance candidate gravitational-
wave (GW) event (designated GW150914; Abbott
et al. 2016b), and two days later the LIGO Virgo Collaboration
(LVC) provided spatial localization probability sky maps
(LIGO Virgo Collaboration 2015a). The analysis that produced
the trigger was sensitive to bursts, suggested a high source
mass, and yielded localization contours that enclosed the Large
Magellanic Cloud (LMC) at high confidence. Burst-like GW
signals could originate from the core collapse of massive stars,
such as in a supernova (SN). There is evidence that ~20% of
core-collapse events fail to produce a luminous supernova; see,
for example, Kochanek (2015).

Motivated thus, in 2015 September we obtained observations
of the LMC with DECam and pursued a search for a potential
failed SN through the disappearance of a massive star. The
analysis of GW150914 in Abbott et al. (2016b) makes it clear
that this GW source did not originate from the death of a
massive star in the LMC. Our analysis, however, provides an
important template for the follow-up of future burst-like GW
events coincident with very nearby galaxies.

2. LIGO EVENT GW150914

On 2015 September 14 at 09:50:45 UT the Advanced LIGO
interferometers at Hanford and Livingston recorded burst
candidate event GW150914 during Engineering Run 8. This
event was triggered by the coherent WaveBurst (cWB)
unmodeled burst analysis during real-time data processing.
On 2015 September 16, the LVC provided an all-sky
localization probability map for the event (LIGO Virgo
Collaboration 2015a; Abbott et al. 2016a; see also Aasi

et al. 2014) generated from the cWB online trigger. This

analysis makes minimal assumptions about signal shape by

searching for coherent power across the LIGO network

(Klimenko et al. 2008). Nearby stellar core collapses can cause

significant signals in the cWB analysis (Fryer & New 2011;

Gossan et al. 2016). The cWB map provided spatial

localizations of 50% and 90% confidence regions encompass-

ing about 100 and 310 deg2, respectively. The area enclosing

50% of the total probability of the cWB map passed through

the center of the LMC, a 0.2 L galaxy at a distance of 50 kpc

(Walker 2012; de Grijs et al. 2014); see the dotted lines in

Figure 1. The high probability ridge line passed over 30

Doradus and the proto-globular cluster R136.
We recently began an observational program using the wide-

field Dark Energy Camera (DECam; Flaugher et al. 2015) on

the Blanco 4 m telescope at Cerro Tololo Inter-American

Observatory to search for optical counterparts to GW triggers.

Our wide-field search for counterparts to GW150914 is

described in the companion paper Soares-Santos et al.

(2016); an overview of the program is in DES Collaboration

et al. (2016). We additionally designed a specific set of

observations to search for failed SNe in the LMC, using 5 s i-

and z-band observations covering 38 deg2 centered on the LMC

on 2015 September 18 and 27, in seeing of 1 1–1 3.
On 2015 October 3, the LVC revised its analysis: the data

were most consistent with a binary black hole merger (LIGO

Virgo Collaboration 2015b). On 2016 January 13, the LVC

provided new sky maps, the most accurate and authoritative of

which was the LALInference analysis using a binary black hole

template (LIGO Virgo Collaboration 2016). The new contour

enclosing 50% of the total probability shifted southward of the

LMC, although the LMC is still inside the 90% contour.
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3. CORE-COLLAPSE SIGNATURES

A normal core-collapse SN in the LMC is a remarkably
obvious event—SN1987A was found by eye as a new 5th
magnitude object 24 hr after the core collapse, and its neutrino
emission provided the first detection of extragalactic neutrinos
by Kamiokande and IMB (Bionta et al. 1987; Hirata
et al. 1987).

However, it has been argued that up to ∼20% of core-
collapse SNe are not optically luminous (Kochanek et al.
2008), and there is recent evidence that luminous supergiants
specifically are prone to be failed SNe. Two candidates are
currently known: the Large Binocular Telescope survey (Gerke
et al. 2015) found a 18–25 M star missing, and a Hubble
Space Telescope archival survey (Reynolds et al. 2015) found a
25–30 M star missing. These objects are sufficiently nearby
that an SN associated with the event would have been detected
by local galaxy SN surveys. In addition, the population of
known progenitors to SNe IIP lacks red supergiants above
17 M (Smartt et al. 2009), suggesting that that more massive
red supergiants end in a failed SN. This line of argument
reproduces the current black hole mass function (Kochanek
2015); similarly, the purely theoretical study of core collapses
by Sukhbold et al. (2016) reproduces both the neutron star and
black hole mass functions. Pre-collapse, red supergiants are
very luminous: Smartt (2015) shows that the missing SN
progenitors have 105.1 L .

4. OPTICAL SIGNATURES OF A FAILED SUPERNOVA

There are three viable signatures for a failed supernova: (1)
the star might simply collapse to a black hole; (2) the unbound
outer atmosphere of the star may expand and cool, gaining in
luminosity as it expands; and (3) there might be a shock from
the creation of the neutrinosphere that propagates through the
atmosphere to the outer layer, causing a shock breakout flash.
We will briefly discuss these potential signatures, and present
in Table 1 their magnitudes and colors in filters relevant to the

LMC supergiant search described in the next section and to the
template preparation program described in the conclusions.
The first signature presents a disappearance experiment: one

simply searches for missing stars. In the case of prompt black
hole formation, the star’s internal pressure support is removed
and the stellar photosphere falls into the black hole event

horizon in a free-fall time, »t R GM3 . For the Sun this is
1600 s, for the bare helium core of a Wolf–Rayet (WR) star this
is 500 s, and for the very tenuously bound outer atmosphere of
a 25 M star this is 70 days. What size of star one probes
depends on how long past the event the images are obtained:

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟=

 

R

R

M

M
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39 20 days
. 1

1 3 2 3

( )

The second signature was noted by Nadezhin (1980): the
hydrogen atmospheres of supergiants are so marginally bound
to the star that the creation and free streaming of the
neutrinosphere during core collapse may remove enough mass
to unbind the atmosphere. If the shock from the neutrinosphere
creation is energetic enough, it will cause the unbound
atmosphere to expand, necessarily cooling and gaining in
luminosity as it expands. Lovegrove & Woosley (2013)
simulated this process and found that the transient is long,
cool, and more likely in their 15 M models than their 25 M
models. The Nadezhin brightening lasts hundreds of days, with
a lower bound in luminosity of the pre-collapse luminosity of
the star, but possibly rising to ~L 10 105.5 6.5– L, presumably
with an effective temperature starting close to the pre-collapse
star and cooling thereafter. At the distance of the LMC, this
luminosity corresponds to ~i 6.7–9.3. These objects would
look much like the supergiant has brightened by a couple of
magnitudes.
The third signature is produced by a shock breakout and is

studied in Piro (2013), who found that it would present a short,
hot transient (∼week, 104K, 10 106.5 7.5– L ). At the distance of
the LMC, this would be remarkably bright, »i 5.1–7.6,
rivaling a standard core-collapse supernova. The existence of a
shock breakout depends on sufficient energy in the shock;
whether this occurs is unclear.

5. LMC RED SUPERGIANTS

Our search focuses on high-luminosity red supergiants in the
LMC; we will consider other candidate failed supernova
progenitors in the next section. The two best studies of large
numbers of LMC supergiants are by Neugent et al. (2012) and
González-Fernández et al. (2015). Both combine 2MASS
point-source data (Skrutskie et al. 2006) with astrometric
catalogs (UCAC-3 or USNO-B1; Monet et al. 2003), using
proper motions to reject Milky Way (MW) stars and then using
infrared colors and K magnitudes to select the supergiants.
Both studies performed spectroscopy for their final
identifications.57

These studies did not cover the entire LMC: Neugent et al.
(2012) covered ∼22 deg2 (∼60% of the LMC) while González-
Fernández et al. (2015) covered a ∼3 deg2 field at the densest
part of the LMC. The latter analysis recovered about three
times as many red supergiants as the former analysis where
they overlap. Both studies are also likely incomplete in regions
of very high stellar density.

Figure 1. A map of the logarithm of 2MASS J-band star counts around the
LMC with the LIGO localization contours shown in white. The contour labels
indicate the fraction of the LIGO localization probability enclosed. The dotted
contours are for the initial (2015 September) skyprobcc_cWB_complete
map, while the solid contours are for the final (2016 January) LALInfer-
ence_skymap. There is an island of significant probability in the northern
hemisphere in the skyprobcc_cWB_complete not present in the
LALInference_skymap, so the dotted contours do not show the complete
50% or 90% areas. The data are shown on an equal-area McBryde-Thomas flat-
polar quartic projection, as is Figure 3.

57
We will drop the proper subscript s from the 2MASS filter notation Ks

throughout this paper for notational simplicity.
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5.1. Constructing an LMC Red Supergiant Catalog

We construct a catalog of luminous red supergiants in the
LMC following a similar analysis to that of González-
Fernández et al. (2015). We begin with the 2MASS point-
source catalog within 3°.5 from a d = -, 79.5, 68.8 and apply
the following selection criteria:

1. K 9 mag, - >J K 0.9( ) mag;
2. the pseudo-color cut of  q0.1 0.4,

where º - - -q J H H K1.8( ) ( );
3. < < L L L10 105 6 ; and
4. reject stars that have proper motions of

m m+ > 6
ra
2

dec
2 mas yr−1 with m m+ >

ra
2

dec
2

s s+3 ra
2

dec
2 in the NOMAD catalog (Zacharias

et al. 2004).

The bolometric luminosity cut calculation follows Neugent
et al. (2012), namely, the -J K( ) color is used to estimate the
effective temperature, and the effective temperature is in turn
used to calculate the bolometric correction.

This process yields 152 red supergiant candidates. This is
smaller than the number of supergiants in either the catalogs of
Neugent et al. (2012) or González-Fernández et al. (2015) as
these studies go to much lower luminosities than we are
concerned with here. This is evident from Figure 2. The
highest-luminosity candidates are likely all MW stars; the
Neugent et al. data show that 90% of their candidates at <K 7
were MW stars. As we aim for completeness, we find this
acceptable. In Figure 3, the candidate supergiants are shown
overlaid on a stellar density map of the LMC.

6. OTHER FAILED SUPERNOVA PROGENITORS

The red supergiant catalog has the advantage of being well
defined and motivated by observational evidence, but it does
have uncertainties. These include the calculation of the 105 L
limit and model uncertainties when mapping the mass to
luminosity.

There are more profound uncertainties in the theory. The
current theoretical models of core-collapsing stars either have
islands of core collapse to black holes at ∼20M and ∼40M
(O’Connor & Ott 2011; Pejcha & Thompson 2015) or have
most stars above ∼20M core collapsing to black holes
(Sukhbold et al. 2016), though examples of core collapse to
black holes occur throughout the range 15 M –120 M in the
latter study.58 The lack of explosion depends on many
parameters, notably metallicity (Pejcha & Thompson 2015),
as the LMC averages half solar metallicity. In theory, a direct

Table 1

Predicted Optical Signatures of a Failed Supernova in the LMC

i -g i( ) K -J K( ) Timescale

Supergiants 8.0–11.5 1.5–2.3 6.0–8.0 0.9–1.4 ?1 year

Disappearance K K K K 1–100 days

Nadezhina ∼6.7–9.3 1.5 ∼4.6–7.1 0.9 ∼1 year

Shock breakoutb ∼5.1–7.6 ∼0.2 ∼4.6–7.1 ∼0.07 ∼1 week

Notes.
a
Assuming a supergiant-like spectrum.

b
Assuming a blackbody spectrum.

Figure 2. 2MASS J − K vs. K diagram for the Neugent et al. (2012) yellow
supergiants (yellow circles) and red supergiants (red circles), González-
Fernández et al. (2015) red supergiants (purple diamonds), and the 152
supergiant candidates found here (white circles). For our candidates, the
uncertainties in both -J K( ) and K are plotted; for K they are smaller than the
symbols. The line shows the dividing line for 105 L .

Figure 3. Map of the logarithm of 2MASS J-band star counts around the LMC
with the LIGO localization contours shown in white. The DECam i-band
images are shown as orange camera outlines; some of the z-band images are
offset from these. The white points are the luminous red supergiant catalog
developed in this Letter, with those marked red not having a visual inspection.
Eight are outside our imaging area. The four remaining fell into chip gaps and/
or on bad CCDs.

58
Throughout this Letter, masses quoted are zero-age main-sequence masses.
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collapse to black holes may occur in many observational
classes of massive stars: yellow supergiants, blue supergiants
(BSGs), luminous blue variable stars (LBVs), WR stars, sgB
[e], and more (see, e.g., Kashiyama & Quataert 2015).
Fortunately, these classes of stars have been extensively
studied in the LMC.

7. THE SEARCH FOR MISSING LMC SUPERGIANTS IN
THE DECam DATA

The area covered in our DECam LMC campaign is shown in
Figure 3. The DECam images were analyzed with the DES first
cut reductions (Sevilla et al. 2011; Desai et al. 2012; Mohr et al.
2012; R. Gruendl et al. 2016, in preparation), which include
producing astrometrically calibrated reduced images. We
visually inspected the locations of the red supergiants in our
catalog. The supergiants were mostly saturated in the images,
so we could not investigate the brightening discussed in the
previous section. Our imaging and subsequent visual inspection
covered 144 supergiants, 95% of the original catalog, and all of
these stars were recovered.

The catalogs of other possible failed SN progenitors are
present in the literature. We can check for the disappearance of
less luminous red supergiants and yellow supergiants using the
catalog of Neugent et al. (2012): 813 of 846 (96%) are in the
imaged area and all of these are present in the images. We can
check for the disappearance of WR stars using the catalog of
Hainich et al. (2014), extensive but known not to be complete
(Massey et al. 2015): 105 of 108 (97%) are in our imaged area,
and we can confirm that 102 (97%) are present. The three that
we cannot confirm are in the very compact cluster R136 and are
unresolved in our data. We can check for the disappearance of
LBVs using the stars from Smith & Tombleson (2015), which
are all the confirmed, not highly reddened, LBVs in the LMC:
we recover 16 of 16 (100%) in the DECam imaging. We can
check for the disappearance of BSGs, using the catalog in
Bonanos et al. (2009); we recover 299 of 299 (100%) of the
objects of spectral type O or B and luminosity class I in that
catalog in our imaging area. As these catalogs are incomplete
(and the coordinates often uncertain), it is difficult to state how
confident we are that these kinds of progenitors did not undergo
a failed SN in the LMV at the time of GW150914, but given
the uncertainty in theoretical predictions for which observa-
tional classes of stars undergo a failed SN, a reasonable
compromise is to check the known catalogs of potential
progenitors.

The physical infall time sets limits on the size of stars that
would have visibly diminished in our search. Our observations
were at t = 4 and 13 days, corresponding to < R R100 and
< R R200 . These are larger than the typical radii of WR or

BSG stars, but less than that of RSG (see, e.g., Taddia et al.
2016). Observations obtained at t = 100, 300 days would have
placed limits on stars of radii for RSG, R500 1700– , but the
program ceased after the LIGO provided the BBH merger
interpretation and shifted the localization contours out of
the LMC.

8. DISCUSSION AND CONCLUSIONS

GW150914 was first detected by a LIGO analysis sensitive
to a burst of GW and the high probability localization contours
enclosed the LMC. Burst-like GW signals could originate from
the core collapse of massive stars, perhaps ∼20% of which fail

to explode as luminous SNe. This motivated us to search for a
failed SN in the LMC. We constructed a catalog of 152 high-
luminosity LMC supergiants, of which 144 were observed in
our DECam imaging; all of these stars are still present after the
LIGO event. As the outer envelopes take time to free fall into
the event horizon, and our search only obtained early time
images, the search is sensitive to <R 100– R200 supergiants
disappearing. From our observations, it is unlikely that
GW150914 originated from a failed SN in the LMC for a
relatively compact supergiant progenitor.The subsequent pub-
lication of the GW150914 analysis shows that the GW event is
consistent with a merging massive binary black hole model at
»z 0.09 (Abbott et al. 2016b).
The spatial uncertainty present in GW150914 will be a

feature of all non-electromagnetic core-collapse triggers. Most
models of a core collapse include the formation of a
neutrinosphere (see Scholberg 2012 and references therein).
Even three decades ago the LMC core collapse that produced
SN1987A was detected by two neutrino detectors, Kamiokande
and IMB (Bionta et al. 1987; Hirata et al. 1987). Today there
are seven neutrino detectors contributing to the SNEWS
supernova early warning system (Vigorito & SNEWS Working
Group 2011), and the Super-Kamiokande neutrino detector and
the IceCube neutrino telescope should detect an LMC core-
collapse unassisted (Ikeda et al. 2007; Abbasi et al. 2011).
Notably for this Letter, the MeV neutrino burst mode of
IceCube did not trigger for±500 s around the time of
GW150914 (Adrián-Martínez et al. 2016), which it would
have for a core collapse in the LMC. The spatial localization of
the neutrino detectors is several degrees (Adams et al. 2013)—
that would be good enough to say the event likely occurred in
the LMC, but not where in the LMC it is located.
The use of the luminous red supergiant catalog makes it

possible to perform a specific search without prior template
imaging, and therefore without difference imaging. A sensible
generalization of this technique is to perform very shallow g-
and i-band imaging of very nearby galaxies to prepare template
images for difference imaging; g-band was added to catch the
very blue signature of a breakout shock. Difference imaging in
the crowded regions of the LMC will likely be challenging, but
would extend the discovery space to other possible low-
luminosity core-collapse progenitors, of which there are many.
The intervals between local group core collapses are measured
in decades, and we should be prepared to learn as much as
possible when they do occur.
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