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1 Introduction

Observations indicate that most of the matter in the universe is dark and of non-baryonic

origin with a hint that it could be non-relativistic and weakly interacting at late times

(cold dark matter). Various potential candidates have been suggested, among the most

popular, there are weakly interacting massive particles (WIMPs). In the following we shall

focus uniquely on this possibility. This group includes the lightest supersymmetric particle

(LSP) obtained by imposing R-parity in supersymmetric models [1, 2]; the lightest T-odd

particle (LTP) obtained in little Higgs models with T-parity [3]; the lightest Kaluza-Klein
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particle (lKP) which is stable due to a residual parity which may survive in the effective

theory if special conditions are required for the interactions at the fixed points [4, 5].

Apart from phenomenological considerations, which render these symmetries practically

compulsory in all these cases, the most satisfactory way to introduce a stable particle

of this type is to consider a fundamental symmetry. From this point of view a residual

Kaluza-Klein (KK) parity is the closest candidate, being a remnant of the extra dimensional

Lorentz invariance after the breaking by compactification. However, the compactifications

considered so far [4, 6] have fixed points or lines which correspond to lower dimensional

objects (branes) where the extra Lorentz symmetry is absent at all. Therefore, the KK

parity, which is automatic in the bulk of the extra dimensions, has to be imposed by hand

on the branes.

We consider these parities unsatisfactory and we want to insist on the idea of keeping

a fundamental symmetry as the explanation of dark matter: is this possible? In the devel-

opment of extra dimensional model building [7], the idea of branes and orbifolds with fixed

points (both suggested by string theory) has proven itself very useful. For example, one

can easily obtain chiral light fermions (from a theory which is inherently non-chiral in 4D).

However, in order to preserve the KK parity, one needs to impose non trivial constraints

on the fixed points. In models based on an interval, one requires the Lagrangian terms

localized on the two physically independent end points to be identical: obviously, this is

not a direct consequence of the compactification! Moreover, the presence of explicit break-

ing of Lorentz invariance introduces a large arbitrariness, often neglected, in the model,

because the localized interaction terms only obey to a smaller subgroup of the extra sym-

metries. As an example, divergences which are forbidden in the bulk emerge again via

localized counter-terms. The Ultra-Violet sensitivity of the theory is generically worsened

opening a Pandora box of free parameters and potentially bad ultraviolet behaviour. On

the other hand, the idea of large compact extra dimensions gives opportunities for model

building allowing for elegant uses of fundamental symmetries, like in gauge-Higgs unifica-

tion models [8–10], where the freedom to add localized terms is welcome in order to obtain

a realistic model.

For those reasons, we will require that Lorentz invariance is only broken globally by the

compactification, and a KK parity is part of the orbifold, therefore exact and inevitable.

In this spirit, the dark matter candidate is truly a remnant of Lorentz invariance, which we

shall call by abuse of language, a lightest Lorentz particle (LLP) in the following. Moreover,

all interactions are highly constrained, and the model will be relatively more predictive than

standard KK parity models. The main hurdle to be passed is the requirement of a chiral

spectrum for fermions, crucial to obtain the Standard Model in the low energy limit.

Orbifolds are quotient spaces of a manifold modulo a discrete group. The one-dimensional

orbifolds are the circle S1 = R/Z and the interval S1/Z2: the circle has neither fixed points

nor chiral fermions; the interval is the only orbifold with chiral massless fermions, however

it possesses two fixed points (the boundaries of the interval). If we extend our four di-

mensional world to include one extra dimension, therefore, there are no compactifications

without boundaries which allow to obtain chiral fermions in 4D. The next step is to consider

two extra dimensions. In the plane the possible isometries are translations (t), reflections,
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2π/n rotations (r) with n = 2, 3, 4, 6 and glide-reflections (g), which are translations with

a simultaneous mirror reflection. In 2D there are only 17 fundamental symmetry groups

(see for example [11]) which correspond to the crystallographic groups in two dimensions,

also called the wallpaper groups. The folding of the infinite periodic tiling of the plane

can be described in a unique way by an orbifold. Only 3 of the resulting orbifolds are free

of boundary or fixed points/lines. They are the torus R
2/p1, the Klein bottle R

2/pg and

the real projective plane R
2/pgg. Our notation refers to the fact that space groups can be

defined in a purely algebraic way: instead of specifying a representation of the generators,

one can list the relations among them, so we have

p1 ≃ Z
2 = 〈t1〉 × 〈t2〉 ,

pg = 〈t2, g|[g2, t2] = 0, t2gt2g
−1 = 1〉 ⊇ Z

2 ,

pgg = 〈r, g|r2 = (g2r)2 = 1〉 ⊇ Z
2,Z2 .

Only the projective plane R
2/pgg allows chiral zero modes for fermions because it contains

a π-rotation, as we will discuss in the following. We will therefore consider this geometry

as the background for our model. One may push this exercise further and consider three

or more extra dimensions. We will not do it in the following for the simple reason that

the number of possible orbifolds increases very fast. Furthermore, adding more dimensions

will lower the effective cutoff of the theory and therefore reduce the validity of the effective

theory. The projective plane is the simplest possibility and the most reasonable one for

building an effective theory which may have a wide validity range in energy. Here we will

consider the minimal case where the Standard Model is embedded in this geometry: the

only new parameter, neglecting higher order operators, is the size of the extra dimensions

which determines the mass scale of the KK resonances. The geometry also contains two

singular points where 4 dimensional terms can be added, and will be required as counter-

terms for loop divergences: we will consider the most general such Lagrangians, with the

spirit that they are small corrections (typically one loop level). This geometry was already

proposed in the context of Grand Unification models [12], but no explicit example has

been constructed.

2 Chiral fermions without fixed points: the real projective plane

The minimal dimension of a fermion Ψ in 6 dimensions is 8 (contrary to the 4 components in

4 and 5 D) [13]: the Clifford algebra contains 6 8×8 Gamma matrices Γ1 . . .Γ6. Moreover,

one can define

Γ7 = Γ1Γ2Γ3Γ4Γ5Γ6 (2.1)

which allows to define two 6D chiralities via the projectors

P± =
1

2

(

1 ± Γ7
)

. (2.2)

Therefore, the minimal spinor representation of the Lorentz group are 4-component chiral

fermions Ψ± = P±Ψ. Each one of those 6D-chiral fields contains two 4D Weyl fermions of
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opposite 4D-chirality. In order to be more concrete, we will use the following representation

for the Gamma matrices [13]:

Γµ =

(

γµ 0

0 γµ

)

, Γ5 =

(

0 iγ5

iγ5 0

)

, Γ6 =

(

0 γ5

−γ5 0

)

; (2.3)

and consequently

Γ7 =

(

−γ5 0

0 γ5

)

, and P± =

(

1
2

(

1 ∓ γ5
)

0

0 1
2

(

1 ± γ5
)

)

=

(

PL/R 0

0 PR/L

)

, (2.4)

where PL and PR are the projectors on the 4D chiralities. In this basis, the 6D-chiral

fermions can be written as (using the Weyl representation for the 4D Gamma matrices)

Ψ+ =

(

ψL+

ψR+

)

, Ψ− =

(

ψR−
ψL−

)

, (2.5)

with

ψL± =

(

χ±
0

)

, ψR± =

(

0

η̄±

)

, (2.6)

where ψ are Dirac spinors, χ and η are Weyl spinors.

The 6D action for a massless 6D-chiral fermion is

S± =

∫

dx5

∫

dx6
i

2

{

Ψ̄±Γα∂αΨ± −
(

∂αΨ̄±
)

ΓαΨ±
}

=

=

∫

dx5

∫

dx6

{

iψ̄L±γ
µ∂µψL± + iψ̄R±γ

µ∂µψR±+

+
1

2

[

ψ̄L±γ5(∂5 ∓ i∂6)ψR± + ψ̄R±γ5(∂5 ± i∂6)ψL± + h.c.
]

}

; (2.7)

and a mass term

Smass =

∫

dx5

∫

dx6 M
{

Ψ̄+Ψ− + Ψ̄−Ψ+

}

=

∫

dx5

∫

dx6 M
{

ψ̄L+ψR− + ψ̄R+ψL− + h.c.
}

. (2.8)

The only difference between the two 6D-chiralities is a different sign in front of the x6 deriva-

tive. This feature will be important when discussing the parity properties of such fields.

The real projective plane can be defined by a π-rotation r and a glide g, whose action

on the coordinates is

r :

{

x5 ∼ −x5

x6 ∼ −x6
, g :

{

x5 ∼ x5 + πR5

x6 ∼ −x6 + πR6
. (2.9)

Note that r2 = (g2r)2 = 1; for any field, the allowed parities are therefore

pr = ±1 ; pg = ±1 . (2.10)
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In terms of r and g one can define two translations:

t5 = g2 :

{

x5 ∼ x5 + 2πR5

x6 ∼ x6
, t6 = (gr)2 :

{

x5 ∼ x5

x6 ∼ x6 + 2πR6
. (2.11)

No Scherk-Schwarz phases can be defined on this geometry: all the fields are periodic. Note

also that we can define another glide

g′ = gr :

{

x5 ∼ −x5 + πR5

x6 ∼ x6 + πR6
, (2.12)

under which the fields have parity pg′ = pgpr. The two radii R5 and R6 are in principle

different: here for simplicity we will fix R5 = R6 = R, and assume R = 1 in all the formulas,

except introducing it back when discussing the phenomenology of the model. The size of

the radius will determine the overall mass scale for the KK modes, mKK = 1/R.

Let us know discuss the 4D chirality of the fermions. The glide g changes the sign

of one coordinate only, x6: in order to keep the action invariant, from eq. (2.7), we see

that the two 6D-chiralities are exchanged. Therefore, the glide requires to start with a

non-chiral theory in 6D. Under the glide, a generic fermion transforms as:

Ψ(g(x)) = pgΓgΨ(x) , Γg = Γ6Γ7 . (2.13)

The two 6D chiralities are exchanged up to a sign, therefore for both parities a non-chiral

4D massless mode is allowed. For this reason the Klein bottle, defined by a glide and a

translation, does not allow for chiral fermions.

Under the rotation r both extra coordinates change sign, therefore the two 4D chirali-

ties must have opposite parity: a zero mode is allowed only for one of the two 4D chiralities.

A generic fermion transforms as:

Ψ(r(x)) = prΓrΨ(x) , Γr = iΓ5Γ6Γ7 ; (2.14)

with this definition, pr = +1 corresponds to a left-handed zero mode and pr = −1 to a

right-handed one. Because of eq. (2.10), for each bulk fermion there is a massless chiral

fermion. The real projective plane is therefore the unique 6D orbifold which allows for

chiral fermions without fixed points. Note also that a bulk mass term is odd under the

rotation. For completeness, the action of the second glide g′ on a fermion is defined by:

Ψ(g′(x)) = pgprΓgrΨ(x) , Γgr = iΓ5 . (2.15)

Note finally that the presence of a massless mode for each bulk fermion implies that su-

persymmetry cannot be completely broken in this background: in fact, the supersymmetry

generator, which is a 6D spinor, obeys the same properties, and therefore an unbroken

N=1 supersymmetry always survives.
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Figure 1. Fundamental domain for a torus (left) and real projective plane (right).

2.1 KK parities and singularities on the real projective plane

The real projective plane is non-orientable and has no boundaries, however there are two

points with conical singularities, where localized counter-terms can be added in general.

Nevertheless, a KK parity is still preserved without any further assumption. Two symme-

tries can be used to define the orbifold, for example a rotation and a glide. The rotation

has 4 un-equivalent fixed points: (0, 0), (π, π), (0, π) and (π, 0) (see figure (1)). The glide,

however, transforms (0, 0) → (π, π) and (0, π) → (π, 0) (and viceversa); therefore, no fixed

point is present globally, and the the eventual localized interactions on the corners of the

fundamental square must be identified in pairs. The identification is not a consequence

of an ad-hoc global symmetry acting on the UV completion of the model, as it happens

in other orbifolds, like the chiral square [6], but it is part of the orbifold itself: the two

identified points are indeed the same point in the 6D space. A crucial consequence is that a

discrete KK parity is left unbroken: it can be identified with a translation by (π, π) (com-

bined with r, this is equivalent to a π-rotation around the center of the square (π/2, π/2),

thus it is exactly the same KK parity as in [6]):

pKK :

{

x5 ∼ x5 + π

x6 ∼ x6 + π
. (2.16)

Under this transformation, two identified singular points are transformed one into the

other, and a generic KK mode with momentum (k, l) along the extra directions will acquire

a phase (−1)k+l: therefore, (1, 0) and (0, 1) identify the lightest tiers of odd particles thus

containing a stable Dark Matter candidate, while the (1, 1) modes can generically decay

into zero modes via localized interactions. Note that the theory also possesses another

KK parity

p′KK :

{

x5 ∼ x5 + π

x6 ∼ x6
, (2.17)

under which the (1, 1) states would be odd and therefore stable. If p′KK is unbroken,

the two tiers (1, 0) and (0, 1) would also pick different parity, and therefore contain two
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independent candidates. However, this symmetry requires that the localized interactions

on the two points are the same: this is true for terms induced by loops of bulk interac-

tions, however a generic UV completion of the model would violate such symmetry. Not

being a fundamental symmetry of the orbifold, we will discard it and assume that it is

generally broken.

3 The Standard Model on the real projective plane

Here we will consider a simple extension of the Standard Model on the real projective plane,

and study the spectrum of the KK modes. More complicated constructions are in principle

possible, and we reserve to study them in future publications. For now we will study the

SM gauge group SU(3)c× SU(2)W× U(1)Y with a single Higgs scalar doublet, and a 6D

fermion for each chiral SM fermion (doublets Q and L, singlets U , D, E and possibly

the singlet neutrino N). The lowest order Lagrangian will be the SM one, extended to 6

dimensions. As we will shortly see, to each SM fields it corresponds a tower of massive

resonances organized in tiers of modes, labeled by two integers (l, k) which correspond to

the discretized momenta along the extra directions, and the field content of each tier will

crucially depend on the parities of the fields under the orbifold projection. At leading

order, all the states in each tier are degenerate with mass determined by the two integers

m2
l,k =

l2

R2
5

+
k2

R2
6

. (3.1)

Splittings within the modes in each tier can be generated by three mechanisms: the Higgs

vacuum expectation value (VEV), bulk interaction loop corrections and higher order oper-

ators localized on the singular points. Here we will focus on the simplest case, where, due

to the flatness of the metric along the extra coordinates, the Higgs VEV is constant: an

important consequence is that, due to the orthogonality of wave functions of KK modes

from different tiers, the Higgs mechanism will not mix the tiers. Therefore, the KK expan-

sion remains valid and the masses will be shifted, independently on the spin of the field, by

the SM mass m0, according to the formula: m2
l,k = l2 + k2 +m2

0. On the other hand, the

loop corrections do generate level-mixings: being small effects, for the spectrum we will

limit ourselves to the leading corrections, therefore diagonal terms only. Note also that the

loop induced terms will respect the full global symmetries of the space, and therefore, as

an example, no splitting and/or mixing between the (1, 0) and (0, 1) levels will be induced,

neither decays of the (1, 1) modes into SM particles. Localized terms are generally required

as counter-terms for the loop divergences: however, they must respect less symmetries than

the bulk loops. The only unbroken symmetry will be the KK parity pKK . In the following

we will assume that localized terms are small as they are required at one loop level, and

we will limit ourselves to a leading order expansion in them.

In this section, we will first study the tree level spectrum for generic scalars, gauge

fields and fermions on the real projective plane, thus identifying the possible field content

of each tier, and then include the effect of the Higgs mechanism and lowest order localized

terms on SM fields. One loops results for the lightest tier will also be presented because

they play a crucial role when discussing the Dark Matter relic abundance.
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(k, l) pKK (++) (+−) (−+) (−−)

(0, 0) + 1
2π

(0, 2l) + 1√
2π

cos 2lx6
1√
2π

sin 2lx6

(0, 2l − 1) − 1√
2π

cos(2l − 1)x6
1√
2π

sin(2l − 1)x6

(2k, 0) + 1√
2π

cos 2kx5
1√
2π

sin 2kx5

(2k − 1, 0) − 1√
2π

cos(2k − 1)x5
1√
2π

sin(2k − 1)x5

(k, l)k+l even + 1
π cos kx5 cos lx6

1
π sin kx5 sin lx6

1
π sin kx5 cos lx6

1
π cos kx5 sin lx6

(k, l)k+l odd − 1
π sin kx5 sin lx6

1
π cos kx5 cos lx6

1
π cos kx5 sin lx6

1
π sin kx5 cos lx6

Table 1. Normalized wave functions and parities for a bulk scalar field.

3.1 Scalars

The action for a scalar field Φ is (omitting the integral along the un-compact 4 dimensions)

Sscalar =

∫ 2π

0
dx5 dx6

{

∂αΦ†∂αΦ −M2Φ†Φ
}

, (3.2)

α = 1, . . . 6; which leads to the equation of motion (EOM)

(

∂2
5 + ∂2

6 + p2 −M2
)

Φ = 0 , (3.3)

where p2 = −∂µ∂
µ. After Fourier transforming along the two extra coordinates, the field

can be expanded in a sum of KK modes, whose wave functions satisfy the above equation

with p2 replaced by the mass square of the mode. The solutions of this equation are usual

combinations of sines and cosines (with frequencies determined by the periodicity at 2π).

The wave functions can be labelled with the parities under the rotation and glide:

pr pg spectrum

cos kx5 cos lx6 + (−1)k+l k, l ≥ 0

sin kx5 sin lx6 + (−1)k+l+1 k, l > 0

sin kx5 cos lx6 − (−1)k+l k > 0 , l ≥ 0

cos kx5 sin lx6 − (−1)k+l+1 k ≥ 0 , l > 0

The masses are given by the formula

m2
k,l = M2 + k2 + l2 . (3.4)

The mass eigenstates can be labeled by their parity assignment (pr, pg) and KK number

(k, l). In table 1 we show a full classification of the modes (with normalized wave functions).

3.2 Gauge fields

The action for an abelian gauge field is (also valid at quadratic level for non-abelian

gauge symmetries)

Sgauge =

∫ 2π

0
dx5 dx6

{

−1

4
FαβF

αβ − 1

2ξ
(∂µA

µ − ξ(∂5A5 + ∂6A6))
2

}

, (3.5)
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where Fαβ = ∂αAβ − ∂βAα, and the ξ-gauge fixing term is added to eliminate the mixing

between Aµ and the extra polarizations A5 and A6. The equation of motion for the vector

component is

− ∂µFµν − 1

ξ
∂ν∂

µAµ + (∂2
5 + ∂2

6)Aν = (p2 + ∂2
5 + ∂2

6)Aν = 0 , (3.6)

which is the same as for a scalar field, and we have assumed that each KK mode satisfies

the usual 4D equation in ξ-gauge:

− ∂µFµν − 1

ξ
∂ν∂

µAµ = p2Aµ . (3.7)

Once the parities are assigned, the spectrum and wave functions will be the same as for

the scalar field (with M = 0).

The A5–A6 scalar sector is more complicated: in fact, the massive vector modes ac-

quire their longitudinal polarization by eating a tower of scalar components provided by

a combination of A5 and A6, while another combination will give rise to a single tower of

physical scalar states. Moreover, the parities of the scalar components are determined by

the fact that they are part of a 6D vector, therefore if the vector component Aµ has parities

(pr, pg), the parities of A5 and A6 components are respectively (−pr, pg) and (−pr,−pg).

In generic ξ-gauge, the EOMs are

− ∂2
µA5 + ξ∂5(∂5A5 + ∂6A6) + ∂6(∂6A5 − ∂5A6) = 0 , (3.8)

−∂2
µA6 + ξ∂6(∂5A5 + ∂6A6) + ∂5(∂5A6 − ∂6A5) = 0 . (3.9)

Here we will focus on two gauge choices: the Unitary gauge, where all non-physical de-

grees of freedom are removed, and the Feynman-’t Hooft gauge, which is more useful for

loop calculations.

Feynman-’t Hooft gauge. In the Feynman-’t Hooft gauge ξ = 1, the equations of

motion for A5 and A6 decouple:

(∂2
5 + ∂2

6 − ∂2
µ)A5,6 = 0 , (3.10)

therefore the two components can be treated as two independent scalar fields with proper

parities. The wave functions and masses are the same as in the scalar case presented in

detail in section (3.1).

Unitary gauge. In the unitary gauge ξ → ∞, the combination

∂5A5 + ∂6A6 = 0 . (3.11)

The two fields are not independent, and one can therefore expand both fields on the same

tower of 4D scalars A(k,l):

A5 =
∑

φ5(x5, x6)A(k,l) , A6 =
∑

φ6(x5, x6)A(k,l) , (3.12)
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(k, l) pKK A
(++)
µ A

(−+)
5 A

(−−)
6

(0, 0) + 1
2π

(0, 2l) + 1√
2π

cos 2lx6

(0, 2l − 1) − 1√
2π

sin(2l − 1)x6

(2k, 0) + 1√
2π

cos 2kx5

(2k − 1, 0) − 1√
2π

sin(2k − 1)x5

(k, l)k+l even + 1
π cos kx5 cos lx6

l
π
√

k2+l2
sin kx5 cos lx6 - k

π
√

k2+l2
cos kx5 sin lx6

(k, l)k+l odd − 1
π sin kx5 sin lx6

l
π
√

k2+l2
cos kx5 sin lx6 - k

π
√

k2+l2
sin kx5 cos lx6

Table 2. Normalized wave functions for a (++) gauge boson.

(k, l) pKK A
(+−)
µ A

(−−)
5 A

(−+)
6

(0, 0) +

(0, 2l) + 1√
2π

sin 2lx6

(0, 2l − 1) − 1√
2π

cos(2l − 1)x6

(2k, 0) + 1√
2π

sin 2kx5

(2k − 1, 0) − 1√
2π

cos(2k − 1)x5

(k, l)k+l even + 1
π sin kx5 sin lx6

l
π
√

k2+l2
cos kx5 sin lx6 - k

π
√

k2+l2
sin kx5 cos lx6

(k, l)k+l odd − 1
π cos kx5 cos lx6

l
π
√

k2+l2
sin kx5 cos lx6 - k

π
√

k2+l2
cos kx5 sin lx6

Table 3. Normalized wave functions for a (+−) gauge boson.

with ∂5φ5 + ∂6φ6 = 0. Using the latter relation in eqs. (3.8)–(3.9), the two wave functions

respect the usual EOM of a scalar field:

(p2 + ∂2
5 + ∂2

6)φ5/6 = 0 ; (3.13)

spectra and wave functions are again the same as in the scalar case, with the additional

constraint from eq. (3.11). In the tables, we list in details the masses and normalized wave

functions for the 4 possible parity assignments: in the (++) case the gauge symmetry is

unbroken (table 2); in table 3 the gauge symmetry is broken by the glide(s), case (+-), and

there is no zero mode in the spectrum; in table 4 the gauge symmetry is broken by the

rotation (and the glide g′) and there is a zero mode living in the A5 component; finally

in table 5 the gauge symmetry is broken by both rotation and glide g and the zero mode

resides in A6.

3.3 Fermions

The action for a 6D Dirac fermion in section (2) leads to the following EOMs for the

4 components:

iσ̄µ∂µχ± + (∂5 ∓ i∂6)η̄± = 0 , (3.14)

iσµ∂µη̄± − (∂5 ± i∂6)χ± = 0 ; (3.15)
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(k, l) pKK A
(−+)
µ A

(++)
5 A

(+−)
6

(0, 0) + 1
2π

(0, 2l) + 1√
2π

cos 2lx6

(0, 2l − 1) − 1√
2π

sin(2l − 1)x6

(2k, 0) + 1√
2π

sin 2kx5

(2k − 1, 0) − 1√
2π

cos(2k − 1)x5

(k, l)k+l even + 1
π sin kx5 cos lx6

l
π
√

k2+l2
cos kx5 cos lx6

k
π
√

k2+l2
sin kx5 sin lx6

(k, l)k+l odd − 1
π cos kx5 sin lx6

l
π
√

k2+l2
sin kx5 sin lx6

k
π
√

k2+l2
cos kx5 cos lx6

Table 4. Normalized wave functions for a (−+) gauge boson.

(k, l) pKK A
(−−)
µ A

(+−)
5 A

(++)
6

(0, 0) + 1
2π

(0, 2l) + 1√
2π

sin 2lx6

(0, 2l − 1) − 1√
2π

cos(2l − 1)x6

(2k, 0) + 1√
2π

cos 2kx5

(2k − 1, 0) − 1√
2π

sin(2k − 1)x5

(k, l)k+l even + 1
π cos kx5 sin lx6

l
π
√

k2+l2
sin kx5 sin lx6

k
π
√

k2+l2
cos kx5 cos lx6

(k, l)k+l odd − 1
π sin kx5 cos lx6

l
π
√

k2+l2
cos kx5 cos lx6

k
π
√

k2+l2
sin kx5 sin lx6

Table 5. Normalized wave functions for a (−−) gauge boson.

as usual, we expand each component in a tower of 4D Dirac fermions fl,r (the subscript l, r

indicate the 4D chirality) satisfying the usual Dirac EOMs. Those first order equations can

be decoupled [14], and each component satisfies the same quadratic equation as the scalar

field in the previous section. The solutions are usual combinations of sin and cos, and the

first order EOMs relate the coefficients of the two 4D components. The exact form of the

solutions will be determined by the parity assignments of the fields. The rotation gives a

different parity to the two 4D-chiralities, and a fermion with pr = + (pr = −) will have

a left-handed (right-handed) zero mode. On the other hand, the glide will relate the two

6D chiralities, so that the four wave functions are not independent: the value of the parity

under the glide does not play any role on the zero mode spectrum and, as we will see, the

only requirement is that the SM doublets and singlets have the same glide parity in order

to allow Yukawa couplings with the bulk Higgs.

For a left-handed fermion, case (+±), the KK modes are given by:

(k, l) χ+ χ− η̄+ η̄−
(0, 0) 1

2
√

2π
± 1

2
√

2π
0 0

(0, l) 1
2π cos lx6 ±(−1)l 1

2π cos lx6 − i
2π sin lx6 ±(−1)l i

2π sin lx6

(k, 0) 1
2π cos kx5 ±(−1)k 1

2π cos kx5 − 1
2π sin kx5 ∓(−1)k 1

2π sin kx5

while for both k, l 6= 0, there are 2 degenerate solutions for each level which can be param-
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eterized as

Ψ(+±) =











χ+

η̄−
χ−
η̄+











=











(a cos kx5 cos lx6 + b sin kx5 sin lx6) fl

±(−1)k+l (c sin kx5 cos lx6 − d cos kx5 sin lx6) f̄r

±(−1)k+l (a cos kx5 cos lx6 − b sin kx5 sin lx6) fl

(c sin kx5 cos lx6 + d cos kx5 sin lx6) f̄r











, (3.16)

where we can use the EOMs and normalization condition to fix the coefficients

a = cos α√
2π

b = sin α√
2π

c = −k cos α−il sin α√
2π

√
k2+l2

d = k sin α−il cos α√
2π

√
k2+l2

(3.17)

The two orthogonal states can be obtained by choosing α = θ and α = π/2 + θ, where θ is

an arbitrary mixing angle.

For a right-handed fermion, case (−±):

(k, l) χ+ χ− η̄+ η̄−
(0, 0) 0 0 1

2
√

2π
± 1

2
√

2π

(0, l) − i
2π sin lx6 ±(−1)l i

2π sin lx6
1
2π cos lx6 ±(−1)l 1

2π cos lx6

(k, 0) 1
2π sin kx5 ±(−1)k 1

2π sin kx5
1
2π cos kx5 ±(−1)k 1

2π cos kx5

and, for k, l 6= 0:

Ψ(−±) =











(a sin kx5 cos lx6 + b cos kx5 sin lx6) fl

±(−1)k+l (c cos kx5 cos lx6 − d sin kx5 sin lx6) f̄r

±(−1)k+l (a sin kx5 cos lx6 − b cos kx5 sin lx6) fl

(c cos kx5 cos lx6 + d sin kx5 sin lx6) f̄r











, (3.18)

with

c = cos α√
2π

d = sin α√
2π

a = k cos α+il sin α√
2π

√
k2+l2

b = −k sin α+il cos α√
2π

√
k2+l2

(3.19)

Note that we have fixed the normalization of the wave functions in such a way that

the mass of each (k, l) KK level is real, i.e. m(k,l) =
√
k2 + l2.

3.4 6D loop corrections

The degeneracy of each KK level is removed at loop level: a complete calculation of the

shifts is however beyond the scope of this paper. In the following we will focus on the

modes (n, 0) and (0, n) with n odd, in fact this case covers the lightest tiers, and the result

will be important in the next section to determine the nature of the Dark Matter candidate

and estimate its relic abundance. In general, the loop contributions (that we generically

label Π) can be divided in 4 pieces

Π = ΠT + pgΠG + pgprΠG′ + prΠR : (3.20)

the first term ΠT is the contribution one would get from the same fields on a torus and,

after renormalization of the bulk kinetic terms, it leaves a finite contribution. The other
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Figure 2. One-loop radiative corrections to the gauge scalar self-energy: gauge (a-c), ghost (d),

fermion (e) and scalar (f-g) loops.

three terms correspond to the two glides and rotation, in the sense that their sign depends

on the parities (pr, pg) of the fields running in the loop. The contribution of the two glides

is finite because the glides do not have any fixed points where a counter-term could be

localized. On the other hand, the rotation does generate divergences which can be cut-off

by counter-terms localized on the four points left fixed by the rotation, i.e. the two singular

points of the orbifold. The singularities will be equally spread on the two points, because of

the extended global symmetries of the bulk interactions. In the next section we will discuss

the generic structure of the counter-terms: for now we will limit ourselves to cutting off

the momentum integral in the loop and compute the coefficient on the log divergent term.

Note also that bulk interactions respect both pKK and p′KK , therefore there will be no

mixing between the states (n, 0) and (0, n): in the following we will compute the diagonal

corrections, as the off diagonal ones do generate sub-leading corrections to the spectrum.

3.4.1 Gauge bosons

The tiers under study contain a gauge-scalar for each SM gauge bosons. For a generic gauge

group, the mass receives corrections from the diagrams listed in figure (2). We performed

the calculation in 3 different ways: we employed a novel method consisting in expanding in

KK modes only along one direction and using the resummed 5D propagator [15] in the sum,

and we checked the result, when possible, using the expansions in winding modes [16] and

in 6D KK modes [17]. The methods are summarized in appendix (A), where we explicitly

detail the three methods in the computation of the scalar loop “f” in the figure. The

result of the calculation is summarized in table 6. The contributions in the table must
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δm2 gauge scalars ×pg ×pgpr ×pr

a 5T6 5 · 7ζ(3) 3 · (7ζ(3) +B1(n)) 3n2π2L

b 0 0 −12B2(n) 0

c −T6 −3 · 7ζ(3) −(7ζ(3) +B3(n)) 5n2π2L

d 0 0 +2B2(n) 0

e −8T6 0 0 0

f T6 7ζ(3) (7ζ(3) +B1(n)) n2π2L

g 0 0 −4B2(n) 0

Table 6. Contributions of the loops in figure 2 to the gauge scalar mass.

be multiplied by a normalization factor 1
4

g2C(r)
16π4R2 , where g = g6

2πR is the effective 4D gauge

coupling and C(r) is a gauge group factor (defined as Tr(tart
b
r) = C(r)δa,b for a field in the

representation r of a non-abelian group running in the loop, and the charge squared for a

U(1) ). In the formula, T6 is the typical sum appearing in the torus compactification [17]

T6 =
1

π

∑

(k,l) 6=(0,0)

1

(k2 + l2)2
∼ 1.92 , (3.21)

L = log Λ2+n2

n2 is the log divergence associated with the rotation, and the n-dependent

contributions B1,2,3 are small corrections listed in the appendix (B) and coming from

heavier modes running in the loop. Summing over the SM fields, the corrections are:

δm2
B =

g′2

64π4R2

[

−79T6 + 14ζ(3) + π2n2L+B1 − 4B2

]

, (3.22)

δm2
W =

g2

64π4R2

[

−39T6 + 70ζ(3) + 17π2n2L+ 7B1 − 32B2 − 2B3

]

, (3.23)

δm2
G =

gs
2

64π4R2

[

−36T6 + 84ζ(3) + 24π2n2L+ 9B1 − 42B2 − 3B3

]

. (3.24)

Numerically, for n=1, the corrections to the mass δm = 1
2

δm2

m are:

δmBR = (−1.4 + 0.1L) · 10−3 = −0.00094 , (3.25)

δmWR = (−0.4 + 5.8L) · 10−3 = 0.026 , (3.26)

δmGR = (+0.2 + 28L) · 10−3 = 0.13 ; (3.27)

where we use αs(MZ) = 0.118, α(MZ) = 1/127, sin2 θW = 0.23 and Λ = 10 (L = 4.6).

3.4.2 Fermions

The corrections to the fermionic Lagrangian for a generic KK mode can be written in

general as:

δL = aLψ̄γ
µpµPLψ + aRψ̄γ

µpµPRψ − bψ̄ψ . (3.28)

The wave function renormalizations (in general different for the left-handed and the right-

handed components) can be re-absorbed by a field renormalization, so that the shift in the
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fermions ×pg ×pgpr ×pr

n2 aL gauge 0 2 · 7ζ(3) 2 · (−7ζ(3) + F1(n) + F2(n)) 0

n2 aR gauge 0 2 · 7ζ(3) −2F2(n) 0

n2 b gauge 0 4n · 7ζ(3) −6nF2(n) 4n3π2L

n2 aL scalar 0 7ζ(3) −7ζ(3) + F1(n) + F2(n) n2π2L

n2 aR scalar 0 7ζ(3) −F2(n) 0

n2 b scalar 0 2n · 7ζ(3) −nF2(n) n3π2L

Table 7. Contribution of the gauge and scalar loop to the mass and kinetic normalization of the

fermions.

δmFR Q U D L E N

light gen.s 0.075 0.067 0.065 0.012 0.004 0

third gen 0.081 0.072 0.065 0.012 0.004 0

Table 8. Mass corrections for SM fermions in level (1,0): here we used the same numerical imputs

as for the bosons, and ytop = 1.

mass (at leading order in the corrections) is:

δmF = b−mn
aL + aR

2
. (3.29)

In table 7 we list the contribution of the gauge and scalar (Higgs) loops to the three terms,

in units of 1
4

g2C2(r)
16π4R

for the gauge loops (where C2(r) = (N2 − 1)/2N for a fundamental

of SU(N), and the charge squared for a U(1) ) and 1
4

y2

16π4R
for the Higgs (where y is the

effective Yukawa coupling), to be multiplied by the parity of the bosonic field in the loop:

The n-dependent terms are listed in appendix (B). For a generic fermion in the fundamental

representation of SU(2) weak and SU(3) color and with hypercharge YF :

δmF =
1

64π4Rn

{

(

21ζ(3) + 4n2π2L− F1 − 6F2

)

(

Y 2
F g

′2 +
3

4
g2 +

4

3
g2
s

)

+

+
1

2

(

21ζ(3) + n2π2L− F1 − 2F2

)

y2
F

}

. (3.30)

Numerical values of the mass shifts for the SM fermions in level n = 1 are listed in table 8.

3.5 Localized operators

The divergences corresponding to the rotation require the presence of counter-terms lo-

calized on the two singular points. Due to the symmetries of the bulk interactions, the

counter-terms should be equal. However, here we will take a more general approach, and

add different terms on the two singularities: in this way we will break all additional global

symmetries. In order to leave glide-invariance explicit, we define two localization operators:

δ0 =
1

2
(δ(x5)δ(x6) + δ(x5 − π)δ(x6 − π)) , (3.31)

δπ =
1

2
(δ(x5)δ(x6 − π) + δ(x5 − π)δ(x6)) , (3.32)
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and label the two singular points with a subscript 0 for the point (0, 0) = (π, π), and π for

(0, π) = (π, 0).

In general the localized interactions must respect only 4-dimensional Lorentz invari-

ance, and the residual gauge invariance. For a scalar field like the Higgs many terms can

be added including a mass term: here we will neglect this case because of the many free

parameters and the low phenomenological interest of the Higgs resonances in this model.

For a gauge field the situation is much simpler due to gauge invariance: in order to pre-

serve the residual gauge invariance along the extra coordinate, we will write the localized

interactions in terms of stress-energy tensor components [18]:

Li =
δi
Λ2

(

−r1i

4
F 2

µν − r2i

2
F 2

56 +
r5i

2
F 2

5µ +
r6i

2
F 2

6µ +
r56i

2
F5µF

µ
6

)

; (3.33)

where i = 0, π, and the cutoff suppression compensates for the dimension of the 6D fields (2

for a boson and 5/2 for a spinor). For a standard model gauge boson, with parities (+,+),

notice that both A5,6 and ∂5,6Aµ vanish on the singular points, therefore F5µ = F6µ = 0

and F56 = ∂5A6 − ∂6A5:

Li =
δi
Λ2

(

−r1i

4
F 2

µν − r2i

2
(∂5A6 − ∂6A5)

2
)

. (3.34)

The first term corrects the kinetic term of the vector bosons, and it also introduces mixing

between modes with different (k, l). Here we will assume those terms to be small, of the

same order as the 1-loop corrections: this is a reasonable assumptions because they are

in fact counter-terms required by divergences at 1-loop and their coefficient is suppressed

by the cut-off of the model. Therefore, most off-diagonal terms will give higher order

corrections to the masses: this is not the case, however, for tiers that are degenerate like

(k, l) and (l, k). In fact, exchanging the two extra direction is a good symmetry of the real

projective plane (this is true for R5 = R6 only, for different radii the degeneracy is removed

at tree level). When expanding the localized terms in KK modes, the 2×2 blocks will have

equal entries, while the loop contribution will be such that the diagonal entries are equal:

from this, we see that the block can be diagonalized by the sum and difference of the two

states.1 Therefore, we define

(k, l)± =
(k, l) ± (l, k)√

2
, with l > k , l, k = 0, 1, . . .∞ (3.35)

and parameterize the correction to the kinetic term as:

Zij = δij +
zij

4π2Λ2
. (3.36)

The value of the corrections in terms of the localized couplings are listed in table 9, while

1The situation is more complicated when k and l are part of a Pitagorean triple such that k2 + l2 = n2

or quartet with k2 + l2 = n2 + m2: in this cases 3 or 4 states will be degenerate. However, this situation

only happens for relatively large integers, the smallest ones being (0, 5)− (3, 4), (5, 5)− (1, 7), (1, 8)− (4, 7),

(2, 9) − (6, 7), (0, 10) − (6, 8) and so on. Therefore, the first case happens for states of mass 5
√

2 ∼ 7,

which is too close to the cutoff and therefore phenomenologically not interesting: for this reason we will

not explore the possibility of Pitagorean triples any further.
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zij (0, 0) (0, 2l)+ (2l, 2l) (2k, 2l)+ (2l − 1, 2l − 1) (2k − 1, 2l − 1)+

(0, 0) r1+ 2r1+ 2r1+ 2
√

2r1+ 2r1− 2
√

2r1−
(0, 2l′)+ 2r1+ 4r1+ 4r1+ 4

√
2r1+ 4r1− 4

√
2r1−

(2l′, 2l′) 2r1+ 4r1+ 4r1+ 4
√

2r1+ 4r1− 4
√

2r1−
(2k′, 2l′)+ 2

√
2r1+ 4

√
2r1+ 4

√
2r1+ 8r1+ 4

√
2r1− 8r1−

(2l′ − 1, 2l′ − 1) 2r1− 4r1− 4r1− 4
√

2r1− 4r1+ 4
√

2r1+

(2k′ − 1, 2l′ − 1)+ 2
√

2r1− 4
√

2r1− 4
√

2r1− 8r1− 4
√

2r1+ 8r1+

Table 9. Corrections to the gauge boson kinetic terms in the sum-difference basis, with r1± =

r10 ± r1π.

δij (0, 2l − 1)+ (0, 2l − 1)− (2k, 2l − 1)+ (2k, 2l − 1)−
(0, 2l′ − 1)+ 4r2π 0 0 4

√
2r2π

(0, 2l′ − 1)− 0 4r20 4
√

2r20 0

(2k′, 2l′ − 1)+ 0 4
√

2r20 8r20 0

(2k′, 2l′ − 1)− 4
√

2r2π 0 0 8r2π

Table 10. Corrections to the gauge scalar masses in the sum-difference basis.

(0, 2l)−, (2k, 2l)−, (2k − 1, 2l − 1)−, (2k, 2l − 1)± and (2k − 1, 2l)± (with l > k) are not

affected. The correction to the zero mode will renormalize the gauge coupling:

g2 =
g2
6

4π2

1

1 + r10+r1π

4π2Λ2

∼ g2
6

4π2

(

1 − r10 + r1π

4π2Λ2
+ . . .

)

; (3.37)

while the diagonal entries affect the masses:

m2
(k,l) =

√

k2 + l2
(

1 −
z(k,l)

4π2Λ2
+ . . .

)

. (3.38)

Note also that many states are not affected by the localized terms: this means that the

quantum corrections to such states are finite at 1-loop.

A similar analysis can be performed for the scalar components of the gauge fields:

note that no further mixing between the vector and scalars is induced, therefore the tree

level bulk gauge fixing term is still appropriate. In this case, it is the (k, l)ev. modes to be

unaffected (in Unitary gauge), and the correction is a mass term

δm2
i,j = mimj

δij
4π2Λ2

, (3.39)

listed in table 10.

This discussion can be easily extended for fermions where, due to the vanishing of

one of the two 4D chiral components, no mass term can be added and only operators of

dimension 6 (like in the gauge boson case) are relevant.

3.6 Electroweak symmetry breaking: the Higgs VEV

Another source of mass is the Higgs VEV: here we will assume that the Higgs is (+,+) and

its bulk potential contains a negative mass, so that a constant VEV is generated for the
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6D Higgs scalar field. Due to the flatness of the VEV along the extra coordinates, it does

not induce mixing between different KK tiers, therefore the KK expansion presented before

can still be utilized to describe mass eigenstates. At the level (0, 0), therefore, we obtain

precisely the SM spectrum and the absence of mixing with higher modes also means that

the model does not suffer from dangerous tree level corrections to precision electroweak

observables like the S and T parameters. For heavy tiers, the Higgs VEV induces a mixing

between the weak neutral bosons, in a similar fashion as in the SM: the mixing angle is large

because the states are degenerate at tree level, and loop effects will change the value with

respect to the SM Weinberg angle. In the fermion sector, only the top will be significantly

affected, and the two Dirac fermions corresponding to the left and right-handed SM top

will be mixed.

3.6.1 Gauge bosons: general analysis

The Higgs VEV introduces new mixing between the vectors and some scalar components

that must be cancelled by a suitable gauge fixing term. For an abelian gauge group, the

gauge fixing term in eq. (3.5) is replaced by

Lξ−gauge = − 1

2ξ
(∂µA

µ − ξ(∂5A5 + ∂6A6 − gv6φ0))
2 , (3.40)

when the Higgs is expanded

H =
1√
2

(v6 + h+ iφ0) . (3.41)

The EOMs of the vector part are modified simply by the addition of a mass term m2
V =

g2
6v

2
6. For the scalars A5,6 and φ0, the new EOMs are:

(p2 −m2
V )A5 + ∂6(∂6A5 − ∂5A6) +mV ∂5φ0 + ξ∂5(∂5A5 + ∂6A6 −mV φ0) = 0 , (3.42)

(p2 −m2
V )A6 + ∂5(∂5A6 − ∂6A5) +mV ∂6φ0 + ξ∂6(∂5A5 + ∂6A6 −mV φ0) = 0 , (3.43)

(p2 + ∂2
5 + ∂2

6)φ0 −mV (∂5A5 + ∂6A6) + ξmV (∂5A5 + ∂6A6 −mV φ0) = 0 . (3.44)

In the Feynman-’t Hooft gauge (ξ = 1), the EOMs decouple:

(p2 −m2
V + ∂2

5 + ∂2
6)







A5

A6

φ0






= 0 , (3.45)

and we have three independent towers with masses m2
(l,k) = l2+k2+m2

V , the only difference

being the parities under rotation and glide. In the Unitary gauge, the condition

mV φ0 = ∂5A5 + ∂6A6 (3.46)

holds. Imposing this condition on the EOMs, we obtain the same decoupled equations as

in the Feynman-’t Hooft gauge, however the fields are not independent anymore. Note that

one solution of the constraint has the form:

∂5A5 + ∂6A6 = 0 and φ0 = 0 ; (3.47)
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(k, l) pKK φ
(++)
0 A

(−+)
5 A

(−−)
6

(0, 0) +

(0, 2l) + 2l√
2π
√

(2l)2+m2
V

cos 2lx6
mV√

2π
√

(2l)2+m2
V

sin 2lx6

(0, 2l − 1) −
(2k, 0) + 2k√

2π
√

(2k)2+m2
V

cos 2kx5
mV√

2π
√

(2k)2+m2
V

sin 2kx5

(2k − 1, 0) −
(k, l)k+l even + k2+l2

πNk,l
cos kx5 cos lx6

kmV

πNk,l
sin kx5 cos lx6

lmV

πNk,l
cos kx5 sin lx6

(k, l)k+l odd − k2+l2

πNk,l
sin kx5 sin lx6 − kmV

πNk,l
cos kx5 sin lx6 − lmV

πNk,l
sin kx5 cos lx6

Table 11. Normalized wave functions for the ”higgs” scalars. Here Nk,l =
√

(k2 + l2)(k2 + l2 +m2
V ).

those solutions correspond to the physical scalars described in the previous sections, the

effect of the Higgs VEV only appears in the extra mass contribution m2
V . The second

independent combination of states which satisfies the condition is a new physical scalar,

mainly consisting of Higgs component. The normalized wave functions are listed in table 11.

3.6.2 Electroweak gauge bosons at the (1, 0) and (0, 1) tiers

For scalar gauge bosons in the tiers (n, 0) and (0, n) with n odd, neglecting the localized

operators, the correction to the neutral boson mass can be written as:

(

W 3
n Bn

)

·
(

δm2
W +m2

W − tan θWm2
W

− tan θWm2
W δm2

B + tan2 θWm2
W

)

·
(

W 3
n

Bn

)

. (3.48)

Note that neither the Higgs VEV nor the loop corrections mix the two degenerate tiers.

Analogously to the SM, this matrix can be diagonalized by

(

Zn

An

)

=

(

cos θn sin θn

− sin θn cos θn

)

·
(

W 3
n

Bn

)

; (3.49)

with mass eigenstates

m2
An,Zn

=
n2

R2
+

1

2

(

m2
Z + δm2

B + δm2
W

∓
√

(m2
Z + δm2

B − δm2
W )2 − 4m2

W (δm2
B − δm2

W )
)

; (3.50)

and mixing angle

tan θn =
m2

Zn
−m2

An
+m2

Z − 2m2
W + δm2

B − δm2
W

2mWmZ sin θW
. (3.51)

Note that the mixing angle would be equal to the SM Weinberg angle if δm2
B = δm2

W ;

also, due to the fact that the loop corrections grow with the KK mass scale, for large mKK
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Figure 3. Left panel: mixing angle sin θ1 between the weak gauge scalars as a function of mKK .

For zero KK mass we obtain the SM value, for large masses the mixing angle vanishes. Right panel:

mixing angle in the top sector.

the mixing angle becomes smaller. A plot of the mixing angle as a function of mKK for

the lightest tier is presented in figure (3), while the splittings are plotted in figure (4).

The effect of the localized kinetic terms is easy to include: due to the fact that the bulk

contributions (loops and Higgs VEV) are the same for the (n, 0) and (0, n) tier, they stay

diagonal also in the basis (0, n)±. Therefore, the mass eigenvalues and mixing angle are

given by the same formulas as before, with δm2
B,W → δm2

B,W +
n2rB,W

2π

π2Λ2 for (0, n)+ and

δm2
B,W → δm2

B,W +
n2rB,W

20

π2Λ2 for (0, n)−.

For the charged weak boson, one obtains:

m2
W+ =

n2

R2
+ δm2

W +m2
W ; (3.52)

the contribution of the localized kinetic terms can be added in the same way as for the

neutral bosons.

Similar formulas apply for the vector states in the (n, 0) and (0, n) tiers, with n even,

and to the (k, l) level: however, one needs to take into account the loop-induced mixing

between the vector and the scalars, therefore the gauge fixing must be redefined at 1-loop.

3.6.3 Fermions

The Yukawa couplings are only relevant for he top, therefore we will focus on this case,

while the other fermions can be obtained by a simple generalization. The Yukawa couplings

can be written as:

SYukawa = −
∫

dx5dx6 Y6 Ψ̄QHΨU + h.c. = (3.53)

= −
∫

dx5dx6 Y6 [ηQ+HχU− + ηQ−HχU+ + χ̄Q+Hη̄U− + χ̄Q−Hη̄U+] + h.c.

This term can only be written if pr(Q) = −pr(U). Plugging in the wave functions, and

denoting by q
(k,l)
l/r and u

(k,l)
l/r the left and right-handed components of the (k, l) KK mode,
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Figure 4. Mass splitting between the different states in the tier 1 as a function of mKK : in black

the scalar photon (LLP), in blue the W and Z, in solid red the gluon, in green the leptons, in

magenta the light quarks, in dashed red the tops.

we obtain the corrections to the masses. For the zero modes:

LYukawa(0,0) = −pg(Q) + pg(U)

2

Y6v6√
2
q̄
(0,0)
l u(0,0)

r + h.c. , (3.54)

it is clear that this term is non-vanishing only if the two bulk fermions have the same parity

under the glide pg(Q) = pg(U) = pg, and

mtop = pg
Y6v6√

2
. (3.55)

For (l, 0) and (0, l) modes, we obtain

LYukawa(l,0)−(0,l) = −(−1)lmtop (q̄lur − q̄rul) + h.c. . (3.56)

For the (k, l) modes, the situation is more complicated due to the presence of 2 degenerate

states: the mass term can be written in general as

LYukawa(k,l) = −(−1)k+lmtop(cosαQ cosαU − sinαQ sinαU )
(

q̄
(k,l)
l u(k,l)

r − q̄(k,l)
r u

(k,l)
l

)

+ h.c. ; (3.57)

where the two choices αQ/U = θQ/U , π/2 + θQ/U label the four independent states, and

θQ/U are arbitrary parameters. If we chose θQ = −θU , two sets of states decouple so that

there are no off-diagonal mass entries, and the mass matrices reduce to

LYukawa(k,l) = −(−1)k+lmtop

(

q̄
(k,l)
l u(k,l)

r − q̄(k,l)
r u

(k,l)
l

)

+ h.c. . (3.58)
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This is therefore a general expression valid for all modes. To find the mass eigenstates, we

need to take into account the loop corrections to the Q and U masses. For the (1, 0) and

(0, 1) tiers:

Lmass = −
(

q̄l ūl

)

·
(

1
R + δmQ −mtop

mtop
1
R + δmU

)

·
(

qr
ur

)

+ h.c. . (3.59)

The mass eigenvalues are

m2
t1/2 =

1

R2
+m2

top + δmQ

(

1

R
+

1

2
δmQ ±B

)

+ δmU

(

1

R
+

1

2
δmU ∓B

)

, (3.60)

with

B =

√

(

1

R
+
δmQ + δmU

2

)2

+m2
top . (3.61)

The eigenstates are given by

(

t1l,r

t2l,r

)

=

(

cosαt ± sinαt

∓ sinαt cosαt

)(

ql,r
ul,r

)

, (3.62)

and

tanαt =
1

mtop

[

B −
(

1

R
+
δmQ + δmU

2

)]

. (3.63)

4 Dark Matter and collider phenomenology

The KK mass, and the Higgs mass, are the main free parameters of the model: calculating

the relic Dark Matter abundance in this model, one can pin down the cosmologically

interesting range for the KK mass. However, this is nothing but an estimate, because the

result is very sensitive to the model of Cosmology and values of the cosmological parameters.

In this work, we will assume the standard model of Cosmology and use the approximate

formulas in ref. [5]. A novel feature with respect to previous works in 6D [5, 19] is the smaller

splitting between the states in the lightest tiers of resonances; therefore, we cannot neglect

the co-annihilation with other particles species in the tier [20]. An average annihilation

cross section can therefore be used to estimate the freeze out temperature and the relic

density, assuming that all the particle species will decay into the LLP after freeze out. In

our calculation, we will neglect electroweak symmetry breaking effects besides the mixing

angle in the weak gauge boson sector which plays an important role in the calculation due

to the relatively small mass splitting between the dark matter candidate and the heavier

weak gauge resonances. We also included the main annihilation cross section between all

the states in the lightest tier, and assume that the localized kinetic terms are negligible

(therefore we only included the loop and Higgs contribution to the splittings). A more

detailed study is left for a future publication. The result for the relic abundance as a
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function of the KK mass is summarized in figure (5): taking into account the presence of

two degenerate tiers (1, 0) and (0, 1), we find

200 GeV < mKK < 300 GeV ; (4.1)

and a limit mKK < 400 GeV from the over-closure of the Universe. Note that the two

degenerate tiers may be split in the case of asymmetric radii: when one radius is smaller

than the other by more than few percent (in particular if the difference in mass is larger

that the freeze out temperature, which is typically of order 4% of the KK mass) the heavier

tier does not contribute significantly to the relic abundance and we obtain a range

300 GeV < mKK < 400 GeV . (4.2)

Note also that the mass range can be drastically modified by the localized kinetic terms:

for instance, lowering the scalar gluon mass will increase the average cross section, and

therefore push the preferred mass range to higher values. However, the presence of such

largish terms will also change the splittings of other levels, and modify the branching

fractions into SM particles: we will not pursue this possibility any further at present. It

is interesting to compare the preferred range with the results in ref. [19], where the chiral

square is considered. On the chiral square, the splittings are larger than in our case,

therefore the lightest state is to a good approximation a purely U(1) hypercharge gauge

scalar: because of this, the annihilation cross section is smaller, and the preferred mass

range is lighter (for comparison, for light Higgs mH ≪ mKK , they find mKK < 200 GeV).

In our case, the mixing angle is non negligible, and therefore the annihilation cross sections

are much larger due to the SU(2) interactions. On the other hand, the co-annihilation

with leptons (both singlet and doublet) dilutes the cross section due to the large number

of leptonic degrees of freedom. Scalar gluons and quarks do not play a significant role, due

to their larger mass.

The inclusion of corrections from the electroweak symmetry breaking, which are im-

portant due to the lightness of the preferred mass, and resonant annihilation via the Higgs

or the (2, 0) and (0, 2) tiers2 can change significantly the range: the inclusion of those

effects, together with the localized kinetic terms, in a complete numerical calculation of

the relic abundance is a subject under study [21].

Another important issue is the compatibility with electroweak precision measure-

ments [4]: in fact, following previous calculations, this low mass range may be excluded

once loop corrections to precision observables are taken into account. However, a detailed

calculation in this specific model has not been performed (and we leave it for a future pub-

lication); moreover, the low cutoff (naively 10 times the KK mass) means that bulk higher

order operators, similar to the SM ones, cannot be neglected. Therefore, the prediction

power of the model is very limited in this sector: this issue is common to all other models

of KK Dark Matter; a more detailed analysis is nevertheless required.

In the following we will take the low mass range (mKK < 400 GeV) as a ballpark to

discuss the phenomenology of the model. The main feature of this model compared to

2We thank Hiroki Yamashita for pointing this out to us.
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Figure 5. Relic abundance of the Dark Matter candidate as a function of mKK for degenerate

(1, 0) and (0, 1) levels (solid blue), and for the asymmetric case (dashed red).

previous ones is the relatively small mass splitting among the particles in each tier. The

states in the first tier will chain decay into the LLP via tree level bulk interactions: the

small energy available for the SM decay products makes their observation at the LHC

challenging. Below 400GeV, the heaviest particles are the tops, about 70 GeV heavier

than the LLP. Due to the large mass of the top, the main decay channel will be t(1,0) →
bW (1,0) → bW ∗A(1,0), where the virtual W ∗ converts into a pair of quarks or leptons. The

second heaviest particle is the scalar gluon, and it decays mainlyG(1,0) → qq(1,0) → q̄qA(1,0);

the quarks from light families (from the up to the bottom) decay q(1,0) → qA(1,0). The

final states from strongly interacting particles, therefore, will always contain 1, 2 or 3

jets and missing transverse energy, however the energy of each jet will be rather small,

around 20 GeV, making their observation impossible at the LHC. The scalar W and Z will

mainly decay to heavy leptons (or quarks for small masses): W (1,0) → ll(1,0) → lνA(1,0),

Z(1,0) → ll(1,0) → l−l+A(1,0), while leptons will decay directly to the LLP l(1,0) → lA(1,0).

In this case the final state contains leptons, however their typical energy will be small

again, less than 20 GeV, therefore they will likely escape detection at CMS and Atlas. In

table 12 we summarize the main decays in the mass range 200GeV < mKK < 400 GeV

(where MET stands for missing transverse energy):

The second level accessible at the LHC is the (1, 1) [22], with mass
√

2mKK = 300 ÷
450 GeV. Besides chain decays similar to the ones for the lightest tier, the particles in this

level can also decay to SM particles via localized interactions, only if such interactions

break the extra accidental KK parity. The latter is the only decay mode for the lightest

state in such level, therefore, if the level is stable, the same phenomenology as the lightest

tier applies here, and the observation of such states will be very hard at the LHC. If the
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mX −mLLP decay mode final state

in GeV + MET

t(1,0) 70 bW (1,0) bjj

blν

G(1,0) 40-70 qq(1,0) jj

q(1,0) 20-40 qA(1,0) j

W (1,0) 20 lν(1,0), νl(1,0) lν

Z(1,0) 20 ll(1,0) ll

l(1,0) < 5 lA(1,0) l

A(1,0) 0 -

Table 12. Mass splitting and main decay modes for states in the level (1,0) in the preferred mass

range 200 GeV < mKK < 400 GeV. MET stands for missing transverse energy.

direct decays to SM are possible, one should easily observe resonances without missing

energy. The states in this level can also be singly produced via the same small couplings

that induce the decays: as those are free parameters in the model, the single-production

cross sections and branching ratios cannot be predicted and we will not comment on this

level any further.

Going up in mass, the next tiers are the (2, 0) and (0, 2). In principle, they can decay

via bulk interactions in two states from the lightest tier, therefore they would go to invisible

particles at the LHC. However, because of the fact that the mass is equal to twice the mass

of the lightest tier at three level, the possibility that such decays are kinematically open

really depends on the loop and Higgs induced splittings, and, in general, those decays will

be suppressed by the small phase space. The loops (and kinetic terms) will also induce

decays directly into SM particles and single productions, therefore, neglecting the localized

terms, cross sections and branching fractions for this level can be calculated. The decays

into SM particles will make this level easy to observe in final states without missing energy

and with many clear resonances.

The first observable missing energy signal will therefore arise at the next level, (2, 1)

and (1, 2), with mass
√

5mKK = 450÷650 GeV. They are odd under the KK parity, and due

to their mass they can only decay via a loop to a tier-1 particle plus a SM one. Therefore,

the signature for such states will be missing energy plus one SM particle with hundreds of

GeV of energy. Higher modes will repeat this pattern of decays.

Another interesting feature of this model is the possibility of rare but spectacular

signals with only one SM particle plus missing energy: this is true if the lightest tier is

completely unobservable. For example, one can produce two tier-1 gluons, which radiate

a hard gluon: this will generate a mono-jet plus missing energy signature [23]. Similarly,

one may produce via loop coupling a (0, 1) state and a (2, 1) state, the latter decaying into

(0, 1) plus a SM state, the only visible particle in the final state. More rare but spectacular

signals may involve a single charged lepton, however those will be extremely rare due to

the weak cross section but effectively background free due to the apparent violation of the

electric charge.
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The model is being implemented in the FeynRules package [24] and it will be made

publicly available, which will allow to interface the Lagrangian of the model to many

Monte Carlo tools, and therefore study in detail the phenomenology simply sketched in

this section.

4.1 The ”5D” limit

The symmetries of the real projective plane allow to define two different radii along the

two directions (this is not possible on the chiral square). Doing so, we would break the

symmetry that exchanges the two directions, and remove the degeneracy between levels

(n, k) and (k, n). In particular one can take a “5D” limit by sending one of the radii,

say R6, to zero: in this limit, the model collapses to a 5D model where the KK parity

is imposed on the boundaries thanks to the extended symmetry of the 6D completion.

However, the effective model still differs from the 5D case in a crucial way: the limit

removes all the modes that carry momentum along the x6 direction, so that the structure

of the tiers will closely resemble the 5D case, however the field content of each level will

be very different. This can be rephrased saying that in the 5D limit, the 6D physics does

not completely decouple: even if the modes that carry momentum along the x6 direction

decouple from the physical spectrum, the field content and spectrum of the remaining

physical particles is in general different from the one of a 5D model. On general grounds,

this is the consequence of the fact that the starting point geometry is not factorized with

respect to the extra dimensions, giving rise to a “geometrical” non-decoupling of the particle

content and spectrum of the theory.

Numerically the splittings can be very different from the 6D case. Nevertheless, we

can estimate an indicative mass range from the asymmetric case in figure (5), where only

one of the lightest tiers is taken into account: the preferred range is 300-400GeV. The

range is lighter that in the usual UED 5D scenario (around 500 ÷ 600 GeV [5]) because of

the different spin of the LLP, and because of the co-annihilation with singlet and doublet

leptons. The phenomenology of the model will be similar to the one of the symmetric 6D

one, except for the absence of some of the levels (note that the model will appear as a “5D”

one at the LHC as long as 1/R6 > few TeV).

This example shows that even the minimal 5D model is not unique, and its structure

and phenomenology may depend crucially on the presence of more dimensions which are

too small to be observed. Our model, in the asymmetric limit, is therefore the minimal 5D

model where the KK parity is naturally present, and the spin of the LLP can be considered

a prediction.

5 Conclusions

We presented a class of models of Dark Matter in 6D where the presence of a Dark Matter

candidate does not follow by an ad-hoc discrete symmetry, but it is a direct consequence of

the topology of the compactification. The real projective plane is in fact the unique orbifold

in 6D that allows both for chiral fermions and the absence of fixed points/lines, the latter

ensuring the presence of an unbroken parity. Such parity, a relic of 6D Lorentz invariance,
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is exact even after including the effect of generic higher order operators localized at the

two singular points of the compact space. Even though the model looks very similar to

previous proposals in 6D (the chiral square), the topology of the compact space crucially

affects the loop corrections to the spectrum and the structure of localized operators. We

computed the one loop splitting of the lightest level, and found that the Dark Matter

candidate is a scalar photon, with a mixing angle smaller that the Weinberg angle. The

main difference with the chiral square is that the splittings in mass within the level tend

to be smaller, therefore one needs to take into account co-annihilation with leptons and

weak gauge bosons and the weak mixing angle cannot be neglected. An estimate of the

relic abundance leads to a mass range 200 < mKK < 300 GeV (300 < mKK < 400 GeV

in the asymmetric case). In this range, the splittings are such that the observation of the

particles in the lightest tier is virtually impossible at the LHC as the SM decay products

are too soft. Higher levels are however easy to observe, as they may decay into SM particles

without missing energy. The first missing energy signals may come from the level (2, 1)

with mass
√

5mKK . The small splittings also allow for rare but spectacular events with

apparent charge non-conservation, like for instance mono-jet or mono-lepton plus missing

energy, due to the fact that the decay products of the other quark or lepton are too soft

to be detected.

The model also has a limit where one of the two dimensions is much smaller that the

other, so that effectively we have one extra dimension with the KK parity imposed by

the 6D completion. Even though only one extra dimension is visible, the phenomenology

of the model is very different from the usual 5D case, because particle content and mass

splitting are very different. In particular, the KK odd levels do not have vector fields

but scalars instead, and the Higgs resonances are missing. The DM candidate would be

therefore a scalar instead of a vector massive photon. This is an example of a model in

extra dimensions where the presence of dimensions at energies above the TeV scale can

affect drastically the phenomenology. Moreover, the 5D model we present is the minimal

model of KK Dark Matter in 5D where the KK parity arises naturally, and the prediction

is the different spin of the lightest stable particle.
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A Loop corrections to the masses

The calculation of the loop corrections to the masses can be performed using three methods.

First, we can use the expansion of the 6D propagator in winding modes [16]: in this way

it is straightforward to renormalize the 6D kinetic terms, which corresponds to removing
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the contribution of the zero winding modes [17]. However, the calculation is challenging

in general due to the presence of Bessel functions in the expansion. The second way is

to expand in KK modes along one direction, and use the resummed 5D propagator [15]

along the other: the advantage is clear when computing corrections to (n, 0) modes, where

conservation of momentum along the second extra direction simplifies the sum over the

KK number in the propagators. Finally, one can use the usual KK expansion [17]: in this

case a more sophisticated technique is required to renormalize the kinetic term.

As an illustration of the three techniques, we will detail the explicit calculation of the

scalar loop “f” from figure (2) for the A6 scalar modes (n, 0) with n odd. The results from

the other loops has been calculated using at least two of those techniques.

A.1 6D winding modes method

A 6D scalar field satisfies the following equation of motion:

(

−∂µ∂
µ + ∂2

5 + ∂2
6

)

φ = 0 . (A.1)

It is convenient to calculate the propagator in a mixed momentum representation in the un-

compactified 4D and position space along the extra directions. The propagator is therefore

the Green function of the following operator

(

p2 + ∂2
5 + ∂2

6

)

G6D
S (p, x5 − x′5, x6 − x′6) = iδ(x5 − x′5)δ(x6 − x′6) . (A.2)

The solution [16] , defining p =
√

p2 and −→y = (x5, x6), is:

G6D
S (p,−→y −−→y ′) =

∑

−→
Ω

1

4
H

(1)
0 (p |−→y −−→y ′ +

−→
Ω |) , (A.3)

where H
(1)
0 is the zero order Hankel function of first kind, and the sum over

−→
Ω =

(2πn1, 2πn2) with (n1, n2) ∈ Z
2 forces translation invariance ((n1, n2) are the winding

modes) . The propagator on the real projective plane is given by [25]

Gorb
S (p,−→y ,−→y ′) =

1

4

[

G6D
S (p,−→y −−→y ′) + pg G

6D
S (p,−→y − g(−→y ′))+

pr G
6D
S (p,−→y − r(−→y ′)) + pr pg G

6D
S (p,−→y − r ∗ g(−→y ′))

]

(A.4)

where pr and pg are the parities of the scalar field under rotation and glide and f(−→y ′) are

the transformed of the point y′ under the transformation f .

The loop correction to the A6 propagator is given by

iΠ66 = 2ig2
6C(rs)η66

∫

d4k

(2π)4

∫

d−→y Gorb
S (k,−→y ,−→y )A

(n,0)
6 (q,−→y )A

(n,0)
6 (q,−→y )

= iN (2π)2
∫

d4k

∫

d−→y Gorb
S (k,−→y ,−→y )A

(n,0)
6 (q,−→y )A

(n,0)
6 (q,−→y ) (A.5)

where A
(n,0)
6 (q,−→y ) = 1√

2π
sinnx5 is the wave function of the external field, η66 = −1 is

a metric factor and g2
6 = (2π)2g2 is the 6D gauge coupling. In the following, in order to
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simplify the notation, we will always omit the normalization factor N = 2g2C(rs)η66

16π4 . The

correction iΠ66 can be split into four terms whose signs depend on the parity of the scalar

field under the symmetries of the space:

Π66 = ΠT + pg ΠG + pr ΠR + pgpr ΠG′ ; (A.6)

ΠT is the contribution we would obtain on a torus of same radii and it is finite after the

kinetic term renormalization, the other three terms are generated by the symmetries of

the orbifold and we do expect a log divergence arising in ΠR due to the fixed points of

the rotation.

Torus. The torus contribution is given by the first term in eq. (A.4) plugged in eq. (A.5):

ΠT =
N

4
4π2

∫

d4k
∑

−→
Ω

1

4
H

(1)
0 (k |−→Ω |)

=
N

4
4π3

∫ ∞

0
dkE

∑

(n1,n2)∈Z2

k3
E K0

(

2πkE

√

n2
1 + n2

2

)

(A.7)

where K0 is the K-Bessel function of zero order and we have performed the Wick rotation

to write the last integral in Euclidean space. The zero winding mode (n1, n2) = (0, 0)

contribution is UV divergent, however such divergence is the same we would get in the limit

of un-compactified space, therefore it can be absorbed by a wave function renormalization

of the 6D field. Removing the (0, 0) mode from the sum and integrating in k

∫ ∞

0
dkE k3

E K0(kEa) =
4

a4
(A.8)

we obtain:

ΠT =
N

4
T6 with T6 =

1

π

∑

(n1,n2) 6=(0,0)

1

(n2
1 + n2

2)
2
∼ 1.92 . (A.9)

Glides. From the second term in the propagator eq. (A.4)

ΠG =
N

4
4π2

∫

d4k

∫

d−→y
∑

−→
Ω

1

4
H

(1)
0 (k |−→y − g(−→y ) +

−→
Ω |)sin

2 nx5

2π2
. (A.10)

As the glide does not change sign to the x5 component, the Hankel function does not

depend on x5 and its integral will lead to the normalization of wave functions. After Wick

rotating and integrating in k as before we obtain

ΠG =
N

4π2

∑

(n1,n2)∈Z2

∫ 2π

0
dx6

1

((n1 − 1/2)2 + (x6/π + n2 − 1/2)2)2
, (A.11)

where we numerically checked that

1

π2

∑

(n1,n2)∈Z2

∫ π

0
dx5

1

((n1 − 1/2)2 + (x6/π + n2 − 1/2)2)2
= 7ζ(3) . (A.12)
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One obtains a similar expression for the other glide ΠG′ , now x6 can be easily integrated

out and we are left with

ΠG′ =
N

4 π2

∑

(n1,n2)∈Z2

∫ 2π

0
dx5

1 − cos 2nx5

((x5/π + n1 − 1/2)2 + (n2 − 1/2)2)2
(A.13)

=
N

4
(7ζ(3) +B1(n)) ,

where we again numerically checked that the n-dependent term corresponds to the function

in section (3.4).

Rotation. The last contribution is coming from the rotation part: after the Wick rotation

ΠR =
N

4
2π

∫ ∞

0
dk

∫

d−→y
∑

−→
Ω

k3 K0(k |2−→y +
−→
Ω |) sin2 nx5 . (A.14)

To extract the divergent part, we cut-off the 4D momentum k at a scale Λ, and numerically

integrated over the compact space and summed. One can therefore show that the integral

is equal to

ΠR =
N

4
n2π2 log

Λ2 + n2

n2
. (A.15)

From the integral form, one can see that the divergences appear when |2−→y +
−→
Ω | = 0:

those points are indeed the fixed points of the rotation, i.e. the corners of the fundamental

square. In his notation, their geometrical origin is clear.

A.2 6D mixed propagator method

Using the full 6D propagator is complicated by the fact that one needs to deal with Bessel

functions and re-sum a double sum. On the other hand, 5D propagators can be easily

handled, in fact a generic scalar propagator takes the simple form:

G5D
S (χm, y − y′) =

i cosχm(π − |y − y′|)
2 χm sinχmπ

where χm =
√

k2 −m2 (A.16)

and m is the 5D mass of the scalar field. One can therefore exploit this form by expanding

in KK modes along one of the extra dimensions, say x6, and write the 6D propagator in

terms of resummed 5D propagators:

G6D
S (k,−→y −−→y ′) =

∞
∑

l=−∞
G5D

S (χl, x5 − x′5) f
∗
l (x6)fl(x

′
6) , (A.17)

where

fl(x6) =
1√
2π
eix6l and χl =

√

k2 − l2 . (A.18)

The fl’s are the wave functions on a circle and l the KK masses for the 5D modes. This

method is extremely powerful, especially to calculate corrections for modes like the (n, 0):
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the fact that the external fields do not carry any momentum along x6, together with

the orthonormality of the wave functions fl, allows to easily replace the integral in the

coordinate x6 with a sum. The orbifold propagator and the scalar loop we are considering

here are given by eqs. (A.4) and (A.5). Contrary to the winding mode method, this one

can be extended in a straightforward way to all the other loop diagrams.

Torus. After integrating over x5 and x6, the torus contribution can be written as:

ΠT =
N

4
4π2

∫

d4k
1

2π

∞
∑

l=−∞

i cotχlπ

2 χl
. (A.19)

To remove the UV divergence, we decided to renormalized it by regularizing each 5D KK-

propagators similarly to [15], so that:

ΠT =
N

4
2π

∫

d4k

∞
∑

l=−∞

i cotχlπ − 1

2 χl
. (A.20)

After Wick rotation, singling out the l = 0 contribution, one gets:

ΠT =
N

4






ζ(3) + 4π3

∞
∑

l=1

∫ ∞

0
dkE

k3
E

(

coth
[

π
√

k2
E + l2

]

− 1
)

√

k2
E + l2







=
N

4
∆′ with ∆′ ≃ 1.22 ; (A.21)

because of the improper regularization scheme, the finite part is different from the previous

correct result. However, the structure is the same, thus providing a powerful way to check

the results obtained with the other methods.

Glides. The contribution of the glides is finite, therefore we do not have the same issue

with the renormalization which arose for the torus one. Under the glide, x6 changes sign

and therefore:

fl(g(x6)) = fl(−x6 + π) = (−1)lf−l(x6) ; (A.22)

due to the orthonormality, the contribution of the l 6= 0 modes vanishes, and we are left with

ΠG =
N

4
4π2

∫

d4k

∫ 2π

0
dx5

i cosχ0(π − |x5 − g(x5)|)
2 χ0 sinχ0π

sin2(nx5)

2π2
. (A.23)

After Wick rotation, and integrating in x5, we obtain:

ΠG =
N

4
2π3

∫ ∞

0
dkE

k3
E

kE sinhπkE
=
N

4
7ζ(3) , (A.24)

that agrees with the result obtained using the winding modes.

Under the second glide

fl(gr(x6)) = fl(x6 + π) = (−1)lfl(x6) ; (A.25)
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therefore all modes contribute, and a (−1)l factor appears in the sum:

ΠG′ =
N

4
4π2

∫

d4k

∫ 2π

0
dx5

∞
∑

l=−∞
(−1)l i cosχl(π − |x5 − gr(x5)|)

2 χl sinχlπ

sin2(nx5)

2π2

=
N

4

∫ ∞

0
dkE 2π2k3

E

∞
∑

l=−∞
(−1)l 2(k2

E + l2) + n2

(k2
E + l2) (k2

E + l2 + n2)

=
N

4

∫ ∞

0
dkE π3







2k2
E

sinhπkE
+

2k3
E

√

n2 + k2
E sinh

(

π
√

n2 + k2
E

)







=
N

4
[7ζ(3) +B1(n)] . (A.26)

where

B1(n) = 2π3

∫ ∞

0
dp

p3

√

n2 + p2 sinh
(

π
√

n2 + p2
) (A.27)

From this expression

Rotation. Similarly to the glide, for the rotation, only the zero mode contributes:

ΠR =
N

4
4π2

∫

d4k

∫ 2π

0
dx5

i cosχ0(π − |x5 − r(x5)|)
2 χ0 sinχ0π

sin2(nx5)

2π2

=
N

4

∫

d4k
in2

k2 (n2 − k2)
. (A.28)

After Wick rotation, we regularize the integral by cut off as before:

ΠR =
N

4

∫ Λ

0
dkE 2π2kE

n2

(n2 + k2
E)

=
N

4
n2π2 log

Λ2 + n2

n2
. (A.29)

A.3 6D Kaluza Klein expansions method

This method, the most commonly used one, makes use of the expansion in 4D KK modes,

therefore one needs to compute loops with usual 4D propagators and then sum over the KK

momenta of the towers. However, computing all the necessary couplings between modes

can be tedious, and a Fourier transform that goes back to winding modes is necessary

for the renormalization of the torus contribution. Nevertheless, this method can be easily

applied to any loop structure.

Here we will again stick to one concrete example. The contribution of a scalar field

with parities (pr, pg) can be written as

Πpg pr = ΠT + pgΠG + pgprΠG′ + prΠR ; (A.30)
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(pr pg) (++) (+−) (−+) (−−)

(0, 0) 2 - - -

(m, 0) m even 2 - 2 -

(m, 0)
m 6= n

m odd
- 2 - 2

(n, 0) - 1 - 3

(0, l) l even 2 - - 2

(0, l) l odd - 2 2 -

(m, l) m 6= n 2 2 2 2

(n, l) l even 3 1 1 3

(n, l) l odd 1 3 3 1

Table 13. Numerical coefficients for the coupling ig2η66A
6
(n,0)A

6
(n,0)φ

†

(m,l)φ(m,l).

therefore if we calculated the contribution of all 4 parity possibility, we would be able to

extract each term:

ΠT =
1

4
(Π++ + Π+− + Π−+ + Π−−) (A.31)

ΠG =
1

4
(Π++ − Π+− + Π−+ − Π−−) (A.32)

ΠG′ =
1

4
(Π++ − Π+− − Π−+ + Π−−) (A.33)

ΠR =
1

4
(Π++ + Π+− − Π−+ − Π−−) (A.34)

The couplings that enter the loop, A6
(n,0)A

6
(n,0)φ

†
(m,l)φ(m,l) are proportional to ig2η66 with

a coefficient that depends on the wave function integrals. We listed such coefficients in

table 13 (here m, l 6= 0 are intended). For example, using the previous table, the correction

coming from φ++ and φ+− running into the loop are:

iΠ++ = N

(

∑

(m,l)≥1

2G(m, l) +
∑

l≥1

((−1)lG(n, l) + 2G(0, 2l))

+
∑

m≥1,m6=n

2G(2m, 0) + 2G(0, 0)

)

, (A.35)

iΠ+− = N

(

∑

(m,l)≥1

2G(m, l) +
∑

l≥1

(−(−1)lG(n, l) + 2G(0, 2l − 1))

+
∑

m≥1,m6=n

2G(2m− 1, 0) +G(n, 0)

)

; (A.36)

where

G(m, l) =

∫ ∞

0
dkE

k3
E

k2
E +m2 + l2

(A.37)

is the integral appearing in the 4D loop.
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Torus. For the torus contribution, we reconstruct a sum over all the KK modes on a torus

compactification: following the usual Fourier expansion in the double sum and removing

the zero winding mode contribution

ΠT = N
1

2

∑

(m,l)∈Z2

G(m, l) =
N

4
T6 . (A.38)

Glides. Following the same procedure, the glide contribution can be written as

ΠG =
N

4
2
∑

m∈Z

(−1)mG(m, 0) =
N

4
7ζ(3) ; (A.39)

while for the second glide

ΠG′ =
N

4
2
∑

l∈Z

(−1)l(G(n, l) +G(0, l)) =
N

4
(7ζ(3) +B1(n)) . (A.40)

Rotation. For the rotation contribution, the loop calculation gives:

ΠR =
N

4
2 (G(0, 0) −G(n, 0)) =

N

4

∫ Λ

0
dkE

(

kE − k3
E

k2
E + n2

)

=
N

4
n2π2 log

Λ2 + n2

n2
. (A.41)

B Loop integrals

The functions of n appearing in the loop corrections can be expressed in terms of the three

following integrals:

Φ1(n) = 2π3

∫ ∞

0
dk

k3

√
k2 + n2 sinhπ

√
k2 + n2

, (B.1)

Φ2(n) = 2π3

∫ ∞

0
dk

kn(
√
k2 + n2 − n)√

k2 + n2 sinhπ
√
k2 + n2

, (B.2)

Φ3(n) = 2π3

∫ ∞

0
dk

k3(
√
k2 + n2 − n)

n
√
k2 + n2 sinhπ

√
k2 + n2

. (B.3)

Those integrals can be computed analytically, and we found

Φ1(n) = 2πnφ2(n) − φ3(n) , (B.4)

Φ2(n) = n(π3 + π φ2(n)) , (B.5)

Φ3(n) =
1 − 2n2

2n
π3 − 2φ3(n) +

3

2πn
φ4(n) ; (B.6)

with

φs(n) = Lis(e
2πn) − 2s Lis(e

πn) − i
2s−1πs

Γ(s)
ns−1 , (B.7)

where Lis is the Polylogarithmic function of order s and the imaginary term cancels the

imaginary parts of the Polylogs to make a real function of n. Numerical values of the
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n = 1 n = 2 n = 3

Φ1 1.43 0.109 0.0067

Φ2 0.54 0.047 0.0030

Φ3 1.02 0.037 0.0015

Table 14. Numerical values of the integrals for the first 3 modes. The value is exponentially

suppressed for large n.

integrals for the first 3 modes are listed in table 14. The functions appearing in the loop

corrections are (where we report the numerical value for n = 1):

B1 = Φ1 ∼ 1.43 , (B.8)

B2 = Φ2 + Φ3 ∼ 1.56 , (B.9)

B3 = Φ1 + 6Φ2 − 3Φ3 ∼ 1.61 , (B.10)

F1 = Φ1 − 2Φ2 ∼ 0.35 , (B.11)

F2 = Φ2 ∼ 0.54 . (B.12)
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