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Abstract: Wireless sensor networks (WSNs) have various applications which include zone surveil-
lance, environmental monitoring, event tracking where the operation mode is long term. WSNs are
characterized by low-powered and battery-operated sensor devices with a finite source of energy.
Due to the dense deployment of these devices practically it is impossible to replace the batteries.
The finite source of energy should be utilized in a meaningful way to maximize the overall network
lifetime. In the space domain, there is a high correlation among sensor surveillance constituting
the large volume of the sensor network topology. Each consecutive observation constitutes the
temporal correlation depending on the physical phenomenon nature of the sensor nodes. These
spatio-temporal correlations can be efficiently utilized in order to enhance the maximum savings
in energy uses. In this paper, we have proposed a Spatial and Temporal Correlation-based Data
Redundancy Reduction (STCDRR) protocol which eliminates redundancy at the source level and
aggregator level. The estimated performance score of proposed algorithms is approximately 7.2 when
the score of existing algorithms such as the KAB (K-means algorithm based on the ANOVA model
and Bartlett test) and ED (Euclidian distance) are 5.2, 0.5, respectively. It reflects that the STCDRR
protocol can achieve a higher data compression rate, lower false-negative rate, lower false-positive
rate. These results are valid for numeric data collected from a real data set. This experiment does not
consider non-numeric values.

Keywords: WSN; spatial correlation; temporal correlation; data aggregation; STCDRR protocol

1. Introduction

Wireless sensor networks (WSNs) consist of sensor devices whose primary function is
to sense data. These are used to detect and accordingly respond to various signals from
the environment. Sensors are small in size, so they have less energy. Hence, saving energy
is one of the most challenging aspects of WSNs. Sensors are responsible for converting
signals from one form to another such as humidity, pressure, temperature, voltage, light,
etc. Sensor devices are battery powered and it is not possible to change the battery fre-
quently [1]. To prolong the battery life energy consumption should be minimized for
healthy communication in the network. The main function of a sensor node lies in three
levels which are firstly sensing the data then secondly processing the sensed data and
lastly communicating the processed data. A huge amount of the finite source of energy is
consumed in the communication process as it is associated with various operations such as
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the collision of data, idle listening of a channel, over-hearing of the data, etc. Sensor nodes
can process the raw data assembled from sensors into useful information before portioning
it with other nodes. In hierarchical WSNs, the sensor nodes are found in various structures
which can be tree-based topology, ring-based topology, and star-based topology [2]. In
our work, we have considered a tree-based clustered sensor network. In WSNs, the sensor
nodes collaborate in clusters for smooth task execution. One of the sensor nodes in each
cluster is assigned as a CH (cluster head). The cluster head becomes exhausted in terms
of its energy resources quicker than the other sensor nodes present inside the cluster. The
inter-cluster and intra-cluster configurations also consume a lot of energy for the message
communication from the source node to the destination node in WSNs. Therefore, the peri-
odic reassignment task of cluster head leads to the usage of more energy which gradually
yields energy inefficiency and enhances the reduced lifetime of the network [3]. One of the
major limitations of WSNs is the insufficiency of resources such as energy, route optimality,
bandwidth, and network coverage. The spatial and temporal correlation among the sensor
nodes is one of the distinctive features of WSNs which can be utilized effectively for en-
hancing the overall network lifetime thus establishing an energy-efficient communication.
Spatially separated sensor data are more useful to the sink node as compared to the highly
correlated data [4]. Therefore, the communication of all the sensor nodes is not required
eventually reducing the energy consumption as a smaller number of measurements will
be sufficient to communicate to the sink. Similarly, event tracking applications of WSNss
require periodic observation of the sensor nodes. Transmission of energy radiating physical
phenomena of sensor node constitutes temporal correlation among each observation. Thus,
exploiting spatio-temporal correlation phenomena can effectively yield minimum energy
expenditure along with the collaborative nature of WSNs [5].
The major contributions of the paper are listed below.

e A spatial correlation-based data aggregation protocol named STCDRR which works
in two levels namely source level and aggregator level is considered [6].

e  To eliminate data redundancy and to enhance the smooth functioning of WSN applica-
tions, STCDRR is implemented.

e  The protocol is extensively exterminated using different parameters such as aggrega-
tion ratio, time complexity, and energy consumption.

e  This protocol outperforms in the context of the above parameters compared to the KAB
(K-means algorithm based on the ANOVA model and Bartlett test) and ED (Euclidian
distance) techniques.

The remainder of our paper is organized as follows: Section 2 presents the related
works followed by Section 3 where background study is discussed in detail. Section 4 repre-
sents the methodologies, presumptions, and overall network representation then Section 5
represents the STCDRR (Spatial and Temporal Correlated Data Redundancy Reduction)
protocol. Section 6 presents the experimental results and performance evaluation of the
proposed STCDRR protocol followed by Section 7 which provides a detailed comparison
of STCDRR protocol with two existing data aggregation techniques. Section 8 presents the
conclusion and future work followed by the references.

2. Literature Review

An approach to eliminate the redundant spatial and temporal data was proposed in [7]
which relies on two levels. The first level minimizes the data channeling using the Kalman
filter for data approximation. The second level presents the elimination of redundant data
based on grouping algorithms that work at the source level and the sink level separately. It
provided a clear picture of data accuracy and reliability in terms of energy consumption. A
novel data aggregation named REDA (Redundancy Elimination for Data Aggregation) in
WSNs was proposed in [8]. It is based on a tree-based hierarchical clustered sensor network
where energy savings are up to 40% regarding CH (cluster head) selection. It uses low
bandwidth for the smooth functioning of the cluster head. The CHs are selected based on
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the lookup table formation generated by the residual energy and changing position of the
CHs yield data transmission of the changed pattern.

Zhou et al. discussed an energy-structured data collection scheme that exploits the
spatial and temporal correlation for the cluster-based sensor networks [9]. In the intra-
cluster transmission dual prediction is used to deduce the redundancy temporally. A
hybrid compact sensing method is used for inter-cluster data communication to reduce the
data redundancy spatially. For the prediction model, an error threshold selection scheme is
proposed which utilizes the combination between the energy dissipation and the recov-
ery estimation making the proposed method fit for various sensor network applications.
Tayea et al. proposed a data redundancy elimination approach that takes advantage of the
spatial and temporal correlation among sensor observations to determine the sampling
method for the distinct establishment of sensor nodes in the network area [10]. It eliminates
the data emission rates by not violating the quality of the data. At the sink node, one
back-end re-configuration algorithm is used which can reproduce the data to check the
redundancy among the observed data set. A data aggregation based on a directional virtual
backbone (DVBDAS) scheme is proposed by evaluating and balancing the energy load
criteria as the virtual backbone which can build the clusters among the sensor nodes in the
network [11]. The volume of energy dissipation is measured by calculating the optimized
results of the cluster-based environment. Lu et al. proposed a data aggregation approach
based on the distributed data convergence model exploiting the spatio-temporal correlation
in WSNs [12]. This incorporates the centroid distance and similarity to estimate each cluster
node’s attack degree. A data aggregation approach constructing an energy-efficient com-
munication scheme is proposed in [13] by applying the GCC algorithm (Greedy Corrected
Clustering) with the combination of the k-means algorithm to a LEACH (Low Energy
Adaptive Clustering Hierarchy) protocol by exploiting the spatial correlation only. This
algorithm limits the exploration of temporal data redundancy. This approach can reduce
distortion, enhance the network lifetime and save energy.

In another work, Patil et al. presented a novel data redundancy reduction approach
that is based on machine learning techniques [14]. It builds an aggregation tree of a
defined number of sensor nodes. The Support Vector Machine (SVM) method eliminates
the redundant data on the tree. Moreover, Locality Sensitive Hashing (LSH) eliminates
the false data based on similarity and aggregates the non-redundant data to the superior
node. Yuan et al. proposed a Correlation Degree based on Data Density (DDCD) clustering
approach for calculating locally available data for the sink nodes in the network [15]. The
sampled data is observed exploiting only the spatial correlation of the data to the sink
node. No criteria have been mentioned for the temporal redundancy of the sampled data.
It calculates the correlation among a sensor node’s data and its adjacent sensor node’s data
enhancing the least contortion on their correlation. In [16], Redundancy Elimination for
Accurate Data Aggregation (READA) is proposed where it eliminates the duplicate data by
applying the grouping mechanism for organizing the total network into clusters where each
cluster acts as cluster head. It is a delayed process where data loss and accuracy issues may
occurs. Yousefi et al. suggest a structure-free real-time routing protocol for static sensor
nodes in WSNs named RAG (Real-Time Data Aggregation) which exploits the temporal
and spatial convergence of the data packets [17]. It takes advantage of available data by the
waiting policy and aggregates the delayed data packets by the any-casting policy based
on real-time data operating for the Medium Access Control (MAC) layer of the network.
Some further modifications can be performed on the RAG protocol in order to be fit for
mobile WSNs. Moreover, the spatial correlation-based data aggregation and enhancement
for the smooth functioning of WSN applications can be implemented further.

3. Background Study
3.1. Spatial Correlation

Various applications of WSNs need dense deployment of sensor devices scattered in
the sensor field. To satisfy the optimal coverage, the sensor nodes communicate with each
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other in the space domain. It results in the spatial correlation among the sensed data which
are later processed and communicated in a huge number. The large volume of correlated
data transmission increases the overall system overhead resulting in maximum energy
utilization [18]. As the sensor nodes are characterized by battery-operated devices utilizing
a finite source of energy it is important to exploit the spatial correlation among these data.
Reducing the data redundancy by taking the advantage of spatial correlation the energy
consumption can be decreased. Dense network topology results in multiple recordings of
a single event which constitute the high correlation among sensor data. Inter-node and
intra-node separation fluctuate the density of correlation [19].

3.2. Temporal Correlation

A wide range of applications of WSNs such as habitat monitoring, event tracking,
defense, video surveillance requires sensor nodes to perform periodically. This sporadic
assignment feature of sensor data transmission results in the collection of correlated data in
multiple numbers of timestamps at a particular time [20]. The nature of the physical occur-
rence results in a temporal correlation between every successive consecutive monitoring
of the sensor nodes. For adequate coverage of multiple sensor observations, the degree of
correlation is dependent on the features of events that occurred [21].

3.3. Data Aggregation

The wireless sensor networks comprise tiny sources whose primary function is to
detect various environmental phenomena and then forward them to the concerned base
station. This communication carries a lot of cost, time, energy, accuracy, and reliability
constraints [22]. Adopted by the finite source of energy the sensor node devices consume
the maximum amount of energy, yielding a decreasing trend of battery life of devices. It
may happen that any base station requires any information regarding any phenomenon
happening near to it. Hence, in this scenario, there may be present any node to provide such
spatio-temporal information related to it [23]. Temporal redundancy happens when there is
a repeated phenomenon in various timestamps in a short time interval. Spatial redundancy
happens when the phenomenon is correlated in space constraints, i.e., location based.
Detection of the required event-based phenomenon which exhibits the spatial redundancy
of the received data in the corresponding network fields [24]. They broadcast useful
information in the direction of the desired sink after detecting the event. Remote sensor
areas such as habitat monitoring, underwater sensor field are energy-consuming areas
in the order of event detection and transmission. Repeated event detection phenomena
often lead to network overhead in terms of energy, accuracy, latency, and reliability which
eventually leads to redundant data transmission to sink [25]. Data aggregation can be
chosen as an efficient solution to deal with the lacuna of energy for the sensor devices.
This filtering technique can be levied both at the source and sink level to deal with the
transmission of the redundant data. Aggregation functions such as MAX, MIN, SUM,
COUNT [26] or any other mathematical calculations such as MATCH FUNCTION [27],
CORRELATION COEFFICIENT TECHNIQUE [28] can be used to exploit the spatial and
temporal data redundancy to achieve the desired goal [29].

4. Presumptions and Network Structuring
4.1. Presumptions

Let us consider S to be a multi-hop sensor network that consists of # sensor nodes and
a solitary sink node. Let us consider the sensor network consists of cheap and small size
sensors that have low power and memory. The nodes located in the network are invariable
and kindred in nature. These nodes have distinctive d to discriminate them from other
sensor nodes present in the network. The base station is provided with adequate hardware,
ample memory, and abundant power. The source nodes are responsible for sensing different
kinds of weather information such as voltage, light, humidity, temperature, etc. Here,
sensing the data is performed by the source nodes. The aggregation task is completed
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by the aggregator nodes. The timing scheme is intermittent which means every source
node at time slot j senses a new data measurement after time T node forms a vector of data
measurement which is considered to be its weight function (wt).

4.2. Network Structuring

The network is of a hierarchical tree topology-based clustered structure. The nodes
are considered to be static. The source nodes of the network can be either source (B) node
or intermediate (C) node such as described in Equation (1).

C+B=n 1)

Using the Tiny AGgregation protocol (TAG) [30], an aggregation tree is constructed
with a base station as the tree root. TAG is a service of aggregation for the sensor networks.
It provides an easy interface for data gathering based on the database query languages. It
executes queries related to relevant aggregation in a time sequence manner. It executes
in the network aggregation by combining the data flow processing and sending relevant
readings by discarding irrelevant data readings [31]. The sink node provides the necessary
queries to the network using the SPINS (Security Protocols for Sensor Networks) proto-
cols [32]. SPINS is a type of security protocol consisting of the SPEN (Secure Network
Encryption Protocol) [33] and the TESLA (a micro version of Timed, Efficient, Streaming,
and Loss-tolerant Authentication Protocol) protocols. SPEN provides data confidentiality
with the least overhead. TESLA broadcasts the authenticated data stream. SPINS building
blocks authenticate the routing protocol [34].

4.3. State of the Art

Transmission of data between the cluster head and the members of the network is
a type of single-hop communication. Periodically, the member nodes collect the data
and send it to their appropriate cluster head. They have two phases that can diminish
the redundant data induced by the nodes at each period. The sensor nodes sense the
environment periodically to collect the data measures. Recently, the clustering method has
emerged as an efficient technique to control topology due to its scalability and network
maintenance nature. However, most of the existing techniques focus on the selection of
the cluster head where the processing of the data is performed only at the cluster level, not
at a particular node level. Here, we focus on the processing of the data both at the node
level and the aggregator level. We have compared our proposed protocol STCDRR with
two existing techniques, KAB and ED.

4.3.1. Data Aggregation at Source Level

The data collected by the sensor nodes in WSNs are highly correlated due to weather
monitoring. It gives redundant data. If sensor nodes send all the collected data then energy
wastage will lead to depletion of network lifetime. In WSNSs, each period is divided into
equal time slots. Periodic data collection forms a vector measure of the data. Suppose,
in WSN §, period p is divided into time slots as [a1,ap,...... ar] having vectors of mea-
surements N; = [nj1, M, oevnee... ,njy]. Suppose S takes 4 measurements at the end of
each period. It may happen that N; contains homogeneous measurements. So, the Similar
function is assigned to identify whether two data measurements are similar or not. The
Similar function for period p can be defined as:

Lif [ —ny|| < ¥

Similar (ﬂi]'nik) = { 0 elsewise

where, n;j n;; are two similar measurements of a data vector and Y is the user-defined
threshold value.
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The weight of data n;; is the number of similar measures of a vector. The source
level aggregation searches for similar measurement of a data vector. In case it finds any
redundant data, it deletes the same and updates the weight to 1.

4.3.2. Data Aggregation Using Similarity Function (JACCARD)

The JACCARD similarity Function supports many other similarity functions. So, it
is widely used for various applications. It returns a value [0,1]. The higher the value, the
more the similarity. In order to reduce the similar values, the highest cardinal value is
treated as a duplicate pair and can be eliminated. The size of the data set is reduced before
transmission to the sink node.

Example:

Suppose, there is a sensor R.

Ataperiod k, calculated vector measurements N; = [7, 7.8, 7.9, 9.2, 9.5, 9.6, 9.7, 10, 10.1]

Considering ¥ = 0.4,

The similarity function will transform the set of measures into N/ = {(7,3), (9,5), (10,2)}

where 3, 5, 2 are the weights of 7, 9, 10, respectively.

4.3.3. Data Aggregation Using the Variance Method (KAB)

Calculation of variance for the data set measurements is a way to find out the redun-
dant data. The variance (P) can be identified between data measurements in a group of sets
by applying the ANOVA model method. This method is used to detect data pair sets with
similar values and can be eliminated.

For a threshold value £, the variance is calculated according to the Bartlett test and by
applying the chi-square table.

When P > £, the data pair is considered to be redundant and can be eliminated.

If P < £, the data pair is valid and can be transmitted from the cluster head to the
sink node.

The k-means algorithm is applied to the ANOVA model based on the calculated mean

value of the data sets. Then, n number of parent nodes is divided into \/g number of

children nodes. At the end of each time period, one group of sets is selected from each data
set along with their IDs for transmission.

4.3.4. Data Aggregation Using the Distance Function (ED)

A distance function is often used in WSNs for the deployment of sensor nodes in
remote areas of a network. For data localization, the distance is estimated for the intra-
sensor and inter-sensor nodes. The data measurement along with weights is calculated

from the below formula:
w

D(Xi, Xj) =/ ). (xik - xjk)2
k=1
where w is the user-defined threshold value.
When, D < w, the data set is considered redundant and can be eliminated before
transmission [35].

5. STCDRR Protocol

The proposed STCDRR protocol enhances the reduction of data redundancy in WSNs.
It operates in the source level and the aggregator level separately. First, it reduces the
temporal data redundancy at the source level for a time T consists of small timestamps.
Then it reduces the spatial data redundancy at the aggregator level using the Pearson
Correlation Coefficient technique. The In-Network or Data aggregation method employs
some aggregation functions which are SUM, COUNT, MAX, MIN, AVG to get a relevant
aggregated result.
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5.1. Eliminating Temporal Data Redundancy at Source Level

() Assume that the root node observes the homogeneous (or identical) input estimate
when the discerning neighborhood changes periodically or the time slot (j) is minimal.
For reduction in dimensions, the juncture recognizes the identical data measurements.
(I) These duplicate data are eliminated using the JACCARD similarity [36] match function.

The match function between two data measures is defined as

Lif [lmy; —my || <0
0, otherwise

match(m;, my) = { 2)

Equation (2), describes the mathematical formulation of the match function. Here, the
threshold value is dependent on the type of application. The match function returns 1 for
redundant data which means the two data values are similar.

(II) The poundage of the input estimate is denoted by wt which is the numeral of the
successive phenomenon of the identical or same measurement in the same set.
(IV) After the accomplishment of the time interval, the root node converts the native vector
of input estimates into a set accommodating the dissimilar input estimate as derived
in Equation (3),
Xi = {(xin, wtin), (xig, wtia), ..., (Xjg, whig) } ®3)

where k < t.
(V) The weighted cardinality of X; can be denoted as | X;| which is the grand total of all
the input estimates in X; which can be denoted as described in Equation (4).

|Xi
wt(XZ-) = Zwt(ml]) =1t (4)
j=1

Algorithm 1 proposes the source level data redundancy reduction temporally using
the JACCARD similarity index.

Algorithm 1: Data redundancy reduction using JACCARD

Input: new data measurem;j,
Output: reduced dataset with unique values

Regquire: Existing data measurement value M;(m;, mjp, ... ... , My, ) in time period T
Ensure: to forage homogeneous values in M;

Start:

fori=1:n

{

forj=2:n+1

{

pi = min(m(i,n), m(j,n))
qi = max(m(i,n),m(j,n))
} d

ratio = S

if (ratio < 0)

data my, forwarded to sink

Stop

After the time period T, the source node aggregates the non-redundant data measure-
ment to the sink node rather than aggregating the original data vector.

5.2. Eliminating Spatial Data Redundancy at Aggregator Level

The intermediate nodes are responsible for executing the aggregation function at the
aggregator level. The root nodes dispatch the aggregated input value set to the aggregator
nodes after data collection. Corresponding the child node distributes the set of measured
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data vectors along with their weights to each aggregator node. To eliminate the data
redundancy among the collected data set implementation of the correlation coefficient
technique method is a suitable solution. In this paper, we have used Pearson’s Correlation
Coefficient method to discover the highly correlated input set [37]. Thus, discarding the
unwanted similar data set, only the relevant non-redundant data sets are forwarded to
the sink node. A lesser number of transmissions can effectively reduce the overall energy
consumption enhancing the network lifetime.
An overview of Pearson’s Correlation Coefficient (o) method.

(1) This technique is a covariance measurement of the correlation degree between two
input set estimates. Sensor data sets associated with their weights can be evaluated
using this technique. Its value varies from —1 to 1. A negative correlation exists when
the data set results in the value of —1. Getting a resulting value of 0 means there is no
correlation. The positive correlation is derived when a value of 1 is obtained among
two input sets.

(2) We can formulate this correlation function for two sensor input sets and along with
their weights as follows:

<y cov(Xi,Y]-;wt) )
pi i = \/cov(Xi,Xi;wt)cov(Yj,Yj;wt)
Z?:l wt; (X; — m(X;; wt)) (Y] — m(Y]‘; wt))
cov(X;, Y;;wt) = 6
( o] ) Z?:l wti ( )
Y wtiX;
m(X;wt) = == "~ 7

where,

cov(X;, Yj;wt) = The weighted covariance between X; and Y;,
n = Gross number of input estimates in every data set,

m(X;; wt) = The weighted mean of X,

m(Yj; wt) = The weighted mean of Y;.

Equations (5)—(7) describe the mathematical formulation of the Pearson Correlation
Coefficient and Covariance and Weighted Mean of two sets, respectively.

(3) Here “1” is the threshold value that is decided by the type of application. Two input
measures are highly correlated if and only if it satisfies Equation (8) as follows:

Pxy; < T 8)

(4) The agglomerated value is derived for every single pair of received data sets. The
correlation coefficient value less than the threshold value indicates redundancy among
the two data sets and repudiates such pairs containing either one or two sets.

(5) Then, it computes the new weight value among the two compared input sets. Then
the aggregator picks the one which has the highest cardinality among the two. Then
the new aggregated value along with its latest weight is added to the record.

Algorithm 2 is designed for the aggregator level aggregation using the Pearson’s
Correlation Coefficient method. After receiving the aggregated value of the non-redundant
data set, the aggregated input value should be transmitted to the base station.
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Algorithm 2: Pearson’s Correlation Coefficient

Input: Data measure set X; , Y]-
Output: Aggregated data set along with weigh with highest cardinality
Regquire: set of input measures X = {X1, X2, X3, .« cvvovevvn.. , Xy}, T(threshold value)
Ensure: vector of selected input set Q
initialize Q, Ry, H = {O}
Start:
for every input set X; € X do
Ri =Ry U {Xz}
end for
H=H U {R;}
rerun
for respective pairs of input sets (X;,Y;) € Ry do
if px,y; < T then
consider | X;| > ’Yj’
discard each set of input sets which include either X;or Y; from H
wt(X;) = number of dropped pairs incremented to 1
Q=0Q U{X;wt(X;)}
else
H=H U (X} U {v}
end if
end for
till none of the set X; in H
return Q
Stop

6. Performance Evaluation

For experimental results, we have taken the Intel Berkley Research lab data set where
46 Mica2Dot sensors collected the different weather information which was light, humidity,
voltage, temperature, pressure, along with the date and timestamp, using a 31 s inter-
val [38]. This real data set also contains epoch and moteid. Here, the data are collected on
the TinyOs [39] operating system platform using the TinyDB [40] query processing and
in-network aggregation procedure. In our experiment, we have taken the temperature
attribute for ease of work. We evaluated the experiment on nearly 2.5 million data readings
collected from the sensors. Here, we assumed that a recurrent cluster head is situated at
the center place of the laboratory and collects the data from each sensor placed inside. At
first, every node reads the collected data measurement periodically and sends its data set
along with its weights at the end of the step. By comparing these steps in three different
algorithms, an observation can be made to check the efficiency with respect to the two other
existing approaches. The implementation part is performed in the MATLAB simulator [41].
In our work, we have compared our proposed protocol STCDRR with two algorithms
which are namely KAB (K-means algorithm based on the ANOVA model and Bartlett test)
and ED (Euclidian distance) [42]. ED is a simple and effective technique used in various
applications [43—48]. We have the comparison results in terms of the key parameters and
performance metrics which are described in Section 6.1 and 6.2.

6.1. Key Parameters

The important parameters those can be associated with the underlined work are
as follows.

6.1.1. Threshold Function Value

This is the threshold value that is user-defined. As our protocol STCDRR works in two
levels namely the source level and the sink level. Match function threshold value is taken
for the source level data aggregation where we have used the JACCARD similarity match
function to reduce the temporal data redundancy. Correlation Coefficient threshold value
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is taken for the sink level data aggregation where we have used the Pearson’s Correlation
Coefficient technique to reduce the spatial data redundancy.

6.1.2. Data Measures ()

The number of data measures recorded in the timestamp “T” can give the comparative
result of our proposed protocol STCDRR with KAB and ED.

6.2. Performance Metrics

The performance metrics for our work are as follows.

Aggregation Ratio

The aggregation ratio can be defined as the total number of data packets generated
to the total number of data measurements sent. Each sensor node finds the similarity
between the data measurements collected for each time period during the local aggregation
process. The data measurements are assigned with a weight dependent on the threshold
value chosen for the experiment. With the increase or decrease of the threshold the data
redundancy among data increases or decreases, respectively, after applying the similarity
match function during the local aggregation process. The poundage of the input estimate
is given in Table 1 as numerical values.

Table 1. Parameters table.

S1.No. Parameter Notation Value

1 No. of Data « 50, 100, 200
Measurements

By Threshold of Distance ” 03,04, 05,07
Function
Threshold of

3 Correlation T 0.3,0.4,0.45,05
Coefficient

4 Threshold of Match 5 0.02, 0.04, 0.06, 0.1
Function

Energy Consumption

Itis defined as total energy spent for executing the process of data packets consequently
in the network. As the data aggregation is divided into two phases, namely data aggregation
at source level and data aggregation at sink level so energy spent on these levels need to be
calculated and reduced for an enhanced network lifetime.

Data Accuracy

Data accuracy is the representation of data loss measurement. It can be obtained by
dividing the total number of data packets measured by the sensor nodes which are similar
in nature and do not get forwarded to sink over the whole data measure taken by the sensor
for a particular time period, after applying the local data aggregation. Evaluation of data
accuracy is based on the percentage of data loss measures collected at the cluster head.

Time Complexity

The accuracy of an efficient algorithm is based on the measurement of the time taken
to execute the whole process. The execution time on an algorithm is dependent on the
threshold value taken for the experiment.

7. Experimental Results

Considering the above performance measures and key parameters we have calculated
and compared our proposed protocol STCDRR with two existing algorithms, KAB and ED
in terms of energy consumption, aggregation ratio, data accuracy, and time complexity.
Experimental results show that the STCDRR protocol performs well against to KAB and
ED and reduces the energy consumption carried out for forwarding data packets from
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the source level to the destination level in the network resulting in an enhanced network
lifetime. Table 1 summarizes the key parameters taken for our experiment.

(1) The number of sensors calculated by individual sensor node for a period has some
values. Here we have taken 3 values 50, 100, 200. It is denoted by o.

(2)  The threshold value for the distance function is denoted by f;. We have taken 4 differ-
ent values 0.3, 0.4, 0.5, 0.7 to check the difference in results for each value.

(3) To compare at the aggregator level the threshold values are taken to be 0.3, 0.4, 0.45, 0.5.

(4) The thresholds for the match function are 0.02, 0.04, 0.06, 0.1.

7.1. Source Level Experiment

Aggregated data after source level aggregation is forwarded to the sink. From Figure 1,
we can observe that the percentage of the aggregated data is on an increasing trend with
respect to the increase in the threshold value.

Aggregated Data at Source level

I ThesholcVale |

5

Percentage of data forwarded to Sink

Figure 1. Percentage of data after applying source level aggregation.

7.2. Sink Level Experiment
7.2.1. Aggregation Ratio

Figures 2—4 shows the remaining aggregated data in percentage after applying the sink
level aggregation process. These aggregated data are forwarded to the cluster head after
filtering. One hundred percent of the data will be forwarded to the sink if the aggregation
process is not being applied. However, it is observed in the figures below that the percentage
of aggregated data is subsequently low in our proposed technique as compared to the
other two techniques. After each period, the sensor node sends data to the cluster head.
It is noticeable that after applying the aggregation process data collection by the sensor
node is reduced by 75% up to 93%. Hence, it is concluded that the STCDRR protocol is
efficient in terms of aggregation ratio by eliminating the redundant data measurements
after completion of each time period as compared to KAB and ED.

Aggregation Ratio for Threshold 0.3

of Aggregated Data

ercentage

E

Figure 2. Aggregation ratio for threshold, 0.3.
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Aggregation Ratio for Threshold 0.4,0.45

5

A
E:

35.360

o
5

o
<)

~
b

5

o

Percentage of Aggregated Data
e
54

Figure 3. Aggregation ratio for thresholds, 0.4, 0.45.

Aggregation Ratio for Threshold 0.5

35.360

Percentage of Aggregated Data
- oo w
» 1]

1.5711.5711.571

Figure 4. Aggregation ratio for threshold, 0.5.

7.2.2. Energy Consumption

Energy consumption for varying threshold values can be observed in Figures 5-7.
It is observed that with a minimum threshold value, i.e., 0.3 the energy consumption of
our proposed approach is comparatively higher than KAB and ED. However, with the
increase of the threshold value, there is a subsequent decrease in energy consumption in the
proposed approach which implies the efficiency of the proposed algorithm. The STCDRR
protocol can save from 70% up to 90% of the energy of the sensor node which makes it
suitable for enhancing the network lifetime. Here, we have calculated the energy in terms
of miliJoule (m]).

Energy Consumption for Threshold 0.3
[Coanoan

o

o
IS

o
o

Energy Consumption of Aggregated Data

STCDRR KAB ED

Figure 5. Energy consumption in mJ for threshold, 0.3.
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- Energy Consumption for Threshold 0.4,0.45
g0
S
% 0
Figure 6. Energy consumption in m] for thresholds, 0.4, 0.45.
- Energy Consumption for Threshold 0.5
8
i?
§
B STCDRR ED
Figure 7. Energy consumption in mJ for threshold, 0.5.
Calculation of Energy Consumption:
E=Px (. 9)
1000

where,

E = Energy measured in miliJoules (m]) or in Kilowatt-hours (Kwh),
P = Power units in Watts,
t = Time over which the power or energy was consumed.

Example:

Let us consider 6300 rows of temperature attributes of the data set.

Suppose, the average voltage of 6300 rows = 2.6

Calculating the voltage for 6300 rows of data = 6300 x 2.6 = 16,380 which is 1.571 per-
centage of aggregated data.

So, calculation of energy consumption will be,

E =6300 x 0.01571 = 98.97 (99) which is the number of aggregated data to the clus-
ter head.

So, the calculation of total energy consumption will be:

1 node consumes 2.6 m] energy AD 99 nodes will consume 99 x 2.6 = 257.33 m] of V.

7.2.3. Data Accuracy

The main goal is to send very less data to the destination node or sink. In the KAB
technique, only one set of data elements is sent among a group of sets to the sink which in
turn increases the loss of data measurements. However, in ED, the integrity of conservation
of information is maintained. Figures 8-10 imply the data accuracy for three approaches
with varying threshold values. It is clearly visible from the graph that the proposed protocol
gives the best results in terms of measurement of the accuracy of the data.
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Data Accuracy for Threshold 0.3

Accuraey in Percentage

Figure 8. Data accuracy for threshold, 0.3.

Data Accuracy for Threshold 0.4, 0.45

Accuracy in Percentage

Figure 9. Data accuracy for thresholds, 0.4, 0.45.

100 DataAccuracy for Threshold 05

91.3090.9000 000

Accuracy in Percentage

Figure 10. Data accuracy for threshold, 0.5.

7.2.4. Time Complexity

The execution time required for a process is the total time taken for the completion of
the task. In KAB, the execution time is calculated on the basis of the number of iterations of
the loops in the algorithm. In ED, the comparison between two redundant sets takes less
computation time as compared to KAB. In our proposed approach the execution time taken
to identify the redundant set is least as compared to KAB and ED as it uses the JACCARD
Similarity Function. Complexity in computation is O(|X;|?) which is almost half of the
data measure sensed at each period eventually reducing the energy consumption. Time
complexity in KAB is in order of O(x) where x is the number of total received data sets. In,
ED complexity is, at most, in order O(x?).

This comparison is analyzed in Figure 11.
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Time Complexity

i time in Seconds
o o <

o
w

STCDRR KAB ED

Figure 11. Execution time of STCDRR, KAB, ED in seconds for data measurements 50, 100, and 200.

7.2.5. Discussion

ED preserves the data integration as compared to KAB and STCDRR as the distance
function has the highest cardinality as compared to the other two methods. Data loss
measurement is good in KAB as compared to that in ED and STCDRR as it constitutes the
ANOVA model irrespective of the increase or decrease of distance and vice-versa. Data
accuracy and time complexity in STCDRR are high as compared to KAB and ED. Data
latency at the cluster head is high for the STCDRR protocol as it undergoes approximately 30
more rounds of execution as compared to KAB and ED. For energy efficiency, the STCDRR
protocol can be chosen as an efficient protocol as it preserves up to 90% of total energy.

8. Conclusions and Future Work

In Wireless Sensor Networks, eliminating the duplicate data measurements is a very
limiting task to transmitting the required information as it absorbs most of the battery-
driven energy. So, it is very important to conserve the finite amount of energy to enhance
the overall network lifetime. In order to increase the network lifetime, it is necessary to
reduce the data redundancy to eliminate the duplicate data. In this work, we have proposed
the STCDRR protocol which works in two levels namely the source level and the sink level.
Data aggregation is carried out by utilizing the JACCARD similarity function in the source
level and Pearson’s Correlation Coefficient technique in the sink level or aggregator. Our
approach uses a real data set and it is implemented in the MATLAB simulator for data
accuracy, energy consumption, and aggregation ratio. The graphical results show our
protocol outperforms the existing techniques, KAB and ED. For future work, we will utilize
this protocol for a multi-attribute data set with a greater number of key parameters and
performance measures to minimize energy utilization for an enhanced network lifetime.

In this work, we have used only one data set and only one attribute (temperature) of
the data set. It is a limitation of this work. The potential result that our proposed protocol
will give for two datas ets or two attributes of one data set is yet to be explored. In the
future, we will try to experiment with our protocol, STCDRR, using more than one data set.
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