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Abstract A Biogeochemical Southern Ocean State Estimate (B-SOSE) is introduced that includes carbon

and oxygen fields as well as nutrient cycles. The state estimate is constrained with observations while

maintaining closed budgets and obeying dynamical and thermodynamic balances. Observations from

profiling floats, shipboard data, underway measurements, and satellites are used for assimilation. The years

2008–2012 are chosen due to the relative abundance of oxygen observations from Argo floats during this

time. The skill of the state estimate at fitting the data is assessed. The agreement is best for fields that are

constrained with the most observations, such as surface pCO2 in Drake Passage (44% of the variance

captured) and oxygen profiles (over 60% of the variance captured at 200 and 1000 m). The validity of

adjoint method optimization for coupled physical-biogeochemical state estimation is demonstrated with a

series of gradient check experiments. The method is shown to be mature and ready to synthesize in situ

biogeochemical observations as they become more available. Documenting the B-SOSE configuration and

diagnosing the strengths and weaknesses of the solution informs usage of this product as both a climate

baseline and as a way to test hypotheses. Transport of Intermediate Waters across 328S supplies significant

amounts of nitrate to the Atlantic Ocean (5.576 2.94 Tmol yr21) and Indian Ocean (5.096 3.06 Tmol yr21),

but much less nitrate reaches the Pacific Ocean (1.786 1.91 Tmol yr21). Estimates of air-sea carbon dioxide

fluxes south of 508S suggest a mean uptake of 0.18 Pg C/yr for the time period analyzed.

1. Introduction

Argo floats equipped with biogeochemical sensors (bgc-Argo) are providing unprecedented coverage of

the Southern Ocean carbon system. Float data are being used to estimate air-sea fluxes of CO2 [Williams

et al., 2017] and net community production [Plant et al., 2016; Johnson et al., 2017]. Still, observations are

too sparse to provide the coverage and resolution needed for quantifying basin-scale patterns and variabil-

ity [Gruber, 2009; Lovenduski et al., 2015]. Numerical models are useful tools for assessing the physical and

biological mechanisms driving the observed variability in the ocean carbon system. However, state-of-the-

art ocean general circulation models and Earth system models tend to disagree widely in their assessment

of the physical state and biogeochemistry in the Southern Ocean [Bopp et al., 2013; Sall�ee et al., 2013; Jiang

et al., 2014] due to their sensitivity to domain configuration, choice of initial conditions, internal parameter-

izations, and atmospheric state, all of which are poorly constrained by observations. State estimation pro-

vides a means to bring a numerical model into consistency with the available data, producing a hindcast of

the ocean state that is dynamically consistent and that has closed budgets for carbon and other biogeo-

chemical tracers [Wunsch and Heimbach, 2013].

The Southern Ocean State Estimate (SOSE) [Mazloff et al., 2010] has been developed to provide an ocean cli-

mate baseline and to be a science resource for understanding the physics controlling ocean properties. The

state estimate is produced by solving for the model initial and boundary conditions, so-called model ‘‘con-

trols,’’ that minimize a weighted least squares sum of model-observation misfits. This is achieved using an

adjoint model that provides the gradients of the misfits function with respect to the model controls, allow-

ing those controls to be efficiently and systematically determined. The advantage of the adjoint method (or

4D-Var) data assimilation approach is that the numerical model propagates observational information

across variables using model dynamics. These dynamics include complex processes, such as mixed layer

depth variability, that govern the ocean carbon system. Because the adjoint method does not involve

unphysical nudging terms, agreement of the solution with observations is not guaranteed, but requires con-

sistency with the model equations and closed internal budgets.
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Data assimilation with biogeochemical or ecosystem modeling has proven challenging due to the paucity

of data and complexity of the system [Matear, 1995; Fennel et al., 2001; Friedrichs et al., 2006]. Examples of

the application of the adjoint method include Schlitzer [2002], Faugeras et al. [2003], Song et al. [2012], Doi

et al. [2015], Song et al. [2016a,2016b], and Mattern et al. [2017]. Efforts have been mainly focused on esti-

mating model parameters. In addition to data assimilation, the adjoint method can be used for sensitivity

analyses; the study by Dutkiewicz et al. [2006] analyzes the sensitivity of global air-sea CO2 fluxes using the

adjoint of a coupled physical-biogeochemical model.

By implementing a biogeochemical model into the SOSE framework and constraining to observations, we

have produced a biogeochemical Southern Ocean State Estimate (B-SOSE; http://sose.ucsd.edu) for the years

2008–2012. This period is chosen for the relative abundance of biogeochemical in situ observations primarily

due to a large number of Argo floats with oxygen sensors being released in the Southern Ocean in 2007 and

2008. These data were recently calibrated and made available at http://runt.ocean.washington.edu/o2/. B-

SOSE was conceived with the central purpose of attaining a best estimate of the large-scale carbon system

properties of the Southern Ocean. It was also produced acknowledging that a biogeochemical assimilation

infrastructure must be developed in support of the influx of measurements currently being collected by floats

deployed by the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM; http://soccom.

princeton.edu) project. SOCCOM is deploying approximately 25 floats/yr in the Southern Ocean with nitrate,

oxygen, pH, and optical sensors. Thus the focus of the paper is on presenting not just the B-SOSE solution, but

also the methodology. In section 2, we describe the model, the observational constraints, and the model con-

trols. In section 3, we evaluate the accuracy of the adjoint model. The state estimate solution is presented in

section 4, along with a quantitative assessment of the fit to observations. In section 5, we give examples of

the utility of the B-SOSE solution. Concluding remarks are given in section 6.

2. Methods

We implement the Biogeochemistry with Light, Iron, Nutrients, and Gases model (BLING) [Galbraith et al.,

2010] into the SOSE framework, which is based on the MIT general circulation model (MITgcm; evolved

from Marshall et al. [1997]) and the software

developed by the consortium for Estimating

the Circulation and Climate of the Ocean

(ECCO) [Stammer et al., 2002; Wunsch and

Heimbach, 2013]. The B-SOSE domain has an

open boundary at the equator, and the anal-

ysis focuses on the solution poleward of 308S

(Figure 1). We describe the physical setup in

section 2.1 as it differs from that described in

Mazloff et al. [2010]. Our implementation of

BLING is described in section 2.2. An over-

view of the data assimilation methodology is

given in section 2.3. Observational con-

straints and model controls are presented in

sections 2.4 and 2.5, respectively.

2.1. Physical Model Configuration

B-SOSE is an unprecedented space and time

resolved estimate of Southern Ocean bio-

geochemistry, including air-sea fluxes of heat

and carbon and cycling of nutrients. Our

future goal is eddy resolution; however, at

these preliminary stages of biogeochemical

state estimation, it is practical to focus on

reproducing the largest scales. Due to this

initial goal, and to save computational cost,

we use a model with relative coarse 1/38

Figure 1. Snapshot of the simulated dissolved inorganic carbon (DIC)

concentration at 100 m on 1 February 2009. Black contours show the

mean position of Antarctic Circumpolar Current fronts [Orsi et al., 1995].

The B-SOSE domain has an open boundary at the equator, and the

analysis here focuses on the solution poleward of 308S.
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horizontal resolution. The state estimate, therefore, lacks much of the important mesoscale dynamics,

implying heightened model error in representing property transport and mixing.

The model domain extends from the equator to 788S. The zonal grid spacing is always 1/38, but the meridio-

nal grid spacing changes with latitude: poleward of 308S, the model is configured on a Mercator projection

(Dy5Dx), and equatorward of 308S the meridional spacing telescopes out to reach Dy5 28 at the equator.

The setup uses 52 vertical levels of varying thickness. The bathymetry and coastline are derived from

ETOPO1 [Amante and Eakins, 2009]. The governing equations are stepped forward with a 1 h time step and

a third-order direct space and time advection scheme. The ocean is forced through an atmospheric bound-

ary layer scheme where fluxes of heat, freshwater (salt), and momentum are determined by bulk formulae

[Large and Yeager, 2009]. Six hourly atmospheric conditions from ERA-Interim [Dee et al., 2011] are applied,

and this atmospheric state is adjusted using the adjoint method. Initial conditions are also optimized, with

first-guess fields derived from a global 18 resolution state estimate [Forget et al., 2015] and the 1/68 SOSE

solution [Mazloff et al., 2010]. The prescribed open boundary conditions at the equator are derived from

HYCOM (http://hycom.org). River runoff comes from the product of Dai and Trenberth [2002] augmented

with an estimate of Antarctic continental runoff produced by Hammond and Jones [2016]. Tidal forcing is

not included. Sea ice is modeled as described in Losch et al. [2010] and Fenty and Heimbach [2012]. The

GGL90 mixed layer parameterization is used [Gaspar et al., 1990]; mesoscale eddy parameterization is not

included. Horizontal and vertical viscosity and diffusivity parameters are given in Table 1.

2.2. Biogeochemical Model Configuration

The biogeochemical component, schematized in Figure 2, is adapted from the BLING model of Galbraith

et al. [2010]. BLING was designed as a model of intermediate complexity for realistic simulations of large-

scale ocean biogeochemistry. The version employed here includes eight prognostic tracers, a relatively

small number, and an idealized representation of ecosystem dynamics. It is well suited for state estimation

because (1) it is computationally inexpensive to run, (2) it includes relatively few parameters, and (3) it

explicitly simulates the biogeochemical tracers measured by SOCCOM floats: oxygen, nitrate, and pH.

The original BLING model described in Galbraith et al. [2010] has been modified with the addition of nitro-

gen cycling and improvements to the representation of phytoplankton population dynamics and particle

export [Galbraith et al., 2015; Bianchi et al., 2013]. We have added the code into the MITgcm repository after

Table 1. Ocean and Biogeochemical Model Parameters

Ocean Model Parameters

Dx Horizontal resolution 1/38

Dz Vertical resolution 4.2–400 m

Dt Time step 1 h

Ocean lateral open boundary forcing period 1 month

Atmospheric boundary forcing period 6 h

Horizontal viscosity 10 m2 s21

Horizontal diffusivity 10 m2 s21

Vertical viscosity 131023 m2 s21

Vertical diffusivity 131024 m2 s21

Biogeochemical

Model Parameters

l0 Maximum phytoplankton photosynthesis rate at 08C 1.1 d21

l0d Maximum diazotroph photosynthesis rate at 08C 0.007 d21

kPO4
Phosphate half-saturation coefficient 1 31024 mol P/m3

kNO3
Nitrate half-saturation coefficient 2 31023 mol N/m3

kFe Iron half-saturation coefficient 4 31027 mol Fe/m3

kFed Iron half-saturation coefficient for diazotrophs 3:531027 mol Fe/m3

C:N Carbon to nitrogen stoichiometric ratio 6.75

O:N Oxygen to nitrogen stoichiometric ratio 9.5

P:N Phosphorus to nitrogen stoichiometric ratio (variable) 0.035–0.11

Fe:N Iron to nitrogen stoichiometric ratio (variable) 1.35–16.8 31025

k0 Constant in loss rate function 0.19 d21

B0 Constant in loss rate function (pivotal biomass) 2:831024 mol N/m3

j Temperature dependence constant [Eppley, 1972] 0:063� C21

jd Temperature dependence constant for diazotrophs 0:18� C21

cDON Remineralization rate for DON 0.25 yr21

cDOP Remineralization rate for DOP 0.5 yr21
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making it compatible with the automatic differentiation software used to produce the adjoint model (Trans-

formation of Algorithms in Fortran, http://www.fastopt.com/products/taf/). It is available for public use at

http://mitgcm.org.

The model includes a full description of the carbon system, adapted from the MITgcm simple biogeochemi-

cal model [Dutkiewicz et al., 2006]. Dissolved inorganic carbon (DIC) and alkalinity (ALK) are prognostic varia-

bles, and pH and pCO2 are diagnosed based on Follows et al. [2006]. Air-sea fluxes of CO2 and oxygen (O2)

are calculated following Wanninkhof [1992]. Atmospheric pCO2 is prescribed from the CarbonTracker prod-

uct [Peters et al., 2007].

Biological activity influences the concentrations of carbon and oxygen. At the core of the BLING model is

primary production with limitations by light, nitrate (NO3), phosphate (PO4), iron (Fe), and temperature, and

subsequent remineralization of organic matter back to inorganic nutrients. Our version includes three phy-

toplankton types: large (Blg), small (Bsm), and diazotrophs (Bdia). Small cells represent calcifying organisms;

they use calcium carbonate to form shells. Diazotrophs have the ability to fix nitrogen so they are not lim-

ited by the availability of nitrate. Phytoplankton loss is expressed as a power law with a size-dependent

exponent based on Dunne et al. [2005]. The evolution of biomass in each population is calculated as

@Blg

@t
5 l0 LImin LNO3

; LPO4
; LFeð Þ2k0

Blg

B0

� �3
" #

ejT Blg (1)

@Bsm

@t
5 l0 LImin LNO3

; LPO4
; LFeð Þ2k0

Bsm

B0

� �� �

ejT Bsm (2)

Figure 2. Schematic of the biogeochemical model. There are eight prognostic variables (gray shaded boxes): dissolved inorganic carbon

(DIC), alkalinity (ALK), oxygen (O2), nitrate (NO3), phosphate (PO4), iron (Fe), and dissolved organic matter (DON, DOP). Phytoplankton bio-

mass, chlorophyll (chl), pH, and pCO2 are diagnosed from the prognostic variables. The phytoplankton community includes three types of

organisms: large diatom-like cells (Blg), small calcifying cells (Bsm), and diazotrophs (Bdia). Community production is limited by the availabil-

ity of light and nutrients and modulated by temperature. Uptake and remineralization of nutrients, as well as changes in oxygen and alka-

linity, are calculated from the uptake and remineralization of nitrate via stoichiometric ratios. Black arrows represent fluxes and gray

arrows indicate external forcing.
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@Bdia

@t
5 l0d LImin LPO4

; LFeHðT214Þð Þ2k0
Bdia

B0

� �� �

ejdT Bdia (3)

where l0 and l0d are the maximum photosynthesis rates; LI; LNO3
; LPO4

; and LFe are functions describing

limitation by light, nitrate, phosphate, and iron, respectively; k0, B0, j, and jd are constants, and T is temper-

ature. A Heaviside function (H) inhibits diazotroph growth at temperatures below 148C to prevent unrealisti-

cally large blooms at high latitudes. The density dependence of the population growth rate requires

knowledge of the biomasses at a given time; these values are saved in the model but not advected or dif-

fused by the flow. Initial phytoplankton abundances are prescribed, and the concentration of chlorophyll

(chl) is diagnosed at each time step from the total biomass and the variable chlorophyll-to-carbon ratio.

Organic matter is distributed among three pools: a fraction becomes dissolved organic nitrogen and phos-

phorus (DON, DOP), a fraction is instantaneously recycled through the microbial loop in the euphotic zone,

and the remaining fraction sinks as particulate organic matter and is instantaneously remineralized deeper

in the water column. The fraction of sinking particles depends on phytoplankton size [Dunne et al., 2005;

Galbraith et al., 2010]. DON and DOP are remineralized at constant rates.

Nitrogen cycling includes N2 fixation by diazotrophs as well as benthic and pelagic denitrification, following

the representation in the more complex GFDL-TOPAZ model of Dunne et al. [2013]. Iron chemistry includes

organic and inorganic scavenging, a sediment source, and aeolian deposition of soluble iron from the clima-

tology of Mahowald et al. [2005]. Flexible N:P and Fe:N stoichiometry are implemented.

There are numerous inputs required by the biogeochemical model. Parameters were manually tuned and

are given in Table 1. Initial and boundary conditions for the biogeochemical tracers are constructed from a

combination of climatologies and model output: the gridded Global Data Product version 2 (GLODAPv2)

[Key et al., 2015; Lauvset et al., 2016] for DIC and alkalinity, the World Ocean Atlas 2013 (WOA13) for O2, NO3,

and PO4 [Garcia et al., 2014a,2014b], and a coarse resolution coupled global model with BLING simulation

for Fe, DON, and DOP. Initial conditions are obtained after a 3 year spin-up. During the spin-up, DIC between

708S and 308S increases by an average of 23 lmol/kg in the top 100 m. This drift is partly due to the

observed increase in the Southern Ocean carbon reservoir and the fact that the GLODAPv2 gridded product

is normalized for the year 2002 [Lauvset et al., 2016]. In the top 100 m, alkalinity increases by 8 lmol/kg;

nitrate and phosphate increase by 1.5 and 0.080 lmol/kg, respectively, and iron increases by 531025 lmol/kg.

Oxygen has a negative drift of 21.4 lmol/kg in the top 30 m, and a positive drift of 3.5 lmol/kg between 30

and 250 m. Drifts typically decrease with depth and are negligible below 1000 m. Initial conditions are then

adjusted using the adjoint method, as described below.

2.3. Data Assimilation

This work is based on the software developed by the ECCO project, and a description of the method includ-

ing the underlying equations can be found in Stammer et al. [2002] and Wunsch and Heimbach [2007]. Here

we provide a general description of the 4D-Var optimization method. The overall goal is minimizing a cost

function, J , which is a sum of weighted squared model-data differences and weighted distances from the

prior inputs. Prior inputs of the model to be optimized are referred to as ‘‘controls.’’ In our case, the controls

consist of initial conditions and surface boundary (atmospheric state) conditions.

The observations used for assimilation are referred to as ‘‘constraints.’’ Our assimilation includes both physi-

cal and biogeochemical constraints (see Table 2 and section 2.4). The optimization goal is to have the model

solution fit each observation within the uncertainty assigned. Uncertainties include measurement error as

well as model representation error, which accounts for processes that are not expected to be correctly

reproduced by the model, such as internal waves. Assigning proper uncertainties is key to the success of

the adjoint method; data with smaller uncertainty will be stronger constraints for the optimization. The

magnitude of the controls also contributes to the cost function; uncertainties are assigned to the model dis-

tance from the prior inputs. The total cost function is expressed as

J5

X

i

modeli2obsið Þ2 ri
22
1

X

j

Dcontrolj
2 rj

22 (4)

where ‘‘modeli’’ refers to the model value at the same time and location as the corresponding observation

‘‘obsi’’, and Dcontrolj is the adjustment to the input parameter at a given time and location. Once controls
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are determined that minimize the model misfit to the constraints, the state estimate is a produced as a free-

running forward model simulation with closed budgets using the optimized inputs.

The dimensionality of the problem makes directly solving for the controls that minimize J impossible. Opti-

mization is achieved via an iterative process. Success requires the utilization of the adjoint model, which sol-

ves for the gradient of the cost function with respect to all the controls in one calculation. At each location

and time where a constraint is present, the adjoint model is ‘‘forced,’’ with each constraint forcing’s influ-

ence being relative to its contribution to J . This adjoint model forcing is then propagated backward in

time via the governing model equations to quantify how the perturbation manifests on all model inputs

earlier in time. Thus the constraints comprise the input ‘‘forcing’’ on the adjoint model, and the adjoint out-

put is the projection of all constraints on the gradient of J with respect to the controls. This gradient infor-

mation is then used in the quasi-Newton search algorithm of Nocedal [1980] and Gilbert and Lemar�echal

[1989] to minimize J .

The numerics of the adjoint model are determined from the linearized governing equations of the ‘‘forward’’

MITgcm. Though the adjoint model is linear, it is time-stepped using the temporally varying forward model

state, minimizing errors due to the linear approximation. These errors can still be significant, however, espe-

cially for long assimilation windows. A primary example occurs when the model state nears baroclinic insta-

bility. The adjoint model may calculate a strong sensitivity to the controls that can trigger the instability at

this time step. The linear adjoint cannot, however, determine that triggering the instability would then

release available potential energy. Thus, at the next time step, the adjoint model again accumulates sensi-

tivity to the controls that can trigger the instability, and this can lead to exponential growth of the adjoint-

determined gradients. A key to success is running the adjoint model with enhanced viscosity to damp out

these exponentially growing sensitivities. We want to realize the sensitivity, but also damp it out before it

overwhelms the solution. The viscosity in the adjoint model for this work is 10 times larger than in the for-

ward model. Because of the enhanced viscosity and linearization approximation, the adjoint-determined

gradients are not exact gradients, but they are accurate enough to allow us to optimize the model solution.

We elaborate on the accuracy of the adjoint-derived gradients in section 3.

Even with accurate adjoint gradients, the model may not be brought into consistency with all constraints due

to model error limiting controllability of the solution. With a perfect model and inputs, one would be able to

reproduce the Southern Ocean state. However, given model errors, even with perfect inputs the solution

would drift from the true state. Some aspects of the solution, for example, reproducing the meandering of the

Antarctic Circumpolar Current, may be poorly captured. One may remedy this by reducing model errors, or by

breaking the dynamical budgets via sequential optimization. We have chosen to keep the dynamical budgets

closed to increase scientific value of B-SOSE at the expense of consistency with observations.

With the implementation of biogeochemical constraints, it is worth noting that the 4D-Var method can, in

theory, handle a vector of constraints of any dimension and being over-constrained or under-constrained is

not a technical problem. The adjoint is linear, and the constraint ‘‘forcings’’ on the adjoint model add influ-

ence independent of the other constraints or the current adjoint state. If there are two observations in the

Table 2. Observational Constraints

Data Set Variable(s) Acquired From

Biogeochemical Observations

bgc-Argo O2 http://runt.ocean.washington.edu/o2/

GLODAPv2 DIC, ALK, pH, O2, NO3, PO4 http://cdiac.ornl.gov/oceans/GLODAPv2/

SOCATv4 pCO2 http://cdiac.ornl.gov/ftp/oceans/SOCATv4/

Hydrographic Observations

Argo T, S http://www.usgodae.org/

CTD T, S http://cchdo.ucsd.edu/

Seals T, S http://www.meop.net/

XBT T http://www-hrx.ucsd.edu/

Satellite Observations

RADS SSH http://rads.tudelft.nl/rads/index.shtml

AVISO Mean dynamic topography http://www.aviso.altimetry.fr

Remote Sensing Systems Inc. SST http://www.remss.com/

NSDIC Ice concentration https://nsidc.org/data/seaice_index/
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same location at the same time, their impact is added linearly to the sensitivities. If consistent with each

other, they add to a stronger forcing; if inconsistent they compensate each other. Thus if there is a pCO2

measurement in SOCATv4 co-occurring with DIC and alkalinity measurements in GLODAPv2, they will all

be used as constraints. Similarly, satellite SST observations and Argo temperature profiles can co-occur

and both will be used. There are no technical obstacles to using co-located or redundant data as

constraints.

2.4. Observational Constraints and Their Uncertainties

Biogeochemical constraints, listed in Table 2, include in situ observations of the carbon system, oxygen, and

nutrients in the Southern Ocean during the period 2008–2012. Data are obtained from the following data

sets: calibrated oxygen profiles from bgc-Argo (http://runt.ocean.washington.edu/o2/), the GLODAPv2 in

situ data product [Key et al., 2015; Olsen et al., 2016], and the Surface Ocean CO2 product version 4

(SOCATv4) [Bakker et al., 2016]. Chlorophyll data from in situ measurements and derived from satellite

observations of ocean color are not used at this time, though we expect to implement these constraints

into a future version of B-SOSE.

Uncertainties on the biogeochemical constraints are estimated as the sum of measurement error and model

representation error. The measurement uncertainty accounts for factors such as instrument error, data cali-

bration, standardization, and interlaboratory differences. We use the following values: 2 lmol/kg for DIC, 4

lmol/kg for alkalinity, 1 lmol/kg for O2, 0.01 for pH, and 1 latm for pCO2; for nutrients, we assume 2% of

the spatially varying mean concentration. Model representational error is the part of the ocean variability

that cannot be reproduced by the model or corrected by optimization. Ideally, representation error would

be estimated by comparing the evolution of modeled fields to observations, but since we lack sufficient

observational coverage for this type of assessment, we rely on the statistics of model solutions to infer the

model error. For our first guess, we assign the error to be 0.7 times the standard deviation of each biogeo-

chemical field using monthly averaged output from a 130 year forward simulation derived using the same

setup described in this manuscript but with looped 2005 to 2014 forcing. The result is a three-dimensional

error that generally decreases with depth because the variability is higher near the surface; dynamically

complex regions also have larger error. Values at different depth levels are summarized in Table 3. Future

work will refine this estimate of model representation error.

Other constraints include observations from the Jason 1 and 2 altimeters acquired from the Radar Altime-

try Database System (RADS) and a mean dynamic topography, MDT_CNES-CLS13. A daily sea surface tem-

perature product is derived from microwave radiometers and optimally interpolated (OI MW SST) by

Remote Sensing Systems Inc. Ice concentration observations from the National Snow and Ice Data Center

(NSIDC) [Meier et al., 2013, updated 2016] are used. All available temperature and salinity measurements

from Argo float profiles, conductivity-temperature-depth (CTD) synoptic sections, instrumented seals and

expendable bathythermographs (XBT) are used to constrain the solution. Links to the data sources are

listed in Table 2.

Uncertainties for the physical variables are derived as follows. For temperature and salinity, the Argo obser-

vation misfits to the climatology by Roemmich and Gilson [2009] are calculated and then objectively

mapped. Thus, the model is constrained to be as consistent with Argo profiles as the climatology. This is a

rather stringent constraint as it does not include the formal mapping error from the climatology, and thus

Table 3. Model Representation Error (South of 308S) for Biogeochemical Properties

Field

Surface 200 m 1000 m

MaxMean Std. dev. Mean Std. dev. Mean Std. dev.

DIC (lmol/kg) 5.9 2.4 4.3 1.9 2.3 1.6 18.7

Alk (lmol/kg) 5.1 2.5 2.7 1.4 1.6 0.93 25.8

O2 (lmol/kg) 3.4 1.0 7.3 3.9 2.3 1.4 27.5

NO3 (lmol/kg) 0.73 0.27 0.69 0.27 0.29 0.13 2.7

PO4 (lmol/kg) 0.049 0.016 0.047 0.017 0.018 0.0077 0.18

Fe (lmol/kg) 1:731025 8:231026 2:531025 1:131025 7:531026 5:931026 1:231024

pH (–) 0.0079 0.0029 0.012 0.0039 0.0086 0.0024 0.041

pCO2 (latm) 7.3 2.3 21.6
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in under-sampled regions we risk over-constraining the model. We do, however, choose a minimum uncer-

tainty of 0.058C and 0.005 g/kg. The temperature uncertainty at 2 m is used to constrain the OI MW SST

product, but increased by a factor of 10 as all the OI MW SST values used are not independent. We constrain

to capture 95% of the variance of the SSH signal from the Jason 1 and 2 altimeters,

rSSH5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðSSHobsÞ30:05
p

. Due to complications with the sea ice model adjoint, the ice is constrained by

penalizing sea surface temperature, by requiring the ocean to be colder where ice cover is deficient and

warmer where ice cover is excessive.

Model error dominates over measurement error for most data assimilated in B-SOSE. This means that obser-

vations coming from multiple sources, such as O2 constraints from Argo and GLODAPv2, will be assigned

similar weights that reflect primarily the location of those observations. For the case of surface temperature

from Argo and satellite radiometers, however, the measurement error in the satellite product is significant

and contributes to the uncertainty in a nonnegligible way.

2.5. Control Variables and Their Uncertainties

The model controls adjusted through the adjoint method are atmospheric temperature, specific humidity,

shortwave and longwave downwelling radiation, precipitation, meridional and zonal wind speeds, as well

as initial conditions of temperature, salinity, DIC, alkalinity, O2, NO3, PO4, and Fe. Adjustments to those fields

are limited by imposing a penalty that is the weighted distance from the products to which they are con-

strained. Atmospheric state fields are constrained to ERA-Interim [Dee et al., 2011]. Temperature and salinity

are constrained to a hybrid product informed from ECCOv4 and SOSE. Biogeochemical tracers are con-

strained to the products used to produce their initial conditions: GLODAPv2 for DIC and alkalinity, WOA13

for O2, NO3, and PO4, and the global BLING model output for Fe. To determine consistency of the controls

with the constraining product, the uncertainty must be prescribed. Below we describe the method used to

estimate this uncertainty.

For biogeochemical initial conditions, the uncertainty is proportional to the standard deviation of each

tracer in the forward simulation; it is equal to the model representation error described in the previous sub-

section, with values summarized in Table 3. Uncertainty for temperature and salinity initial conditions is pro-

portional to the Argo residuals to the Roemmich and Gilson [2009] climatology derived as explained in the

previous subsection. Uncertainty is increased from this estimate by a factor of 10 poleward of 308S, but

reduced equatorward of 308S as our focus is not to constrain or cause much changes to the controls in the

subtropics and tropics. The uncertainty on the prescribed atmospheric state is taken to be the standard

deviation of the ERA-Interim fields between 2004 and 2014. While this is likely an overestimate of the uncer-

tainty, we find the control magnitudes to be reasonable. For example, a typical perturbation to the ERA-

Interim 2 m temperature is about 18C. Control variables are provided and plotted at sose.ucsd.edu. The

model diffusion operator is used to enforce spatial correlation scales on the controls. An isotropic smooth-

ness scale of 60 km is enforced for the atmospheric controls. Adjusted initial conditions are smoothed using

a scale of 20 km in the horizontal and 10 m in the vertical.

3. Verification of the Adjoint Model

The adjoint model yields the gradients, or partial derivatives, of a cost function with respect to model state

and model inputs. One validates the adjoint model using a ‘‘gradient check,’’ which compares the adjoint-

derived gradients with the sensitivities calculated from the change in cost resulting from small perturba-

tions in the forward model. Infinitesimal perturbations to the forward model are unlikely to drive strong

nonlinearities and, assuming the adjoint code is correct, will perfectly match the change in the cost function

predicted from the adjoint-derived gradient. Here we check the accuracy of the adjoint for the practical

case of biogeochemical state estimation by using perturbations that are of a magnitude representative of

an actual adjustment to the controls (in this case 1% of the climatological value). Furthermore, we choose

to test the adjoint model in Drake Passage, which is a region of high eddy kinetic energy. Thus our gradient

checks test both the adjoint code and the validity of the linearity approximation for our setup.

For the sensitivity experiments, a cost function must be defined that represents the quantity for which one

wishes to derive the gradient with respect to other model fields at earlier times. Instead of the model-

observations misfit cost function used for data assimilation, we choose variables on a section along Drake
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Passage (longitude 295.28E) on 1 February 2009 to be the quantity of interest. A localized cost function

allows tracking the propagation of sensitivities backward in time (Figure 3). We test two variables: upper

ocean pH (50–100 m depth) and interior oxygen (200–300 m depth). The cost is defined as the square of

model fields (pH or oxygen) integrated over a period of time (from midnight on 1 February 2009 to mid-

night on 2 February 2009) and over latitude and depth (within the range mentioned above).

The adjoint sensitivity is the projected change in cost resulting from a unit perturbation of one control vari-

able at a single point in space and in time. The sensitivity of the pH cost function to DIC is shown in Figure

3. At each location, the vertically integrated sensitivity is plotted. Three snapshots are shown, giving the

sensitivity to DIC on 29 January, 2 January, and 7 April (3, 30, and 300 days earlier, respectively). Negative

values indicate that an increase in DIC will cause pH to go down, as expected. We can see that the sensitivi-

ties fade and move upstream as we go back in time.

For each time (3, 30, and 300 days), we select one location where the sensitivity is large to test the gra-

dients. For example, the adjoint sensitivity of the pH cost function to DIC at 75 m, 291.28E, 648S on 29 Janu-

ary is 2321.3058. We then run the forward model twice, once increasing DIC by 1% and once reducing it by

1% at that time and location. The forward model sensitivity is given by

FWD5
costð1Þ2costð2Þ

DDICð1Þ2DDICð2Þ
; (5)

where DDIC is the magnitude of the perturbation and (1) and (2) refer to the positive and negative pertur-

bations. The error in the adjoint-derived gradient is

error5
ADJ2FWD

FWD
; (6)

where ADJ is the adjoint sensitivity. For this experiment, the forward model sensitivity is 2321.1217, yield-

ing an error of 0.057%. In addition, we examined the sensitivity to iron and temperature. The results are

summarized in Figure 4a. We repeat the procedure for the oxygen cost function, replacing DIC perturba-

tions with oxygen perturbations (Figure 4b).

The adjoint of the coupled biogeochemical-sea ice-ocean model passes the gradient check, indicating that

the adjoint model has been successfully derived. The errors are small, typically much less than 1%, for time-

scales of 3–30 days. An exception is the sensitivity of pH to temperature, which is around 2%. Errors reach

20% for 300 day long adjoint runs for DIC with respect to pH changes and for temperature with respect to

both pH and oxygen changes. Errors in the other gradients are approximately 1% even after 300 days. As

expected, the errors tend to increase with adjoint integration length since the chance of nonlinear events,

such as convection, affecting the solution, and temperature in particular, increases on longer timescales. A

monotonic increase in error with time is not found, however, likely due to the fact that for practical reasons

we only tested a single location as opposed to an ensemble of locations.

Figure 3c shows that the adjoint model predicts perturbations to upper ocean pH in Drake Passage covary

with DIC concentration off Thurston Island in the Amundsen Sea 300 days earlier. Forward model perturba-

tion experiments confirmed this covariance to have an error of approximately 20%. This error magnitude is

rather insignificant when one considers the iterative procedure taken to find the cost function minimum.

a) 3 days
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c) 300 days
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Figure 3. Depth-integrated sensitivity of the pH cost function to DIC after 3, 30, and 300 days of adjoint integration. Units are (lmol C/

kg)21 m.
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Thus, the accuracy even over long

integrations of 300 days gives confi-

dence that the adjoint model is able

to adequately quantify the full space-

time covariance and propagate the

constraint information throughout the

domain and across variables. This gra-

dient information allows iteratively

solving for the control vector to pro-

duce a state estimate. Here we have

shown the accuracy of adjoint gra-

dients in the Drake Passage; addi-

tional experiments have confirmed

the agreement of adjoint and forward

sensitivities in other locations

throughout the Southern Ocean (not

shown). In the end, the practical test

for the adjoint model is the ability to

bring down a cost function, such as

the weighed model-observations mis-

fits for production of a state estimate.

4. State Estimate 2008–2012

The adjoint model, which was shown

in the previous section to accurately

propagate constraint information, is

used to produce an estimate of the

physical and biogeochemical state of

the Southern Ocean for the years

2008–2012. The product, available

online at http://sose_ucsd.edu/bsose_

results.html, is the result of 105 itera-

tions of the optimization method.

With each iteration, the cost function

(a weighed model-observation misfit)

becomes smaller, indicating that the

solution becomes more consistent with the data. We publish iteration 105 as the state estimate because

the iterative cost reduction was becoming negligible. For example, iteration 105 cost was only 2% less than

iteration 104 and the cost for iteration 106 was slightly larger than iteration 105. With great effort the solu-

tion could be made more consistent with the observations. However, as demonstrated below, the consis-

tency of the iteration 105 solution with the observations was deemed adequate, making this state estimate

worthy of publication and analysis.

Before 4D-Var optimization can be employed, a prior model solution must be attained. Numerous model

runs were carried out to manually optimize parameterizations and produce a prior model run, iteration 0,

which uses the default controls specified in section 2.5. For the atmospheric forcing, this means the ERA-

Interim analyzed fields without adjustment. In Figure 5, we see that the normalized cost associated with

each biogeochemical data set has been reduced in the state estimate compared to the prior. The costs for

the controls and physical constraints are not shown. A normalized cost value of 1 means that the fit to the

data is within the prescribed uncertainty. While we have not achieved that level of consistency, it is clear

that data assimilation brought the solution closer to the observations. Oxygen observations have the largest

normalized cost of all assimilated data, suggesting that the model representation error assigned may be

too small in some regions. There are 2148 GLODAPv2 profiles and 8905 Argo profiles with oxygen data

Figure 4. Error in adjoint sensitivities relative to the true sensitivities from finite

difference perturbation experiments. (top) pH cost and (bottom) O2 cost. We

compare the change in cost per unit change in control variable to the partial

derivatives yielded by the adjoint for adjoint integration periods ranging from 3 to

300 days.
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during our assimilation window. In the prior run, the normalized cost is higher for GLODAPv2 constraints;

the adjoint brings the costs for both data sets to a similar level.

Near surface observations are more readily fit as the optimization has more control on properties directly

interacting with the atmospheric state. As such, it is unsurprising that the largest cost reduction for the bio-

geochemical constraints is for the sur-

face pCO2 SOCATv4 data set. Even

with model error, if there were no

other constraints we could likely bring

the solution into complete consistency

with observed pCO2 by changing the

local surface temperature through con-

trols on the surface heat fluxes. This

could, however, introduce inconsisten-

cies with the other constraints, such as

surface temperature, sea surface

height, DIC, or oxygen observations.

The requirement of simultaneously fit-

ting multiple constraints and the pres-

ence of model error may prevent the

optimization from being brought into

consistency with all data.

Though it is not guaranteed that the

solution will be consistent with all

assimilated data, it is still useful to

compare to independent data sets.

These comparisons validate the skill of

the optimization method to propagate

observational constraint information.

One data sets that was not assimilated

is the underway pH data from GO-SHIP
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Figure 5. Normalized cost for each data set in the ‘‘prior,’’ forward model run (gray bars) and in the state estimate (colored bars) which is

constrained to the SOCATv4, GLODAPv2, and Argo data sets. Underway pH data from a Go-Ship cruise and iron concentrations from the

GEOTRACESv3 data set are not assimilated and thus provide an independent data set against which the state estimate can be validated. A

normalized cost value of 1 means that the fit to the data is within the prescribed uncertainty.
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Figure 6. Sensitivity to the B-SOSE controls for the physical constraints (blue) and bio-

geochemical constraints (yellow) during 2008 in the prior run. Sensitivities are normal-

ized by the uncertainty on each control and the root mean square (r.m.s.) is plotted.

Controls are: initial conditions for potential temperature, salinity, and six biogeochem-

ical tracers (DIC, alkalinity, oxygen, nitrate, phosphate, and iron) as well as time-

varying atmospheric state (surface air temperature, surface air humidity, precipitation,

shortwave downwelling radiation, zonal wind speed, and meridional wind speed).
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A13.5 occupied in 2010 [Bullister et al., 2010]. Another is the iron concentration observations compiled in

GEOTRACESv3 [Mawji et al., 2015]. Both independent data sets are better fit by the state estimate than by

the prior solution, indicating that data assimilation has improved the estimate of the biogeochemical state

of the Southern Ocean.

The change in cost is due in part to the assimilation of biogeochemical data, and in part to the assimilation

of physical data. Temperature, salinity, and sea surface height observations constrain the circulation and sol-

ubility, giving them a strong impact on biogeochemical properties. Meanwhile biogeochemical properties

often have strong vertical gradients, allowing them to significantly constrain the circulation and vertical

exchanges. To quantify the relative influence of each type of constraint, we examine how sensitive the prior

misfits are to the control parameters. We perform two experiments, one in which the cost function consists

of only physical constraints and another in which it consists of only biogeochemical constraints (Figure 6).

Both are run for 1 year (2008) in the prior setup (in order to avoid adjustments to the controls being part of

the cost function). The larger the sensitivity, the more influence the constraints have on the optimization.

For the 2008–2012 B-SOSE, the physical cost has a greater impact than the biogeochemical cost with

Figure 7. Model-data comparisons for (a, b) DIC and (c, d) oxygen in February 2009. Observations are shown as colored bubbles, modeled

fields as background shading. Three bgc-Argo profiles (white contoured bubbles) were taken nearby a GLODAPv2 section (black

contoured bubbles) across Drake Passage in February 2009 [Bakker et al., 2013], whereas O2 is averaged between 638W and 658W (red

curves in plots a and c).
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respect to all physical constraints except winds and precipitation, but the magnitudes are comparable. In

our setup, the physical cost has no sensitivity to biogeochemical controls because the biology does not

feedback on the physical state. The relative influence of the biogeochemical constraints compared to the

physical constraints ranges from 30% to 118%. Thus biogeochemical observations have a significant impact

on the coupled state estimate.

One expects significant uncertainty in estimates of the upper ocean carbon cycle due to the complex

dynamics occurring over a large range of space and timescales. B-SOSE has an idealized representation of

biological activity and there is a significant lack of constraints from any one source. Therefore, B-SOSE

assimilates the observing system as a whole to maximize our knowledge. With regards to biogeochemical

constraints for the 2008–2012 period, the best in situ coverage comes from the SOCATv4 data set, which

provides extensive coverage but only constrains the surface properties, and from Argo floats equipped with

oxygen sensors. The GLODAPv2 data set provides valuable observations of the carbon system and nutrients;

however, these sparse observations are concentrated in austral summer. The biogeochemical and physical

constraints are able to provide confidence in the B-SOSE representation of the seasonal to interannual vari-

ability below the ocean mixed layer. Nevertheless, in what follows we evaluate B-SOSE at all depths due to

the importance of upper ocean processes to the climate system.

We first visualize the qualitative agreement between the state estimate and observations by plotting

observed profiles over simulated fields along a section in the Southern Ocean. In February 2009, there were

three bgc-Argo profiles located near a repeat hydrographic section (WOCE section SR1) [Bakker et al., 2013],

which starts at approximately 698W, 568S and ends at 638W, 648S (Figure 7a). In Figure 7b, we show DIC

observations overlain on the modeled DIC along this line averaged over the month of February 2009. Obser-

vations are shown as colored dots, with black contours for GLODAPv2. In Figure 7d, a similar plot shows

simulated oxygen averaged in February 2009 between 638W and 658W. Observations are shown as colored

dots, with black contours for GLODAPv2 and white contours for bgc-Argo. It is clear from Figure 7 that the

state estimate broadly captures the latitudinal gradients in DIC and oxygen as well as their vertical profiles.

It is crucial to quantify the overall statistics of the model-data differences. However, the dimensionality of

the disparate constraints makes it difficult to summarize the agreement of the state estimate with all indi-

vidual profiles. To help visualize the model-observation misfits statistics, we have developed a semiauto-

mated methodology for creating a suite of figures that show aspects of the misfits for each data set. The

procedure includes binning misfits in time and space, then plotting the mean and standard deviation of the

misfits on selected depth levels, zonal or meridional sections, or as a function of time, latitude, longitude, or

depth. In addition, comparisons of the state estimate with climatologies are produced. For biogeochemical

fields, we use climatologies from WOA13 [Garcia et al., 2014a,2014b], the GLODAPv2 gridded product [Key

et al., 2015; Lauvset et al., 2016], and the SOCATv4 gridded product [Bakker et al., 2016]. These validation

plots are available at http://sose.ucsd.edu/bsose_valid.html.

As an example of the type of validation diagnostics being generated, the misfits with bgc-Argo oxygen data

are plotted as a function of latitude at two depth levels, 200 and 1000 m (Figure 8). In addition to model-

observations misfits (red curves), we also show the misfit between the WOA13 climatology [Garcia et al.,

2014a,2014b] and the observations (gray curves). The mean and standard deviation of the binned misfits

are shown. At 200 m, mean misfits tend to be higher for the state estimate than for the climatology, espe-

cially in the subtropics. However, the standard deviation within the bin is lower for the state estimate, indi-

cating that although the mean bias is larger in the model than in WOA13, the state estimate does well at

capturing the observed scales of variability. At 1000 m, the skill of the state estimate is comparable to the

skill of the climatology. If we consider all data south of 308S (no binning), at 200 m the state estimate cap-

tures 63% of the variance, compared to 53% for the climatology. At 1000 m, the state estimate and climatol-

ogy capture 62% and 59% of the variance, respectively.

As shown, analysis of the statistics of the model-data misfits reveals biases. Notable biases are that B-SOSE

is too rich in oxygen at the surface in midlatitudes (Figure 8), and B-SOSE pCO2 is biased high in the sub-

tropics with respect to SOCATv4, especially during summer (not shown). Nevertheless, the state estimate is

able to fit the observations with minimal biases in many regions. For example, the Drake Passage repeat

line provides the only nearly continuous time series of pCO2 in the Southern Ocean [Munro et al.,

2015a,2015b; Bakker et al., 2016]. In Figure 9, we show the 1 month bin-averaged observations in the area
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between 758W and 558W (black curve). The monthly averaged pCO2 from the state estimate over the same

area (pink curve) tends to be higher during the summer months. When the state estimate is subsampled at

the time and location of the observations (red curve), the summer fit is improved, though the large drops in

pCO2 that occurred in 2009 and 2011 are still underestimated. For these comparisons, observations taken in

regions shallower than 1000 m are excluded from the time series, as the B-SOSE solution is known to poorly

capture coastal dynamics and biogeochemistry. Though the state estimate misses some of the extreme val-

ues in this time series, it is able to capture 37% of the variance of monthly averaged pCO2.

Figure 9. Monthly averaged pCO2 in Drake Passage (758W to 558W, south of 508S) from SOCATv4 observations (black) [Bakker et al., 2016;

Munro et al., 2015a,2015b], from B-SOSE (pink), and from the B-SOSE solution subsampled at the location of SOCATv4 observations (red).

Gray shading indicates summer months (December–February).

Figure 8. (left) Mean and (right) standard deviation of the misfit between bgc-Argo O2 observations and the state estimate (red) and the

misfit between observations and World Ocean Atlas 2013 climatology (gray). Misfits are binned in latitude (1 degree bins). Top row: 200 m

and bottom row: 1000 m. The skill of the state estimate at fitting observations is comparable to the skill of the climatology product, with

added benefits of high spatial and temporal resolution, consistent ocean dynamics, and closed budgets for biogeochemical tracers.
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5. Utility of the State Estimate

5.1. Air-Sea CO2 Flux

Diagnosing the B-SOSE CO2 flux is useful as the extensive validation provided with the solution informs

where this estimate may be trustworthy and where it may be biased. Furthermore, contrasting this new

inference of air-sea carbon exchange with existing inferences helps inform the level of uncertainty in our

knowledge. While the Southern Ocean is known to be a sink for anthropogenic carbon [e.g., Khatiwala et al.,

2009], there is an ongoing debate about whether the CO2 uptake is increasing or slowing down [Le Qu�er�e

et al., 2007; Le Qu�er�e, 2010; Le Qu�er�e et al., 2010; Metzl, 2009; Takahashi et al., 2009, 2012; Lovenduski et al.,

2013; Khatiwala et al., 2013; Fay et al., 2013; Fay and McKinley, 2014; Majkut et al., 2014; Landsch€utzer et al.,

2015; Munro et al., 2015a; McKinley et al., 2017]. Large interannual variability and sparsity of in situ data

make detection of trends difficult [Fay and McKinley, 2014; Lovenduski et al., 2015; McKinley et al., 2017]. A

Figure 10. Mean air-sea flux of CO2 for 2008–2011 (a) in the state estimate and (c) according to Landsch€utzer et al. [2015]. Positive fluxes

are into the atmosphere. (b) Uncertainty of the B-SOSE air-sea CO2 flux estimated from a cost function sensitivity experiment (see text for

details). The maximum value of the estimated uncertainty is 1.00. (d) Difference in air-sea CO2 flux between the state estimate and the

‘‘prior,’’ forward model run. Over 70% of the domain, the magnitude of the correction resulting from data assimilation exceeds the

uncertainty estimate.
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goal of B-SOSE is to provide a baseline in the form of a best estimate of the 2008–2012 Southern Ocean car-

bon system.

The B-SOSE mean CO2 flux for 2008–2011 (Figure 10a) shows regions of strong biological carbon drawdown

near topography and also in the subpolar gyres. Locations where upwelling leads to net outgassing are

found in the Antarctic Circumpolar Current (ACC). The pattern agrees well with the estimate of Landsch€utzer

et al. [2015] for the same time period (Figure 10c). Note that the Landsch€utzer et al. [2015] product ends in

2011, which is why we exclude 2012 from our average flux in Figure 10a. One discrepancy between the two

products occurs in the Argentine basin (South Atlantic between 408S and 508S); net outgassing in the state

estimate is likely the result of problems with the physical circulation, as large temperature and salinity mis-

fits occur in that area. Outgassing at midlatitudes in the Indian Ocean and Eastern South Pacific occurs

because the simulated net community production (NCP) is negative in those areas, as respiration of dis-

solved organic matter advected from lower latitudes exceeds local primary production. There are insuffi-

cient biogeochemical constraints to rule whether this is realistic or not, and it is possible that biological

production is underestimated, which is one of many causes of uncertainty in the solution.

To quantify the uncertainty (Figure 10b), we use the fact that the cost is a measure of the log of the likelihood

associated with a particular solution. We performed an ensemble of runs with perturbed model parameters.

Each realization is given a weight which is a function of the misfit (cost) to SOCATv4 observations. The uncer-

tainty is then calculated as the weighted standard deviation of simulated air-sea CO2 fluxes. The parameters

that were perturbed are vertical diffusivity, maximum photosynthesis rate, iron half-saturation concentration,

and the temperature dependence of gas solubility. Each realization produces a different map of air-sea CO2

fluxes, but if the cost is not much higher than the cost for the state estimate this other solution is only slightly

less likely than the state estimate. Weights decrease proportionally to exp ð2r costÞ, where cost is the

weighted misfit to SOCATv4 data and r is chosen so that the weights become negligible when the cost is

more than 10% higher than the cost for the state estimate. Since the pattern of estimated uncertainties shown

in Figure 10b is fairly zonal, the root mean square is calculated at each latitude; the value is 0.19 mol/m2/yr at

708S and increases almost monotonically to a maximum value of 0.54 mol/m2/yr at 538S; there is second peak

of 0.47 mol/m2/yr around 408S, then values decrease to 0.34 mol/m2/yr at 308S.

The effect of data assimilation on the solution is quantified by the change in air-sea CO2 fluxes between the

prior and the state estimate (Figure 10d). The result highlights that the magnitude of the change is on aver-

age larger than the uncertainty (over 70% of the domain), and thus that the impact of optimization is mean-

ingful in constraining air-sea CO2 fluxes.
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Figure 11. Integrated air-sea CO2 flux. Fluxes are integrated from the South Pole to a given latitude (x axis). The B-SOSE estimate (solid

curves) is compared to the Landsch€utzer et al. [2015] (dotted curves) and Takahashi et al. [2009] (dashed curves) estimates. Annual mean

values are shown in black, summer and fall averages in orange, and winter and spring averages in blue.
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In Figure 11, we compare the net carbon flux poleward of a given latitude with the inferences of Takahashi

et al. [2009] and Landsch€utzer et al. [2015]. A major caveat is that the Takahashi product is an estimate cali-

brated to year 2000, whereas the B-SOSE and Landschutzer CO2 fluxes represent years 2008 to 2011. Black

curves show the annual mean fluxes, blue curves show the winter and spring averages, and orange curves

show the summer and fall averages. The agreement between B-SOSE and Landsch€utzer et al. [2015] is very

good up to �55�S, at which point the summer-time B-SOSE outgassing causes the estimates to diverge.

Compared to Takahashi et al. [2009], our estimate has less outgassing at high latitudes. Although the total

integrated flux at 308S is close to the Takahashi et al. [2009] value, this is partly due to the summer outgas-

sing at midlatitudes in B-SOSE, which is possibly an overestimate.

5.2. Nitrate Transport

Another example of the use of the time-evolving biogeochemical state estimate is in investigating interior

transports. Advection of nutrient-rich Intermediate Waters (IW) from the Southern Ocean is hypothesized to

fertilize the low-latitude oceans [Sarmiento et al., 2004; Marinov et al., 2006]. Lateral transport of nitrate sup-

plies between 17% and 24% of the upper-ocean nitrogen in the subtropical gyres of the South Atlantic,

South Pacific, and Indian Oceans [Letscher et al., 2016]; other sources are lateral transport of dissolved

organic nitrogen, vertical transport, nitrogen fixation, and atmospheric deposition.

We quantify the export of nitrate out of the Southern Ocean in the IW layer (see definitions in Figure 12)

across 328S. The mean volume transport is 9.716 5.07 Sv, 13.096 6.77 Sv, and 7.516 5.18 into the Atlantic,

Indian, and Pacific Oceans (Figure 12). These Southern Ocean outflows carry different amounts of nitrate

across 328S, and while there is significant fertilization of the South Atlantic (5.576 2.94 Tmol yr21) and

Indian (5.096 3.06 Tmol yr21) subtropical gyres, much less nitrate reaches the South Pacific (1.786 1.91

Tmol yr21). The South Pacific does have the smallest IW inflow, and thus this low fertilization rate may be

related to the physical circulation. However, the nutrient-rich ACC is farthest poleward in this sector, and

there may be more nitrate utilization as these waters travel further to reach 328S. Both volume and nitrate

transport show significant variability at all resolved timescales. The sources of this variability and implica-

tions for observing strategy, warrant further study.

The magnitude of the nitrogen sinks in the upper ocean of the Southern Hemisphere subtropical gyres is

estimated from the numbers given in Letscher et al. [2016] and our assumption that the gyres extend from

328S to 108S and from coast to coast: 2.1 Tmol yr21 in the South Atlantic, 4.1 Tmol yr21 in the Indian, and

Figure 12. Volume transport in neutral density, c, layers for the (a) Atlantic, (b) Indian, and (c) Pacific sectors of the Southern Ocean in Sv. Nitrate transport in c-layers is shown below

(e, f, g) in Tmol yr21. The transport is quantified across 328S into the Atlantic Ocean for the IW layer 25.99 < c < 27.76, into the Indian Ocean for the IW layer 25.99 < c < 27.55, and into

the Pacific for the IW layer 25.18< c <27.34 for (d) volume and (h) nitrate (layers denoted by a dashed black line). The mean volume transport is 9.716 5.07, 13.086 6.77, and

7.496 5.17 Sv for the Atlantic, Indian, and Pacific Oceans, where the6 gives the standard deviation from the 3 day average time series. The nitrate volume transport for these three

basins is 5.576 2.94, 5.096 3.06, and 1.786 1.91 Tmol yr21, respectively.
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4.7 Tmol yr21 in the South Pacific. The B-SOSE transport estimates suggest that IW from the Southern Ocean

could supply more than enough nutrients to fertilize the Atlantic and Indian subtropical gyres. Of course,

some of the nutrients may not mix above the pycnocline to contribute to upper ocean budgets. For the

South Pacific gyre, the B-SOSE estimate is smaller compared to the basin budget, though uncertainties on

both numbers are large. It is possible that a high fraction of nutrients in IW reach the surface, or that upper-

ocean nitrogen is coming from other sources. The mechanisms behind the transport of nitrate from the

Southern Ocean to the subtropics should be explored through a thorough analysis of the nitrogen budget

in B-SOSE.

6. Concluding Remarks

We demonstrate that adjoint method state estimation works in a coupled physical-biogeochemical frame-

work. A 5 year estimate of the ocean state is produced, and validation shows it has good skill at fitting in

situ observations of oxygen and of surface pCO2 in Drake Passage. For those biogeochemical fields, which

are constrained with the most year-round observations, the state estimate is as consistent with the data as

currently published climatologies derived by objective mapping. An advantage of the state estimate over

these products, however, is that the temporally evolving fields are dynamically consistent and have closed

budgets for biogeochemical tracers. The B-SOSE product is available online with 3 day and monthly averag-

ing periods. An extended assessment of its consistency with observations is also available. Lastly, the model

setup and input files are also available.

Of course, the solution has limitations. Because observations of DIC, alkalinity, and pH are sparse and taken

almost only during summer, the carbon system is under-constrained. Similarly, the biological pump is

poorly constrained due to the paucity of nitrate, phosphate, and iron observations. The SOCATv4 data set is

our best constraint of surface pCO2 and air-sea CO2 fluxes and has allowed us to derive an uncertainty esti-

mate for our flux inference. These SOCATv4 observations suggest that the B-SOSE estimated pCO2 may be

too high in the subtropics and at midlatitudes. Nevertheless, other SOCATv4 observations, and the Drake

Passage time series in particular, reveal that much of the variability is captured. As we move forward

extending B-SOSE to near present, the Drake Passage pCO2 time series will continue to be a validation focal

point. Being the best constrained region with an extended time series of observations makes this repeat

line valuable for assessing model error.

A primary source of model error arises from the relatively simple representation of biological processes in

BLING. For example, advection and diffusion of phytoplankton biomass is neglected. Since the adjoint

method requires a high amount of computational resources, adding three additional prognostic fields (for

the biomass of each phytoplankton type) would carry a significant cost. Instead, we are implementing a sin-

gle variable representing the total biomass that is partitioned into different types based on local conditions;

this will be tested for potential use in a future version of B-SOSE. We plan to take advantage of the adjoint

machinery and extensive validation methodology to quantify the benefit of enhancing the realism of the

biological model. Assessing the influence of model error (as opposed to model input error) may inform

improvement of biogeochemical models of intermediate complexity, which are commonly used for studies

of the climate system.

The adjoint model can also be used to investigate the processes governing Southern Ocean biogeochemis-

try through adjoint sensitivity experiments. Adjoint sensitivities are response functions revealing how the

biogeochemistry at a given location is connected to various forcing mechanisms at all earlier times. Detailed

analysis of the sensitivity patterns can be used to quantify the drivers of ocean carbon variability. For exam-

ple, Dutkiewicz et al. [2006] used adjoint sensitivity experiments to map the influence of atmospheric iron

input on biological production and air-sea fluxes of CO2 in a coarse resolution global model. One also envi-

sions using the adjoint-derived sensitivities plotted in Figure 3 to help understand observations taken in

Drake Passage. Quantifying the sensitivity of the carbon system to momentum forcing, buoyancy forcing,

and biological activity allows one to explore the links between ocean response and climate forcing.

Our next step will be working toward a 2013–2020 B-SOSE that will assimilate data from SOCCOM floats.

We plan to add controls on parameters that regulate biological production: maximum photosynthesis rate,

iron sensitivity, light sensitivity, and organic matter remineralization rates, for example. A central effort will

be to analyze the state estimate to assess the variability and understand the sensitivity of the system. The
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Argo array provided a drastic increase in temperature and salinity observations when it was first deployed

in the Southern Ocean in 2004, transforming our knowledge of the physical state. The hope is that bgc-

Argo will do the same for the Southern Ocean carbon cycle, and we have produced a methodology to syn-

thesize these coming observations.
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