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Abstract

Battery electric logistics vehicles (BELVs) reduce transportation costs and air pollution unlike conventional logistics

vehicles. However, the limited driving range of BELVs creates new problems for logistics transport. Accurate driving

distance estimation of BELVs can help logistics companies determine transport strategies and alleviate the range

anxiety of drivers. Based on mass data from BELVs operating in Beijing, China, this study uses a practical and effective

data-based modeling method, regression analysis, to establish the data-based model of driving distance estimation.

During the modeling process, a nonlinear relation between percentage of energy consumption per kilometer and

driving speed is explored based on the experimental data. After determining the model variables, the model frame of

driving distance in consideration of driving speed and state of charge is established. The forgetting factor recursive

least-squares algorithm is applied to estimate the parameter values of the model. Verification results confirm the

feasibility of the model and show that the model errors are small. The proposed model is also used to explore the

economical driving speed of BELVs.
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1 Introduction

Dependence on petroleum has resulted in serious envir-

onmental and energy problems. In the field of transpor-

tation, battery electric vehicles (BEVs) are utilized to

reduce pollution because they do not produce tailpipe

emissions during operation. Different from conventional

vehicles that use fossil fuel, BEVs convert chemical en-

ergy entirely to electricity stored in rechargeable battery

packs. Therefore, BEVs are better than internal combus-

tion engine vehicles in terms of greenhouse gas emissions

and energy consumption [1]. For logistics transport, bat-

tery electric logistics vehicles (BELVs) can reduce trans-

portation costs and air pollution. However, the driving

range of BELVs is shorter than that of conventional logis-

tics vehicles. Driving range refers to the distance that a

fully charged BEV can traverse until the battery runs out

of usable electricity [2]. During trips, drivers tend to ex-

hibit range anxiety, that is, the fear of depleting battery

energy en route [3]. Drivers experiencing range anxiety

feel uncomfortable during trips when the state of charge

(SOC) of their BELVs is too low. SOC refers to the ratio of

the remaining capacity to the nominal one [4]. Drivers can

directly obtain the SOC by reading the dashboard in the

vehicles. Considering the limited driving range and range

anxiety, when starting transport tasks, BELV drivers desire

to know the distance that a BELV can continually run

from a fully charged state to a certain residual SOC value

in advance because the logistics transport need to make

strict plans to ensure that all the transport tasks can be

fulfilled. This distance is defined as driving distance in this

study. For example, if a BELV begins operating with SOC

equal to 100% and stops operating with SOC equal to

20%, the driving distance is the distance that the BELV

runs during this discharge process. Therefore, accurate

driving distance estimation for BELVs is very important to

determine transport schemes and other activities for the

logistics transport. However, in practice, accurately esti-

mating driving distance is difficult because the driving be-

havior of drivers and other external factors would affect

the vehicle operating, besides the performance of the
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vehicle itself. With the recent development of data collec-

tion techniques, a large amount of data of vehicle state

and battery status of BELVs can be obtained. Besides the

visible operating status, many invisible influencing factors,

deriving from driving behavior and other external factors,

are hidden in the data. Establishing a model by using the

data is an effective method to realize the accurate driving

distance estimation.

Besides BELV drivers, drivers of other types of BEVs

also experience the range anxiety very often. Estimating

driving range is an important issue for BEV drivers,

which has similarity with the driving distance estimation.

The conventional methods for solving such issues are to

establish the corresponding estimation models by mech-

anism. The mechanism modeling methods generally

adopt one or several visible vehicle states to reflect the

driving range based on the mechanism analysis of the

vehicle operation. Battery SOC methods are one of the

most common methods to estimate the driving range of

BEVs. The methods focus on determining driving range

through obtaining the estimation of residual usable en-

ergy of BEVs. There are several studies using battery

SOC methods to realize range estimation [5–15]. This

factor, while important, is insufficient for driving range

or distance estimation. It is because that the energy of a

BEV can be used in many different ways depending on the

driver’s driving behavior. Additionally, the external factors,

such as road conditions, may also potentially affect the en-

ergy consumption. However, these potential affecting fac-

tors cannot be considered in these models by mechanism

since it is hard to estimate driving behavior and other ex-

ternal factors through mechanism analysis.

BEV operation is a complex process, which involves

driving conditions and human factors besides battery

status. Based on the mechanism modeling methods, ref-

erence [16] attempted to use published vehicle parame-

ters and driving range information as a basis for

establishing a simplified BEV power train model. The re-

sults of driving range estimation were compared with

published manufacturer specifications under various

route and driving conditions. The significant correlations

among the experimental results were also examined. Ref-

erence [17] analyzed the operational mechanism regarding

the complexity and nonlinearity of the BEV system. A

fuzzy transform method is adopted to estimate the driving

range. Reference [18] investigated the operation character-

istics of inductive power transfer systems in BEV and

regarded it as an important affecting factor for the driving

range. A corresponding mechanism model was established

to estimate the driving range. Reference [19] attempted to

estimate the driving range based on energy consumption

information and driving conditions. A model of driving

range was established through analysis of the operational

mechanism. However, the human factors, namely driving

behavior, cannot be involved in this method. Moreover,

considering topography and the traffic conditions of the

road network, reference [20] proposed several linear

models to determine energy expenditure equations under

different conditions. Dijkstra’s graph search algorithm was

introduced to identify the route with minimum energy

consumption. The result was a routing system that could

extend the driving range by calculating the minimum en-

ergy route to a destination. Once again, the human factors

are not reflected in the models that are based on the

mechanism analysis. When driving a vehicle, the driving

behavior of the driver is not a certain factor, because it can

be affected by many external and uncertain factors. Due

to the human factors, the operation of BEV is a typical

complex system. It is very difficult, even impossible, to

predict the driving behavior through a deterministic

method, such as the mechanism analysis. Therefore, the

complexity of the BEV operation cannot be presented in

the models as mentioned above.

The shortcoming of mechanism modeling methods

can be overcome by the data-based modeling methods,

which refer to a method that mines valuable information

from the data of controlled systems and uses the infor-

mation to formulate the relations among different vari-

ables [21]. The data-based models are more effective and

practical than the mechanism models, because the large

amount of data actually records the vehicle state and bat-

tery status during vehicle operating. More importantly,

the actual data hide the invisible factors for BEV operat-

ing, such as driving behavior and other external factors.

Although these invisible factors cannot be directly cap-

tured, they are included in the actual operational pro-

cesses of vehicles. With an effective data-based modeling

method, these invisible factors can be reflected in the cor-

responding model. Therefore, applying actual data in driv-

ing range or distance estimation is a new research focus

concerning researchers and engineers. Reference [22] used

the GPS travel survey data to explore the real-world driv-

ing cycles and driving range of BEVs in Beijing, China.

The aim of the study is to investigate the effect of driving

patterns on energy consumption and, consequently, the

driving range. Reference [23] proposed a data-based mod-

eling method to improve the accuracy of driving range es-

timation. The BEV operation data used in the modeling

was collected from a cycle-life test and a cloud system.

The growing hierarchical self-organizing map was adopted

to investigate the energy consumption presented in the

collected data, and then, the driving range can be esti-

mated. Meanwhile, reference [24] adopted the BEV oper-

ation data to explore the effect of high driving speed on

energy consumption and corresponding driving range.

The data are collected in the different driving scenarios on

the highway in Australia, and the driving range under dif-

ferent driving scenarios was analyzed in the study.
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Reference [25] used empirical data to propose a hybrid

model for BEV range estimation. The results indicated

that the data-based model can significantly improve the

estimation accuracy as compared to the state-of-the-art

model-based range estimation. Reference [26] harnessed a

lot of data from real-world driving to analyze the driving

range of BEVs and provided insight into the factors that

affect energy consumption. Reference [27] adopted the ac-

tual data from operational BEVs in Beijing to realize the

residual range estimation for BEVs by combining the ra-

dial basis function neural network. However, these

data-based methods for driving range estimation are

mainly focused on private BEVs. In general, the driving be-

havior of drivers of BELVs is different from private BEVs,

because the two types of the drivers have the different

purposes of usage for the BEVs. For example, BELVs often

operate more regularly following strict travel schemes as

compared to the private BEVs. Therefore, the driving be-

havior factor hidden in the data-based model for private

BEVs is not suitable for BELVs. Moreover, for BELVs, driv-

ing distance estimation would be more useful than driving

range estimation. It is because that, before a transport

task, a BELV driver needs to determine a travel scheme

which often needs to accurately estimate the driving dis-

tance under a certain energy consumption level besides

the range that a BELV can run under its current energy.

In recent years, an increasing number of logistics com-

panies adopt BELVs to fulfill transport tasks in cities be-

cause of the energy efficiency and environmental

protection. When BELVs operate in cities, a large amount

of valuable data about the battery status and vehicle state

are generated in real time. The information of the data

usually includes SOC, driving speed, voltage, current, and

driving distance. Consequently, the human factors and

other external factors affecting the vehicles operating

would be also hidden in the data and indirectly reflected

by the information of data. Through advanced collection

techniques, a large amount of data can be collected. Com-

bining data modeling methods, the actual data can be ap-

plied to establish an effective model to estimate driving

distance. In this study, we collected the data of battery sta-

tus and vehicle state from 70 BELVs operating in Beijing,

China. After data processing, a practical and effective

data-based modeling method, regression analysis, was

adopted to establish a nonlinear model for driving dis-

tance estimation in consideration of SOC and driving

speed. The regression analysis is the analytic method that

focuses on mining the characteristics of actual data and

establishing formulation models. However, the simulation

methods often explore the characteristics by using the

model to simulate many possible values and then generate

various statistics. Thus, the analytic methods are not

applied along with the simulation ones. The analytic

methods can increase the efficiency of the modeling

process and decrease the computer cost as compared to

the simulation methods. Moreover, to improve the energy

efficiency and reduce transport cost, the economical

driving speed that contributes to the minimum energy

consumption was explored by analyzing the data-based

model.

The model proposed in this study may be used by lo-

gistics companies to determine transport strategies for

cities or by individual drivers to estimate driving dis-

tance effectively and alleviate range anxiety.

The contributions of this study are as follows. Firstly,

mass data of BELVs operating in Beijing, China, was col-

lected, which actually record the daily operation of the

vehicles. The information regarding vehicle operating

state and battery status, under the regular driving behav-

ior and conditions, is included in the data. The collected

data have universal significance for the BELVs in Beijing,

China, and other similar areas. Secondly, a data-based

modeling method was adopted to establish the model

for driving distance estimation. During the modeling

process, the relation between percentage of energy con-

sumption per kilometer (POECPK) and driving speed

was explored based on the experimental data. The re-

sults indicate a novel finding about the relation between

POECPK and driving speed for BELVs. Finally, the pro-

posed model was applied to explore economical driving

speed for BELVs, which can run the longest driving dis-

tance from a fully charged state to a certain residual

SOC value. To the best knowledge of the authors, it is

the first time that the mass data of BELVs, recording the

actual operating process of vehicles and batteries, are

applied to estimate the driving distance and explore the

economical driving speed.

The rest of the paper is organized as follows. Section 2

describes the methods in this study. Section 3 describes

the data sources and presents the relation analysis based

on the experimental data. Section 4 presents the model

for driving distance estimation considering SOC and driv-

ing speed. Actual data are utilized to verify the model.

Moreover, the model is used to explore economical driv-

ing speed. Section 5 presents the results and discussion re-

garding this work. Section 6 presents the conclusions and

directions for future research.

2 Methods

In this study, the actual data collected from 70 BELVs

are applied to explore the driving distance estimation of

BELVs. The information on the data includes both the

battery status and vehicle operating state. After data pro-

cessing, a correlation analysis is conducted to explore

the relations between driving distance and other factors

in the data. Based on the data analysis results, the re-

gression analysis methods are used to establish a nonlin-

ear model for driving distance estimation of BELVs. The
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parameters of the model are determined by using the ac-

tual data. The economical driving speed is explored

based on the model.

3 Data analysis

3.1 Data collection and processing

The data used in this study are collected from the BELVs

that are widely used in Beijing. The BELVs are produced

by BAIC Motor Corporation, Ltd. Their vehicle type is

BJ5020XXYV3R-BEV.

They are mainly used for express services in the city.

Moreover, in actual operations, the loading weight of the

BELVs is around 500 kg at each time. The nominally

capacity of the batteries is 24 kWh, which is a common

capacity level for BELV batteries in recent years. The

BELVs perform their daily transport tasks following the

travel schemes and operate in the road network as regu-

lar vehicles. During their operating, the data of battery

status and vehicle state are obtained online through an

internal controller area network bus. The data, packed

as groups, are transmitted by a wireless transmission

network to the vehicle service center every 5- or 10-s

interval and stored in the database. To investigate the

driving distance problem, we collected the data, generated

from March 27, 2014, to April 30, 2016, which include

242,858 groups of original data. The data actually record

the 254 discharge processes of 70 BELVs operating in

Beijing. The information on the collected data includes

time, total voltage, total current, SOC, temperature, cell

voltage, driving distance, and driving speed.

However, during data collection, data errors and data

missing would occur occasionally because the wireless

transmission network is affected by the external environ-

ment during data transmission. Therefore, the original

data need to be processed before being used in experi-

ments. Deletion and interpolation processing are adopted

to deal with data errors and data missing, respectively.

The repetitive and false data are the problems for the

data errors. Deletion processing is a simple and effective

method to solve the problems, which can search and

delete repetitive and false data included in the original

data. For the data missing problem, an effective method

to address the problem is interpolation processing. The

interpolation processing can be used to compensate for

the missing data from the original data. During the

interpolation processing, an effective interpolation

method, Lagrange interpolation, is adopted to implement

the interpolation experiments because of its ideal tradeoff

between accuracy and computational cost [28]. After the

deletion and interpolation processing, the complete data

on each discharge process are obtained. Notably, the

complete data are still unsuitable for modeling because

the undesired noise may be included in the data, which is

resulting from the inconsistent measurement accuracy for

different variables of the data. To remove the undesired

noise in the data, a smooth processing method is used to

average the variable values based on the unit change in

driving distance of the data. After the smooth processing,

the data can be used as the experimental data to model

the driving distance estimation of BELVs.

3.2 Related definitions and equations

The related equations and definitions pertaining to the

battery are introduced in the following paragraphs prior

to analyzing the relation between driving distance and

its related factors.

SOC is the key factor of the battery. Ampere hour

counting is the most commonly used method for SOC de-

termination [29]. It was adopted to define SOC in this

study. Only the SOC of the discharge process was dis-

cussed because the research purpose is to estimate driving

distance rather than charge. SOC is defined as follows:

SOCt ¼
Qm−Qt

Qm

ð1Þ

Qt ¼

Z t

t0

ηIdt ð2Þ

where SOCt is the value of SOC at time t, Qm refers to

the nominal capacity in ampere hours, Qt is the energy

consumption from initial time t0 to time t, in ampere

hours, η represents the Coulomb coefficient, and I is the

instantaneous current in amperes.

The definition of energy consumption per kilometer is

proposed to link energy consumption with driving dis-

tance, as shown in Eq. (3).

qi ¼
Qkþi−Qk

Lkþi−Lk
ð3Þ

where qi is the energy consumption per kilometer in am-

pere hours per kilometer; Qk and Qk + i represent the en-

ergy consumption from initial time to time k and k + i,

respectively, in ampere hours; and Lk and Lk + i are the

driving distance from initial time to time k and k + i, re-

spectively, in kilometers.

The relation between energy consumption per kilo-

meter and SOC was obtained by combining Eqs. (1) and

(3). The derived equation is

qi ¼
Qkþi−Qk

Lkþi−Lk
¼ Qm

Qm−Qk

Qm

−

Qm−Qkþi

Qm

Lkþi−Lk
¼ Qm

SOCk−SOCkþi

Lkþi−Lk

ð4Þ

where SOCk and SOCk + i represent the SOC at time k

and k + i, respectively.

The ratio of energy consumption per kilometer qi to

nominal capacity Qm must be obtained. The result is
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defined as POECPK in this study. It also links SOC with

driving distance, as shown in Eq. (5).

si ¼
qi
Qm

¼
SOCk−SOCkþi

Lkþi−Lk
ð5Þ

where si refers to POECPK in percent per kilometer.

3.3 Correlation analysis

A correlation analysis was conducted to explore the rela-

tions between driving distance and other factors in the

experimental data, as well as determine the key factors

as the variables of the model. Correlation analysis is an

important method of regression analysis, which is a

data-based modeling method and aims to explore the

correlativity between different variables in the data. Its

analysis results are expressed by Pearson correlation co-

efficients. A Pearson correlation coefficient, ranging

from − 1 to 1, is a statistic that measures the degree of

linear correlation between two variables [30]. Further-

more, adjoint probability P was adopted to test the sig-

nificance of the correlation. Given that the value of

adjoint probability P is lower than or equal to the desig-

nated significance level (equal to 0.05 generally), signifi-

cance is guaranteed.

Experimental data were used for the correlation analysis.

The variables in the data included SOC, driving speed,

total voltage, total current, cell voltage, temperature, and

driving distance. Table 1 shows the Pearson correlation

coefficients and adjoint probability P between driving dis-

tance and other variables.

The Pearson correlation coefficient between driving

distance and SOC is approximately − 1, which indicates

that a very strong negative linear relation exists between

the two variables. The adjoint probability P guarantees

the significance of the result. The Pearson correlation

coefficients between driving distance and other variables

are not close to 1 or − 1, which indicates that the linear

relation between driving distance and the other variables

is not significant. Experimental data on the representa-

tive discharge processes were used to further explore the

relation between SOC and driving distance, as shown in

Fig. 1. As expected, driving distance presents a linear in-

crease as SOC decreases, which also indicates a signifi-

cant negative linear relation between driving distance

and SOC. Moreover, it can be observed that the fluctua-

tions within a narrow range exist in the curve. These

fluctuations reflect the specific driving behavior of

drivers, such as acceleration and brake. The driving be-

havior cannot be captured, however, which can be indir-

ectly reflected by other factors in collected data, as

shown in the figure.

3.4 Effect of driving speed on POECPK

For conventional logistics vehicles, driving distance can

be determined by driving speed because of the unlimited

driving range. However, for BELVs, SOC needs to be

considered because the driving range is limited. There-

fore, given that driving distance is subject to SOC, driv-

ing speed cannot be directly used to determine driving

distance. Furthermore, several studies have demon-

strated that energy consumption can be influenced by

driving speed [31, 32]. Considering the effect of SOC on

driving distance, driving speed affects driving distance

by influencing the energy consumption. Experimental

data on 65 discharge processes, in which the changes in

driving speed are comparatively small, were used to ex-

plore the relation between driving speed and energy con-

sumption. The average driving speed in each discharge

process was considered as driving speed of the samples,

and the POECPK in each discharge process was ob-

tained with Eq. (5). A scatter diagram of POECPK and

driving speed is shown in Fig. 2.

It can be observed that the POECPK changes as driv-

ing speed changes, and a nonlinear relation exists be-

tween POECPK and driving speed. Moreover, it is noted

that the driving speed, in the experimental data, ranges

from 0 to 90 km/h because the BELVs operated as regu-

lar vehicles in the city and the speed limit is generally

not faster than 90 km/h in the urban road network.

4 Driving distance estimation model
4.1 Model frame

According to the results of the correlation analysis, a

monadic linear model was developed to represent the

strong negative linear relation between driving distance

and SOC, as shown in Eqs. (6) and (7).

y ¼ kxþ b ð6Þ

x ¼ 100SOCt ð7Þ

where SOCt refers to SOC at time t (it can be directly

observed in the vehicle), y is the driving distance that

the BELV can continually run from SOC equal to 100%

to SOCt in kilometers, and k and b are the undetermined

parameters.

Table 1 Results of correlation analysis

SOC (%) Driving speed (km/h) Total voltage (V) Total current (A) Cell voltage (V) Temperature (°C)

Driving distance (km) Pearson − 0.976 0.274 − 0.095 − 0.071 − 0.055 0.041

P 0.000 0.000 0.041 0.130 0.239 0.377
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Equation (6) can be utilized to deduce parameter k.

We suppose that x1 = 100SOCk and x2 = 100SOCk + i are

the input variables x and the corresponding output vari-

ables y are Lk and Lk + i, respectively, as shown in Eqs. (8)

and (9).

Lk ¼ kx1 þ b ð8Þ

Lkþi ¼ kx2 þ b ð9Þ

Equations (8) and (9) can be used to deduce parameter

k, as shown in Eq. (10).

k ¼
Lk−Lkþi

x1−x2
¼

Lk−Lkþi

100 SOCk−SOCkþið Þ
ð10Þ

Parameter k links SOC with driving distance. There-

fore, the transition relation between parameter k and

POECPK can be deduced by combining Eqs. (5) and (10)

as follows:

k ¼ −

100

si
ð11Þ

Given that driving speed affects POECPK, as shown in

Fig. 2, parameter k is also influenced by driving speed,

which is very important for driving distance estimation.

In order to formulate the relation between parameter k

and driving speed, based on the experimental data pre-

sented in Fig. 2, the other method of regression analysis,

curve fitting method, was employed to explore this rela-

tion and further model the driving distance in consider-

ation of SOC and driving speed. Curve fitting method is

a practical data-based modeling method to formulate

the relations among different variables in data. Firstly,

POECPK was transformed into parameter k by using Eq.

(11). Secondly, as shown in Fig. 2, it is observed that the

nonlinear relation between POECPK and driving speed

may be subject to a quadratic curve, which can be used

as the objective for the curve fitting method. Lastly, in

consideration of feasibility and effectiveness, one of the

Fig. 1 Relation between driving distance and SOC

Fig. 2 POECPK distribution at different driving speeds
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efficient curve fitting methods, curve linearization

method, was adopted to implement the fitting operation

for quadratic curve fitting. Curve linearization is an im-

portant curve fitting method that transforms curve fit-

ting into linear fitting through variable substitution [33].

Figure 3 presents the fitting curve of parameter k and

driving speed.

In order to test the fitting effect, several test indexes,

including determinate coefficient R2 of the goodness-

of-fit test, F statistic of variance analysis, and adjoint

probability P, were applied in curve fitting. R2 refers to

the ratio of the sum of squares for regression (SSR) to

the sum of squares for error (SST), which ranges from 0

to 1 and its value increases as fitting effect improves, as

shown in Eq. (12).

R2 ¼
SSR

SST
¼

X

n

i¼1

ŷi−yð Þ2

X

n

i¼1

yi−yð Þ2
ð12Þ

where ŷi refers to the regression values, y is the average

value, and yi refers to the actual observed values.

F statistic refers to the ratio of the variation resulting

from input variables to the random error, which is sub-

ject to the F distribution, as shown in Eq. (13).

F ¼

X

n

i¼1

ŷ−yð Þ2

X

n

i¼1

yi−ŷið Þ2
" #

= n−2ð Þ

ð13Þ

Adjoint probability P was adopted to test the signifi-

cance of the F statistic. The test results of the fitting ef-

fect are listed in Table 2.

The fitting effect results indicate that quadratic curve

fitting is suitable for use as the model of driving speed

and parameter k, which is given in Eq. (14).

k ¼ av2 þ cvþ d ð14Þ

where v refers to driving speed in km/h and a, c, and d

are the parameters.

As shown in Eq. (6), when x is equal to 100, y is equal

to 0. Thus, parameter b is equal to − 100 k. The model

of driving distance and SOC can be deduced as Eq. (15).

y ¼ kx−100k ð15Þ

By combining Eqs. (7), (14), and (15), the model frame

of driving distance in consideration of SOC and driving

speed was obtained, as shown in Eqs. (7) and (16).

y ¼ av2 þ cvþ d
� �

x−100 av2 þ cvþ d
� �

¼ k1xv
2 þ k2v

2 þ k3xvþ k4xþ k5vþ k6 ð16Þ

Fig. 3 Fitting curve of parameter k and driving speed
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where k1, k2, k3, k4, k5, and k6 are the undetermined

parameters.

4.2 Estimation of the model parameters

After modeling the driving distance estimation as shown

in Eqs. (7) and (16), it is indispensable to estimate the

parameters of the model. Based on the variables of the

model, data on the three variables (SOCt, driving speed,

and driving distance) are required to realize the param-

eter estimation. We selected the experimental data on

65 discharge processes, which were applied to imple-

ment the fitting operation of parameter k and driving

speed, as shown in Fig. 3, to estimate the parameters.

The driving speed can be directly obtained through the

data. The corresponding parameter k can be used to de-

termine the driving distance through Eq. (6) and fixed

SOCt. According to Eq. (6), when x is equal to 100, the

driving distance y is equal to 0. Therefore, the parameter

b is equal to − 100 k. The SOCt is set as 20%, 30%, 40%,

50%, 60%, 70%, 80%, 90%, and 100%. Based on the values

of parameter k in the transformed experimental data on

65 discharge processes, fixed SOCt, Eqs. (6) and (7), the

585 groups of data on 65 discharge processes are ob-

tained, which were used to estimate the parameters of

the proposed model.

Considering the time variation of parameters, caused by

human factors and other external factors during vehicle

operating, the forgetting factor recursive least-squares

(FFRLS) algorithm was adopted to estimate the parame-

ters based on the 585 groups of data. The advantage of

FFRLS algorithm is that it can effectively address the

Table 2 Test results of the fitting effect

R
2

F P

Quadratic curve 0.717 78.502 0.000

Fig. 4 Iteration process of the parameter estimation
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problems of parameter changes compared with other par-

ameter identification methods [34]. The iteration pro-

cesses of estimation of the parameters, based on the

FFRLS algorithm, are illustrated in Fig. 4.

It can be observed that the parameter estimation curves

of k1–k6 presented relatively flat trends over the iterations.

The curves converged completely after 400 iterations, and

the parameter values were obtained (shown in Table 3).

Subsequently, the nonlinear model for driving distance

estimation in consideration of SOC and driving speed

was obtained, as shown in Eqs. (7) and (17).

y ¼ 0:000542xv2−0:0542v2−0:0556xv−0:1399x
þ 5:5568vþ 13:9854 ð17Þ

It is noted that when v is equal to 0 km/h and SOCt is

equal to 100%, driving distance y is equal to −

0.0046 km, i.e., approximately 0 km. This result is ac-

ceptable. Moreover, when v is equal to 0 km/h and SOCt

is equal to 0, driving distance y is equal to 13.9854 km.

The result is acceptable and reasonable because that, in

actual operation of BELVs, driving speed and SOCt do

not simultaneously equal to 0 and the vehicles must be

recharged before its energy being depleted. Conse-

quently, the allowable application conditions of the driv-

ing distance estimation model are as follows. Firstly,

driving speed ranges from 0 to 90 km/h, which can meet

the requirements of BELVs in urban road traffic operation.

Secondly, SOCt and driving speed are not equal to 0 sim-

ultaneously, which is in line with the actual operation sce-

nario. The corresponding orthographic views were plotted

based on Eqs. (7) and (17), as shown in Fig. 5.

It is observed that, in the front view, when SOCt is

fixed, driving distance initially increases and then de-

creases as driving speed increases. The change trend

conforms to the relationship between POECPK and driv-

ing speed as shown in Fig. 2. As POECPK increases, the

driving distance decreases. The left view presents the

linear relation between SOCt and driving distance when

driving speed is fixed. This change trend conforms to

the relationship between SOC and driving distance as

shown in Fig. 1. In the vertical view, there presents the

significant symmetry in the figure. The symmetry results

from the impacts of driving speed on the energy

consumption. Furthermore, the graphic view presents

that both SOCt and driving speed have significant im-

pacts on driving distance. Specially, driving distance has

significant symmetry regarding the driving speed, and

driving speed equaling to approximately 50 km/h is the

symmetrical plane, which indicates that the BELVs can

reach their maximum driving distance as the driving

speed equals to approximately 50 km/h.

4.3 Model verification

The collected data on the other BELVs and discharge

processes that were not used for modeling were adopted

as experimental data to verify the proposed model. How-

ever, the variables of the data cannot be directly applied

to estimate the driving distance through the model, due

to the constantly changing speed in the actual operation

of BELVs. The current driving speed can only represent

the current driving condition, not the dynamic driving

conditions. To solve the problem, a piecewise driving

distance and superposition method is applied to estimate

the driving distance. The continuous discharge process

is divided into n samples according to the changes in

driving speed. The flow of the method for driving dis-

tance estimation is shown as Fig. 6.

Through data processing, data in the continuous dis-

charge processes were used for the verification experi-

ment. Based on the changes in driving speed, 58 samples

were obtained from the discharge processes. The values

of SOCt and driving speed in each sample were inputted

to the model to calculate the estimation values of driving

distance. The estimation results were compared with the

actual driving distance in the data. Root-mean-square

error (RMSE) and root-mean-square relative error

(RMSRE) were used as performance indexes to analyze

the accuracy of the model scientifically [35]. RMSE and

RMSRE are given in Eqs. (18) and (19).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

y
_

i−yi
� �2

s

ð18Þ

RMSRE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

y
_
i−yi
yi

� �2
v

u

u

t ð19Þ

where y
_

i is the estimation value and yi is the actual

value.

Figure 7 presents the actual and estimation values of

driving distance. It is observed that, as the sample num-

ber increases, the driving distance increases for both the

actual and estimation driving distance values. Each sam-

ple represents the operating state under the specific

driving speed during the discharge processes. In the fig-

ure, the curves of actual and estimated driving distance

have the similar change trends. The results indicate that

the estimated driving distance obtained from the model

is close to the actual one in the data.

Moreover, RMSE is equal to 0.5986, which is lower

than 1. RMSRE is equal to 0.00007, which is lower than

0.001. These results indicate that the accuracy of the

Table 3 Final estimated parameter values

Parameters k1 k2 k3 k4 k5 k6

Values 0.000542 − 0.0542 − 0.0556 − 0.1399 5.5568 13.9854
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model is high. The model has an acceptable estimation

effect. Notably, the driving distance estimation model is

calibrated based on the experimental data from the over-

all BELVs operating at different times. Since the different

vehicles and times may have different driving behavior

and external environment, the experimental data can re-

flect the differences of the driving distances under differ-

ent conditions. The calibrated model represents the

comprehensive consideration for the operation of the

overall BELVs. Therefore, although the driving distance

of an individual BELV may have differences with that ob-

tained from the model calibrated by the overall BELVs,

the calibrated model can significantly reflect the oper-

ation and driving distances of individual BELVs.

4.4 Economical driving speed

Economical driving speed refers to the driving speed that

causes driving distance to reach its maximum value, sub-

ject to the SOC. The model was used to analyze the rela-

tions between driving distance and driving speed under

different SOCt values to obtain the economical speed.

Moreover, considering the range anxiety of BELV

drivers, the BELV was recharged before its battery was

depleted. Combining the information of experimental

data, we set the lower limit of SOCt as 20%, which is a

reasonable value for actual operation of BELVs in the

city. Figure 8 presents the relations between driving dis-

tance and driving speed under different SOCt values.

It is observed that the curves under different SOCt

values present almost the same change trends. Driving

distance initially increases and then decreases as driving

speed increases. The crest values represent the max-

imum driving distance under economical driving speed.

Furthermore, all the curves have similar change trends

and reach the crest value when driving speed is equal to

about 50 km/h. For example, when setting SOCt as 20%

Fig. 5 Orthographic views of the model

Fig. 6 The flow chart of the method for driving distance estimation
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and inputting it into the model, the corresponding crest

value and economical driving speed can be obtained by

Eq. (20).

y ¼ −0:0434v2 þ 4:4448vþ 13:9854 ð20Þ

Through calculation, when SOCt equaling to 20%, the

crest value, namely maximum driving distance, is

127.7887 km and corresponding economical driving

speed is 51.2074 km/h. Similarly, when SOCt is set as

40%, 60%, and 80%, the economical driving speeds are

51.2423, 51.2177, and 51.1439 km/h and the driving dis-

tances are 93.7796, 62.4635, and 31.1476 km, respect-

ively. It is noted that the values of economical driving

speed under different SOCt values are very close. There-

fore, the average value of the economical driving speed,

equaling to 51.2028 km/h, can be considered as the

overall economical driving speed.

5 Results and discussion
Based on the correlation analysis of actual data, it is ob-

served that SOC and driving speed have significant im-

pacts on driving distance of BELVs. A nonlinear relation

between POECPK and driving speed was explored based

on the data. Furthermore, a data-based model was estab-

lished to estimate driving distance of BELVs in consider-

ation of SOC and driving speed. The verification results

indicate that the model has the good estimation accur-

acy. By using the model, the economical driving speed of

BELVs is explored, which indicates that the overall eco-

nomical driving speed is 51.2028 km/h. In addition to

battery status and vehicle operating state, the loading

weight and ambient temperature may also have influence

on driving distance. In the future work, the driving dis-

tance model can be further improved by considering the

impacts of loading weight and ambient temperature on

driving distance of BELVs. The other factors regarding

battery status, such as battery state of health (SOH) [36],

Fig. 7 Actual and estimation driving distance

Fig. 8 Relations between driving distance and driving speed under different SOCt values
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also have impacts on driving distance, which will be con-

sidered in the future research.

6 Conclusions
Accurately estimating driving distance is an important

issue for drivers of BELVs, which is very useful to deter-

mine transport strategies and alleviate range anxiety dur-

ing trips. However, conventional mechanism modeling

methods are unable to accurately estimate driving distance

because the invisible affecting factors, such as human fac-

tors and other external factors, cannot be investigated by

the methods. Data-based modeling methods are the effect-

ive methods to improve the driving distance estimation,

which aims to apply actually collected data to establish the

data-based models. Actually collected data from BELVs

record the vehicle state and battery status, additionally,

and hide the human factors and other external factors. In

this study, a large amount of actual data that was collected

from 70 BELVs operating in Beijing, China, were used to

explore the driving distance estimation. After data pro-

cessing, the experimental data was applied to perform the

relation analysis. The results show that, besides the ex-

pected strong negative linear relation between SOC and

driving distance, the driving speed has a nonlinear relation

with POECPK. Furthermore, a practical and effective

data-based modeling method, regression analysis, was ap-

plied to establish the model of driving distance in consid-

eration of SOC and driving speed. The FFRLS algorithm

was adopted to estimate the parameters of the model

based on the experimental data. Moreover, a data-based

method for model verification was employed to validate

the driving distance estimation model. The results showed

that all errors are comparatively small, thereby confirming

that the proposed model possesses good estimation

accuracy.

The proposed model was subsequently used to esti-

mate driving distance and determine the economical

driving speed. The results showed that the economical

driving speeds under different SOCt values are very

close, and the average value of the economical driving

speeds at different SOCt values (i.e., 51.2028 km/h) was

considered as the overall economical driving speed of

BLEVs. Estimation of driving distance under different

SOCt values was also performed. Moreover, it is noted

that, as compared to other models that are based on

mechanism analysis, the driving distance and econom-

ical driving speed obtained by the proposed data-based

model have a higher practical significance for BELV

drivers, because the proposed model was established by

using the actual data which truly present the vehicle

state and battery status during vehicle operation and re-

flect the visible and invisible affecting factors on driving

distance. Therefore, the model and corresponding results

can provide effective guidance to BELV drivers.

Notably, all experimental data were collected online

from BELVs operating in Beijing, China. Given that the

loading weight of the BELVs is around 500 kg in actual

operation, the change in loading weight is not clearly

reflected in the data. However, the driving distance of

BELV may be influenced by loading weight. Therefore,

future research will consider the effect of loading weight

on the driving distance model to further improve model

performance. Moreover, the impact of other factors,

such as temperature and the battery SOH, will be con-

sidered to improve the robustness of the method in the

future research.
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