

A Data Collection Tool for Sketched Diagrams

Rachel Blagojevic1, Beryl Plimmer1, John Grundy1, 2, Yong Wang3

1Department of Computer Science
2Department of Electrical and Computer Engineering

3Department of Statistics

University of Auckland

Private Bag 92019, Auckland, New Zealand

ABSTRACT

 Repositories of digital ink sketches would be invaluable for testing and evaluation of sketch recognition software.

However, there is no existing tool for flexible data collection and management of digital ink data for building

repositories of hand drawn diagrams. We present a tool for the efficient collection, management and analysis of ink

data. A resultant dataset records each ink stroke accompanied by participant and diagram information, stroke

labels and measurements of various stroke features. This tool enables the effective construction of a large database

of sketches to aid the development of recognition techniques.

Categories and Subject Descriptors (according to ACM CCS): I.7.5 [Document Capture]: Graphics recognition and

interpretation.

1. Introduction

Stylus input hardware has spurred research of sketching

tools. By imitating the pen and paper environment, use of

sketch tools allows for ambiguity and quick construction

of diagrams [PA03, BK03]. This is advantageous for

early phase design due to its unconstrained nature which

minimises cognitive load and decreases interruptions to

the flow of creativity [Bla90, Goe95]. This flexibility is a

stark contrast to conventional widget-based environments.

With sketch tools, in contrast to traditional whiteboards

and pen-and-paper sketching, there is the ease of digital

storage, transmission and replication gained from

computerisation. Potential uses include office automation,

software design, electronics design, architecture and civil

engineering, and education.

However diagramming-based sketch tools are yet to

gain general acceptance. One of the reasons for this is the

need for far more accurate recognition than is currently

available. Recognition is important as it allows these

sketch tools to support more intelligent tasks such as

editing, execution and conversion of these diagrams.

However the ambiguity of hand drawn diagrams makes

recognition problems hard to solve.

Typically recognisers are comprised of capturing stroke

features and using algorithms to combine these features to

identify the meaning of the ink. While many recognition

algorithms have been developed to date [AD04, FPJ02,

Gro96, LM96, Rub91a, SSD01, You05,], most have been

informed by ad-hoc, heuristic-based assumptions about

sketch properties. There is a critical need for more

rigorous analysis of sketch recognition performance and

tuning. The development of high precision recognition

techniques requires large amounts of digital ink data to

aid the training and evaluation stages. In addition to

quantity, the quality of this data is paramount to the

success of their development and therefore must be un-

biased and representative of a wide range of diagram

types. However, to enable this we require a corpus of

well-authored sketches, sketch components and

categorisation of data elements to be assembled.

There is little ink data available that meet these criteria

and little support for obtaining such data. A tool that

provides ease of data collection and management would

allow us to construct a data repository more efficiently

and therefore aid the development of recognition

techniques.

This paper describes such a tool. The next section gives

an overview of past work related to the collection of ink

data. Sections three and four describe the requirements of

a sketch data authoring tool and the implementation

details of the prototype we developed according to these

requirements. Section five describes our evaluation

R. Blagojevic, B. Plimmer, J. Grundy et al. / A Data Collection Tool for Sketched Diagrams

relating to the usability of our software. We then proceed

to discuss the wider potential of our tool in section six

and conclude with a summary.

2. Background

Sketch tools generally include some form of

recognition. Early sketch tools include the user interface

design software Silk [LM96] and The Electronic Cocktail

Napkin [DG01, Gro96] for architecture design. Both of

these tools provide some form of recognition of hand

drawn diagrams. Rubine’s work [Rub91, Rub91a] in

gesture recognition has been used by many other sketch

recognition systems. It involves using a linear classifier

for single stroke ink recognition. Rubine reported a 96.8%

success rate. However, further experiments that re-

implement Rubine’s algorithm have been lower 86%

[Pli04] and 84% [You05]. Despite this his algorithm has

been widely adopted [CGH03, CMP05, DHT00, FP07,

LM95, LNHL00, PA03a, Pli04, You05] with various

alterations to the feature set reported. Recognition for

many diagram domains have been explored including

CALI [FPJ02] for general shape recognition, a

mechanical engineering design tool [SSD01], Tahuti

[HD02] for UML class diagrams and SketchREAD

[AD04] a multi domain recognition tool.

However, little rigorous analysis has been applied when

identifying the features and algorithms to be used in each

recognition technique. Typically feature and algorithm

selection is made heuristically [Rub91a, SSD01, YC03].

Fonseca et al [FJ01, FJ00, FPJ02, JF99] report using

percentile graphics for each possible feature which show

the statistical distribution of feature values for different

shape classes. This is one of the few ink feature sets that

is scientifically-based.

Our previous work [Pat07, PPGI07] looked at using

formal techniques to identify a feature set for dividing

text and shape strokes in diagrams. We built a dataset of

1519 strokes from various types of diagrams. This dataset

was then analysed using a statistical partitioning

technique which constructed a decision tree. The resulting

tree contained the eight most significant features chosen

from a set of 46 candidate features.

However, there were limitations of this work stemming

from problems with collecting unbiased, high quality

data. Participants were asked to copy diagrams from pre-

drawn figures on paper. This may have caused some bias

in the timing data obtained as we would expect

participants to copy diagrams much faster than when

constructing their own from scratch (and timing was

identified as one of the important features). Also many of

the diagrams that the data was obtained from were not

complete, but were composed of one single diagram

component as shown in Figure 1a as opposed to a full

diagram such as Figure 1b. This would have influenced

some of the information obtained regarding stroke

relationships. It was also clear that a more efficient

method of collecting, labelling and managing large

amounts of data was required.

Wolin et al [WSA07] designed a tool for more efficient

labelling of ink data using a stylus. Their tool is able to

complete three main tasks; stroke fragmentation

(automatic and manual), stroke grouping and symbol

labelling. They claim that fragmenting strokes is

important before labelling as users may draw more than

one symbol using a single stroke. Fragmenting can also

help divide strokes into primitives i.e. lines and arcs.

Stroke grouping is for the opposite problem of labelling

components made of more than one stroke. Once these

tasks have been performed labelling the symbol in the

sketch can be carried out efficiently. Their tool also

allows for multiple labels to be applied to a stroke. Their

usability study showed that overall the user interface was

intuitive and easy to use. Possible improvements that

were discussed were that better support is required for

using multiple labels and that undo/redo is helpful in such

an interface. Although this tool has very useful features

for labelling sketches it only covers one stage of the

overall data collection and management process.

a. Single diagram

component
b. Full diagram

Figure 1

There are very few databases of hand drawn sketches

available. Oltmans et al [OAD04] describe their

experiences in collecting sketch data while building an

Experimental Test Corpus of Hand Annotated Sketches

(ETCHA Sketches). The process of constructing this

database included collecting sketches and then labelling

the primitive shapes within the sketches. Their data

covers four domains including circuit diagrams, family

trees, floor plans and geometric configurations; however

there is no text included in these sketches. Participants

were asked to label their diagrams themselves. As

different recognition problems require slightly different

data from each sketch four possible types of labels were

identified: (a) “Best in isolation” labels for a single stroke

classifier, second, (b) context based labels, and (c) “Is a”

and (d) “Can be a” labels where a group of labels are

assigned to a stroke for example a slightly curved line is a

line and an arc.

Hse and Newton [HN04] have also compiled a test

corpus of sketches. They asked their participants to sketch

examples of 13 different symbols, which are

predominately basic shapes such as rectangles and circles.

This dataset has similar problems to our previous work

R. Blagojevic, B. Plimmer, J. Grundy et al. / A Data Collection Tool for Sketched Diagrams

 [Pat07, PPGI07] as only one single diagram component

is drawn for each sketch. In this case data concerning

stroke relationships in a full diagram are lost. In addition

there is no writing included in any of these examples.

These databases provide a good start to building a

repository of data for sketch recognition research however

there are many other domains to consider and limitations

to overcome. In addition there is still the lack of a tool

that can support all aspects of data collection and

management.

3. Requirements

The fundamental requirement of our tool is that it

minimises the time and effort taken when carrying out ink

data collection and management tasks. In order to meet

this requirement our tool must provide support for data

collection, labelling and dataset generation, as well as

meeting common user interface requirements.

The tool must support the collection of data in an

unbiased manner to ensure its quality. By unbiased we

mean the method of collection used follows as closely as

possible to the natural practice of drawing diagrams so

that the data obtained provides a true representation of

typical diagrams. In terms of quantity, it must have the

ability to manage large amounts of data and ensure that

this data collection is fully extensible, for example when

adding new features to measure. In addition the data must

be easily extractable in a variety of formats for third party

analysis tool purposes.

The user interface requires basic functions of (sketch)

draw, erase and select. Also functions to open and save a

project (using xml files) are necessary. A project can

contain many participants who can sketch many diagrams

(see Figure 2). There should be pre-defined templates for

each diagram type which contain a diagram name and

instructions to participants on what to sketch. This way

each participant sees the same information before

sketching their diagrams which helps to keep these

variables constant. Also pre-defined labels for each

diagram template are required. These are defined by the

user based on the type of diagram that is being collected.

A representative usage scenario for creating a new

project is as follows. The researcher opens the application

and is prompted to either open an existing project or

create a new one. They choose to create a new project and

give it a name. They are then prompted to define

templates for the types of diagrams that they wish to

collect. For example they want to collect organisation

diagrams and user interface designs so they create two

templates where they define a name and instructions on

how to construct each diagram. They also define labels

for each diagram type, for example for organisation

diagrams labels may include “person”, “connectors” and

“text”. The researcher is then free to begin collecting

sketches.

Figure 2: Class diagram. A Project can have many

Participants. A Project is defined by one or many

Templates where each Template describes the type of

diagram to be collected (this includes pre-defined

Labels). Participants can draw many Diagrams. Each

Diagram is based on a pre-defined Template.

As mentioned earlier our tool must support the

collection of multiple sketches from many participants. A

tab view with a drawing area for each diagram defined by

the project templates and written instructions on how to

construct these diagrams would be an ideal way to display

what participants are required to sketch. Editing facilities

such as select and erase are available when drawing these

diagrams. When a participant is finished the sketches are

viewable but not editable.

A representative usage scenario for collecting sketches

is as follows. The participant reads the instructions and

draws the diagrams defined by the instructions in the

drawing area. If there is more than one diagram required

each one will have a separate tab. When the participant is

ready to complete a new diagram they can switch tabs to

complete the remaining diagrams in the same manner.

Once sketches have been collected each component of

the sketch must be labelled. Automatic and manual

labelling is available. We begin by supporting automatic

labelling of shape and text strokes using our “sketch

divider” [Pat07, PPGI07], which categorises ink as text or

a shape. This will be extended later with further

recognition and categorisation algorithms. Manual

labelling can be used to correct the automatic parser and

add further information. A hierarchy of labels should be

pre-defined in the diagram template. A hierarchy is used

so that enough information is available for different

recognition problems. For example one stroke in a

diagram maybe labelled as a circle which will

automatically imply that it can also be labelled as a shape

stroke for more general recognition problems. Strokes

should also be numbered for unique identification at a

later stage.

When enough sketches are collected and labelled they

can be turned into a dataset. This involves calculating a

number of features for each stroke in each sketch and

outputting a dataset file. The interface should make it

easy to select which participants/diagrams/features should

R. Blagojevic, B. Plimmer, J. Grundy et al. / A Data Collection Tool for Sketched Diagrams

.

be included in the dataset and the format of the output

file. The dataset can then be imported into data mining

tools such as R [RDC06] and Weka [WF05] to be

analysed for the development of new recognisers.

4. Prototype Usage Example

We illustrate a sample usage scenario of our sketch data

capture prototype. A user wants to create a corpus of

sketches for the domain of family tree/organisation charts.

When the application starts a dialog is shown giving

the researcher the option of either creating a new project

or opening an existing project. If they choose to begin a

new project they first specify template diagrams on which

this project is based.

Figure 3: Add template form

A template provides information on a diagram type that

the researcher wishes to collect. It consists of a name,

instructions on how to draw a diagram and a set of labels

to describe the components of that diagram. A dialog box

(Figure 3) is displayed asking them to define a template

by specifying this information.

4.1 Data Collection

Once the templates have been specified the researcher

may begin collecting sketches from participants. Using

the tools menu they can click on Data Collector which

will take them to a screen similar to that shown in Figure

4. Figure 4 shows a list box (a) which lists the ID

numbers of the participants who have contributed to the

project. Clicking on each ID number will show the

diagrams that the corresponding participant has drawn.

In the middle of the screen (b) is the drawing area as

shown in Figure 4. There is one tab for each diagram.

Clicking on each tab will also change the text area (c) to

display the correct instructions for drawing that diagram

(as specified by the researcher when creating the diagram

templates shown in Figure 3).

All data collected is saved to xml files. This includes

project information such as the diagram templates, all the

raw stroke data for each participant and the corresponding

labels applied to these strokes as discussed in the next

section.

4.2 Labelling Data

Once a diagram has been drawn the strokes can be

labelled. Using the tools menu the user (researcher or

participant) can select the Labeller which will take them

to a screen similar to that shown in Figure 5.

The user interface for the Labeller has the same list box

(a) showing the participant ID’s and tabs for each

diagram. The drawing area (b) on each tab is un-editable

except for changing the colour of the stroke. Pressing the

auto parse button (c) will automatically parse the current

Figure 4: Data collector form Figure 5: Labeller form showing a diagram labelled using

 the automatic parser.

R. Blagojevic, B. Plimmer, J. Grundy et al. / A Data Collection Tool for Sketched Diagrams

diagram using our divider [Pat07, PPGI07] into shape and

text strokes. It colours the strokes according to the colour

map shown in the tree view box (d) e.g. text strokes are

red and shape strokes are black.

The user can also manually label strokes by selecting

the correct label from the tree view component and

clicking on the stroke/strokes that require this label. These

labels are those specified when defining the template for

that diagram type as seen in Figure 3. The stroke is then

coloured to match the deepest label in the tree as shown in

Figure 6. We have chosen this hierarchical labelling

structure to allow more than one label to be applied to a

stroke without manually specifying each one.

Figure 6: Labeller form showing a diagram labelled

manually.

4.3 Dataset Generation

The final step to this data collection process is to

generate a dataset. To generate a dataset the researcher

selects Dataset Generator from the tools menu. A screen

similar to that shown in Figure 7 will appear.

There are three steps to generating a dataset; first we

must choose which stroke features we want to measure,

then which diagrams we are interested in measuring and

finally the format for the output file.

A list of possible features is displayed in a list box (a).

This list is dynamically generated to ensure that the

feature set is fully extensible. There is a check box (b) to

enable the user to select or deselect all features with ease.

Only those features selected are calculated in the dataset.

All the diagrams that are part of the current project are

displayed in another list box (c). It has a tree structure

showing which diagrams each participant has drawn. A

quick select list (d) is available to enable the user to select

or deselect all the diagrams or easily choose only certain

diagram types. Only the diagrams that have been selected

are included in the dataset.

The final combo box (e) shows the file format options

for the dataset. This currently includes .xls, .csv and .arff

Figure 7: Dataset generator form

 (Weka format [WF05]). However, more output options

can be added.

Once all the desired selections have been made the user

clicks on the generate dataset button. Each selected

feature will be calculated for each stroke in the selected

diagrams with the results written to the chosen output file.

Figure 8 shows an example dataset (using the .xls format)

for the organisation diagram in Figure 6. There are extra

pieces of information added to each stroke including the

participant ID of the person who drew the diagram, the

diagram name, the stroke ID and the labels applied to that

stroke.

Figure 8: Example dataset

The resulting dataset can then be analysed by data

mining tools to determine the most significant features

and algorithms for any given sketch recognition problem.

For example, Figure 9 shows the data from Figure 8 being

analysed by Weka [WF05] to construct a decision tree for

recognising basic shapes.

R. Blagojevic, B. Plimmer, J. Grundy et al. / A Data Collection Tool for Sketched Diagrams

Figure 9: Decision tree analysis in Weka [WF05]

5. Evaluation

A usability study was used to test how intuitive our tool

is to use, in particular the data collection and labelling

interfaces. For the data collection interface we wanted to

determine how easy it is for participants to sketch

diagrams using the provided instructions. Then for the

labeller we are interested in how efficiently we can label

the collected diagrams with the existing interface.

5.1 Data collection

Six students from a computer science and software

engineering background participated in the study. Half of

the participants use pen input on a computer frequently

and half had used pen input only occasionally or once

before.

The participants were asked to draw two types of

diagrams, an organisation chart and a graph as shown in

figure 10. They were given very specific instructions on

how to construct these diagrams. However, at this stage

we were not interested in evaluating the way we present

problems to participants to sketch, we were only testing

the usability of the interface.

We observed the participants as they completed each

task and then asked them to complete a short

questionnaire. The questionnaire focused on learning how

easy it was for participants to complete the tasks with our

software on a Tablet PC.

All participants strongly agreed that creating the

diagrams was easy given the environment and also agreed

that the interaction tools (hardware and software) helped

them to complete each task.

All of the participants agreed that they understood the

tasks they were to perform. Although we were not

evaluating the way that the tasks were presented this

feedback gives us a positive indication that the style used

to display instructions to the user on how to complete

a. Organisation diagram b. Graph
Figure 10: Diagrams collected for the usability study

each task is effective. We will evaluate this aspect of data

collection further in the future.

Five of the six participants, were neutral when asked if

editing and checking the diagrams was easy. This is

because most completed the task without a need to edit

the diagram as the tasks were easy to understand and

presented with clear instructions as discussed previously.

The sixth participant strongly agreed that editing and

checking the diagrams was easy.

Three participants, after completing the first task,

almost used the participant list box by accident to

navigate to the next task. However before clicking in the

wrong place they quickly realised that they needed to use

the tabs to switch tasks. The names of the tabs could

include the label “Task n” before the diagram name and

have a larger font to make this selection obvious.

Also one participant was unsure where the instructions

for the second task were as they did not realise that the

text area would change to display the instructions

corresponding to the selected tab. We intend to simply

include the text area within the tab to make it clear which

instructions belong to which task.

5.2 Labelling

We were also interested in evaluating how efficient our

labeller is to use. After collecting all the diagrams from

the participants we labelled each sketch and measured

how long this process took.

To label all 12 diagrams (two diagrams per participant)

it took approximately seven minutes. An extra minute

was used to double check all the diagrams and another 2.5

minutes for the dataset to be generated using all 45

features in our current feature set. This is a total of

approximately 10.5 minutes to label all diagrams and

generate a dataset of 476 strokes. In comparison,

manually labelling the data for our previous work with 26

participants and 1519 strokes took approximately a 1-2

days work.

When labelling the diagrams we found that the

automatic parser using our text-shape divider [Pat07,

R. Blagojevic, B. Plimmer, J. Grundy et al. / A Data Collection Tool for Sketched Diagrams

PPGI07] to give preliminary labels to the diagram was

especially helpful given the amount of text that was in the

diagrams.

One possible improvement that could be made is to

allow all the diagrams of the same type to be labelled

together. For example label all the organisation diagrams

first, and then label all the graph diagrams, rather than

labelling all the diagrams for each participant. This may

make the labelling process more efficient as it minimises

the cognitive load required when switching tasks and

allows for familiarity with labelling one type of diagram.

Modifying the participant list box, shown in Figure 5(a),

to display by diagram types as an alternative to participant

would allow the user to navigate through each sketch as

required.

6. Discussion

The tool we have presented provides a framework for

the processes involved in data collection and management

of sketches. The modularity allows for existing and future

tools to be easily included to provide more functionality

or to build on the current functions. For example the

sketch labelling tool presented by Wolin et al [WSA07]

could easily replace the labeller that exists in our tool.

Our objective is to develop this tool into a framework

for building recognisers. In addition to the data collection

and management support that exists, a framework would

involve building a library of common recognition and

feature selection algorithms and an automated evaluator

for the recogniser.

The feature selection algorithms would first be used to

determine the best feature set to use for the required

recognition problem. The chosen feature set could then be

applied to various recognition algorithms, resulting in a

collection of recognisers.

These recognisers could be ranked using an automated

evaluator. This would involve using each recogniser on

the sketches collected and determining their accuracy by

comparing the recognition results with the labels

previously applied to the diagram. Using this evaluator

we could identify the most accurate recogniser as the one

with the best recognition rate in comparison to the other

recognisers.

These recognisers could also be added to the labeller

for automatically parsing diagrams to apply stroke labels

and continue the cycle.

7. Conclusion

We have described the key requirements for a sketched

diagram digital ink capture tool for assembling a corpus

of quality ink data. We have developed and evaluated a

prototype authoring tool enabling such a corpus to be

assembled. Preliminary evaluation results indicate the tool

provides a good environment for capturing and

categorising ink data for further analysis. We are using

this analysis to inform our development of higher

precision sketch recognition algorithms for diagram-based

sketching tools.

Our prototype is available for download from

http://www.cs.auckland.ac.nz/~rpat088/

References

[AD04] ALVARADO C. DAVIS R.: SketchREAD: a

multi-domain sketch recognition engine. Proceedings

of the 17th annual ACM symposium on User interface

software and technology (2004), pp. 23-32.

[BK03] BAILEY B. P. KONSTAN J. A.: Are Informal

Tools Better? Comparing DEMAIS, Pencil and Paper,

and Authorware for Early Multimedia Design. In CHI

(2003), pp. 313-320

[Bla90] BLACK A.: Visible planning on paper and on

screen: The impact of working medium on decision-

making by novice graphic designers. Behaviour and

information technology, 4, 9 (1990), pp. 283-296.

[CGH03] CHEN Q., GRUNDY J. HOSKING J.: An E-

whiteboard application to support early design-stage

sketching of UML diagrams. Human Centric Computer

Languages and Environments (2003), pp. 219-226

[CMP05] CHUNG R., MIRICA P. PLIMMER B.:

InkKit: A Generic Design Tool for the Tablet PC. In

CHINZ (2005), pp. 29-30

[DHT00] DAMM C. H., HANSEN K. M. THOMSEN

M.: Tool support for cooperative object-oriented

design: Gesture based modelling on and electronic

whiteboard. In CHI (2000), pp. 518-525

[DG01] DO E. Y. L. GROSS M.: Thinking with

Diagrams in Architectural Design. Artificial

Intelligence Review, 15, (2001), pp. 135-149

[FJ01] FONSECA M. J. JORGE J. A.: Experimental

Evaluation of an on-line Scribble Recognizer. In

Pattern Recognition Letters (2001), pp. 1311–1319.

[FJ00] FONSECA M. J. JORGE J. A.: Using Fuzzy

Logic to Recognize Geometric Shapes Interactively. In

Proceedings of the 9th International Conference on

Fuzzy Systems (FUZZ-IEEE), (2000)

[FPJ02] FONSECA M. J., PIMENTEL C. E. JORGE J.

A.: CALI: An Online Scribble Recogniser for

Calligraphic Interfaces. In AAAI Spring Symposium

on Sketch Understanding (2002)

[FP07] FREEMAN I. PLIMMER B.: Connector

Semantics for Sketched Diagram Recognition. In

AUIC (2007), pp, 71-78

[Goe95] GOEL V. Sketches of thought. In The MIT

Press, (1995)

[Gro96] GROSS M.: The Electronic Cocktail Napkin-a

computational environment for working with design

diagrams. Design Studies, 1, 17 (1996), pp. 53-69

[HD02] HAMMOND T. DAVIS R.: Tahuti: A

Geometrical Sketch Recognition System for UML

Class Diagrams. In AAAI Spring Symposium on

Sketch Understanding (2002)

http://www.cs.auckland.ac.nz/~rpat088/

R. Blagojevic, B. Plimmer, J. Grundy et al. / A Data Collection Tool for Sketched Diagrams

[HN04] HSE H. NEWTON A. R.: Sketched Symbol

Recognition using Zernike Moments. International

Conference on Pattern Recognition (2004), pp. 367-370

[JF99] JORGE J. A. FONSECA M. J.: A Simple

Approach to Recognise Geometric Shapes

Interactively. In Proceedings of the Third Int.

Workshop on Graphics Recognition (GREC), (1999)

[LM95] LANDAY J. MYERS B.: Interactive sketching

for the early stages of user interface design. In CHI’95

Mosaic of Creativity (1995), pp. 43-50

[LM96] LANDAY J. MYERS B.: Sketching

storyboards to illustrate interface behaviors. In CHI '96

(1996), pp. 193-194

[LNHL00] LIN J., NEWMAN M. W., HONG J. I.

LANDAY J. A.: Denim: Finding a tighter fit between

tools and practice for web design. In CHI 2000 (2000),

pp. 510-517

[OAD04] OLTMANS M., ALVARADO C. DAVIS R.:

ETCHA Sketches: Lessons learned from collecting

sketch data. In AAAI Fall Symposium on Making Pen-

Based Interaction Intelligent and Natural. (2004)

[Pat07] PATEL R.: Exploring better techniques for

diagram recognition. University of Auckland, (2007),

MSc

[PPGI07] PATEL R., PLIMMER B., GRUNDY J.

IHAKA R.: Ink Features for Diagram Recognition. In

4th Eurographics Workshop on Sketch-Based

Interfaces and Modeling (2007)

[Pli04] PLIMMER B. Using Shared Displays to

Support Group Designs; A Study of the Use of

Informal User Interface Designs when Learning to

Program. University of Waikato, (2004), PhD

[PA03] PLIMMER B. E. APPERLEY M.: Evaluating a

Sketch Environment for Novice Programmers. In

SIGCHI (2003), pp. 1018-1019

[PA03a] PLIMMER B. E. APPERLEY M.: Freeform:

A Tool for Sketching Form Designs. In BHCI (2003),

2, pp. 183-186

[RDC06] R DEVELOPMENT CORE TEAM. R: A

language and environment for statistical computing. R

Foundation for Statistical Computing, (2006)

[Rub91] RUBINE D. H. The automatic recognition of

gestures. Carnegie Mellon University, (1991), PhD

[Rub91a] RUBINE D. H.: Specifying gestures by

example. In Proceedings of Siggraph '91 (1991), pp

329-337

[SSD01] SEZGIN T. M., STAHOVICH T. DAVIS R.:

Sketch based interfaces: early processing for sketch

understanding. In Proceedings of the 2001 workshop

on Perceptive user interfaces (2001), pp. 1-8

[WF05] WITTEN I. H. FRANK E. Data Mining:

Practical machine learning tools and techniques.

Morgan Kaufmann, (2005).

[WSA07] WOLIN A., SMITH D. ALVARADO C.: A

Pen-based Tool for Efficient Labeling of 2D Sketches.

In 4th Eurographics Workshop on Sketch-Based

Interfaces and Modeling (2007)

[You05] YOUNG M. InkKit: The Back End of the

Generic Design Transformation Tool. In University of

Auckland, (2005), BEng

[YC03] YU B. CAI S.: A domain-independent system

for sketch recognition. Proceedings of the 1st

international conference on Computer graphics and

interactive techniques in Australasia and South East

Asia (2003), pp. 141-146.

