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Abstract

The optimisation of the Area Under the ROC
Curve (AUC) has recently been proposed for
learning ranking functions. However, the es-
timation of the AUC of a function on the true
distribution of the examples based on its em-
pirical value is still an open problem. In this
paper, we present a data-dependent generali-
sation error bound for the AUC. This bound
presents the advantage to be tight, but it also
allows to draw practical conclusions on learn-
ing algorithms which optimise the AUC. In
particular, we show that in the case of AUC,
kernel function classes have strong generalisa-
tion guarantees provided that the weights of
the functions are small, suggesting that regu-
larisation procedures which tend to limit the
norm of the weight vector may lead to bet-
ter generalisation performance for algorithms
which optimise the AUC.

1. Introduction

Many supervised machine learning (ML) applications
are a bipartite ranking problem, where the goal is to
learn a scoring function which gives higher scores to
positive examples than to negative ones. For example,
in metasearch, machine learning can be used to com-
bine the outputs of search engines in order to improve
the ranks of the relevant elements (Aslam & Montague,
2001). Another example is the task of automatic text
summarization by extraction, where a summarization
system takes as input a document, and provides an or-
dered list of some of the document sentences, in which
the top-ranked ones should reflect the main idea of its
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content (Kupiec et al., 1995; Amini & Gallinari, 2002;
Amini et al., 2005).

While these ranking tasks were originally dealt with
by learning a classifier, it has recently been shown
that the error rate of a classifier is lowly correlated
to its Area Under the ROC Curve (AUC) (Caruana &
Niculescu-Mizil, 2004; Cortes & Mohri, 2004), a mea-
sure of the ranking performance of a function, equal to
the probability on a given set that a positive instance
has a greater score than a negative one. This obser-
vation has led to a new kind of learning algorithms,
designed specifically to optimise the AUC (Yan et al.,
2003; Rakotomamonjy, 2004; Herschtal & Raskutti,
2004). If we are given a training set S composed of
n positive instances (z;)7_; and m negative instances
(z})72;, the AUC of a function f is equal to (see e.g.
(Cortes & Mohri, 2004)):
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where I, = 1 if pr is true and 0 otherwise. The op-
timisation of the AUC carried out by these specific
algorithms is to find a function f in a given class F
which minimises:
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where L : (z,2') — L(f(x) — f(2)) is a loss function,
approximating or upper bounding I¢(,)<f(.) (see e.g.
(Freund et al., 2003; Herschtal & Raskutti, 2004).

In this paper, we are interested in the generalisation
properties of the AUC. Formally, assuming that the
sample S is drawn ii.d. according to an unknown
distribution D, we want to bound the expected AUC



of f based on its AUC on the training set and the class
of functions F, by the standard uniform bound:

Ewﬂm/Lf — Est' S }Sclelg):(Em’mlLf — Est) (2)

where the expectation E, ./ is taken over the condi-
tional distributions D given the class labels (z is a
positive and 2’ a negative instance).

Such bounds are a key characteristic of the optimisa-
tion of the AUC from a ML point of vue. Indeed, if the
right hand side of the above inequality tends to 0 when
the sample size tends to infinity, the learning process is
then consistent (Vapnik, 2000). Finite sample bounds
which give an indication on the convergence rate of the
learning procedure, are also of great interest. Indeed,
such bounds allow to show that optimising different
classes of functions may have different generalisation
guarantees, and therefore will influence the design of
the learning algorithms as well as the choice of the
algorithms in practical applications.

We present here a new approach for the computation
of data-dependent bounds for the AUC, inspired by
the work of (Bartlett & Mendelson, 2003) on data-
dependent bounds for classification. The main benefit
of such approaches is that they do not make any as-
sumptions on the nature of the distribution D, while
the bounds can be calculated based on the train-
ing data and therefore may provide tighter bounds
than the ones based on distribution-free estimates of
the complexity of the class of functions like the VC-
dimension.

With the intention of obtaining tight generalisation
error bounds for the AUC, we obtain a new data-
dependent generalisation error bound, and show a par-
ticular instantiation on kernel function classes with
bounded weight vectors. QOur bounds confirm the
previous generalisation error bounds for the AUC of
(Agarwal et al., 2005; Freund et al., 2003) in that the
convergence rate is mainly controlled by the number of
instances of the minority class for unbalanced datasets.
However, our result also leads to the conclusion that,
for this class of functions, the generalisation error will
be small if the weights are small, independently from
the dimension of the (implicit) feature space. This
suggests that the algorithms which optimise the AUC
while controlling the size of the weights, like the SVM
for the AUC (Rakotomamonjy, 2004), will have good
generalisation guarantees. It is an extension to the
case of AUC of the same observation in classification,
which is that controlling the size of the weights in a
learning algorithm may lead to better generalisation
performance, like in the well-known SVM (Vapnik,
1998; Shawe-Taylor & Critiani, 2004).

The remainder of the paper is organised as follows. In
section 2, we present some related work on the gen-
eralisation properties of the AUC. Then in section 3,
we define the quantity which will be used as function
class complexity for the AUC and prove that it allows
to bound the generalisation error. And finally we give
a data-dependent bound for the AUC in the special
case of kernel classes in section 4.

2. Related work

Generalisation error bounds for the AUC have already
been proved using distribution-free estimates of the
class complexity (Freund et al., 2003; Agarwal et al.,
2005). These bounds depend on the number of positive
and negative instances in the training set and show in
particularly that for highly unbalanced datasets, the
rate of convergence will mainly be controlled by the
number of examples in the minority class. (Freund
et al., 2003) proposed a bound using the VC dimen-
sion of the class of functions, and (Agarwal et al., 2005)
defined a new function class complexity, called the bi-
partite rank-shatter coefficients. With this complex-
ity, they found tighter bounds for the linear ranking
function classes than the ones in (Freund et al., 2003).
However, these bipartite rank-shatter coefficients are
difficult to evaluate for other classes of functions than
linear or polynomial ones. Moreover, in these special
cases, the rank-shatter coefficients of F depend on the
dimension d of the feature space, making it too loose
for function classes in a large (implicit) feature space
like kernel machines. In our approach, we will prove
bounds which, when the class of functions F is lin-
ear with a bounded weight vector, have a convergence

rate of (/%2 ), which is the same as the one found

by (Agarwal et al., 2005). However the main differ-
ence with their approach is that the bound we pro-
pose does not depend on the dimension of the feature
space, making it particularly convenient with kernel
functions. Our approach can be seen as the analo-
gous of the Rademacher complexity for classification, a
powerful tool used for providing tight data-dependent
bounds for the kernel machines used in classification
(Bartlett & Mendelson, 2003).

Recently, (Clémengon et al., 2005) presented an in-
depth statistical analysis of the generalisation proper-
ties of a quantity they call the ranking risk, which dif-
fers from the AUC mainly by a constant factor. There-
fore, their asymptotic results on the ranking risk can
be applied to the case of AUC. However, the constant
factor between the AUC and the ranking risk depends
on the true class probabilities, which are unknown.
Therefore, the use of their results to obtain tight finite



sample bounds is not straightforward.

In order to obtain tight, data-dependent convergence
rates, we propose another approach, specific to the
problem of AUC. We do not claim that our approach
is optimal, but it has the advantage of easily providing
bounds on the convergence rate without considering
the real class probability distributions.

3. A new generalisation error bound
3.1. Notations and Definitions

From now on, we suppose that the class labels are
{1, -1}, that there is a mapping from the examples to
a feature space X, and that the example follow an un-
known distribution D over X’ x {1, —1}. We moreover
denote by D; and D_; the conditional distributions of
D given the class label (1 and —1 respectively), and
D} and D™ the product distribution of D; and D_;
over X™ and X" respectively. Finally, we will denote
by S = (21,...,%n, 2, ..., z},) a sample set drawn ac-
cording to D} x D™, which means that all z; and a’j
are independent and that the z;s are positive instances
drawn iid according to D; and the z;s are negative in-

stances drawn i.i.d. according to D_;*.

From equation 1, the optimisation of the AUC can
be carried out by minimising, for some loss func-
tion L and f in a given class F, the quantity

s i 2oy L(f (@3) = f(25))-

More generally, we will consider a class of functions Q
mapping from X2 to [0,1]. A typical example is Q =
{Qf : (z,2") = Ippy<f(ar), f € F}. Let us introduce :

N 1
EsQ = — o
sQ nm(_z)Q(a:z,xJ)
7,7

and
Ep,xp ,Q =Esp, wp ,Qz,2)

where z ~ D; means that the random variable z fol-
lows distribution D;. Our goal is to give an upper
bound on (see equation 2):

sup (Ep, xp_,Q — EQ) (3)
QeQ

In order to obtain a data-dependent bound, we will
make use of Rademacher variables and Rademacher

LAll our results will be stated for samples drawn ac-
cording to DT x D™ in order to simplify the notations.
However, since the order of the instances of the training
set is of no importance, all our proofs could be conducted
like in (Agarwal et al., 2005), considering samples of size
n 4 m drawn according to ™1™, but conditionally on the
label of each instance. Therefore, our approach is not less
general than theirs.

averages (see e.g. (Bartlett & Mendelson, 2003)).
A random variable o is a Rademacher variable if
P(c =1) = P(oc = —1) = 3, and we will make use of
Rademacher averages of the following form:

N

E, sup orhi(0
sup > owhi (9

where o1,...,0n are independent Rademacher vari-
ables, and, for all k, hy, is a real-valued function. Such
Rademacher averages have been used as the complex-
ity of the class of function to obtain data-dependent
bounds for classification (see e.g. (Bartlett & Mendel-
son, 2003)), where © was the class of functions and
hi(0) = 6(xy) for an example x.

Let us define the following Rademacher averages,
which we will use as a function class complexity in
our results:

~ ]. n m g; + v,
Rﬁ,(rjnc(g) =4E,, Cs;el% — Z Z TJQ(xm x;)

nm < :
i=1 j=1

(4)

where 0 = (o), and v = (v)2, are two independent

sequences of independent Rademacher variables. And

RAVC(Q) =EsR}UC(Q) (5)

where the expectation is taken over all samples S
drawn according to D} x D™.

The main interest of these averages is that they provide
a generalisation error bound for the AUC by bounding
(3) using R}YC(Q) (theorem 1). Then, we prove in
lemma 4 that we can approximate R{UC(Q) by its

empirical value on the training data ]:B;?’%C(Q), which
shows that we can obtain data-dependent bounds for
the AUC. In theorem 6, we present the calculation of
the bound for the specials cases of classes of kernel
functions with bounded weights, which will be used to
draw our practical conclusions.

3.2. Main result

Theorem 1. Let Q be a class of functions mapping
X2 t0 0,1], let S = (21, e, T, T, oy 2l,) be a sample

of size n + m drawn according to D} x D™,. Then,
with probability 1 — 6, all Q in Q satisfy:
- +
Ep, xp_,Q < EQ+ RVC(Q) + % In(1/9)

Proof. for all Q € Q, we have:

Ep,xp ,Q —EsQ < SU%(EQ «p,Q —EsQ) (6)
S



The main idea of the whole proof is to use a symmetri-
sation procedure. We will obtain an upper bound on
the right term of 6 which is symmetric in two sam-
ples of the same size, the sample S and another arbi-
trary sample S taken according to the same distribu-
tion (equation 7). This symmetric expression will en-
able us to introduce Rademacher variables which cor-
respond to random permutations of examples from S
to S (lemma 3) which will allow us to introduce the
Rademacher average we defined in equation 5.

The first step of the proof is to bound the right hand
side of the inequality (6) using the results of the follow-
ing lemma, which is due to a theorem by McDiarmid
(McDiarmid, 1989) (For clarity in the presentation,
the proof is deferred to Appendix A):

Lemma 2. Let Q be a class of functions mapping from
X2 to [0,1]. Then, with probability 1 — & over all sam-
ples S drawn according to DT x D™, we have:

supge o (Ep, xp_,@ — EsQ) < (TQL:Z) In(1/8)+

Es~pyxpm, $Upoe o (Ep, xp_, @ — EsQ)

Let us now consider a second sample S =
(Z1y ey @, @4, .oy 80,) of the same size and drawn ac-

cording to the same distribution as S. We will now
denote ES’ND1L><DT1 as Eg and ES'NDfxDTl as Eg when
the context is clear. It is easy to see that we have
EzE:Q = Ep,xp_,Q, and, as a consequence:

(Ep, xp_,Q — ESQ) A
=Eg SupQGQ(IE~]E~Q — IESQ)
=Egssupgeo E [ sQ —EsQ)
<Eggs supgeo(Eg@ — ESQ)

Eg SUPgeco

(7)

where the last inequality is obtained after remarking
that we have, for all @ and S:

EsQ —EsQ < sup E5Q — EsQ’
QeEQ

and then taking the expectation over S and the supre-
mum over Q.

Using equation 7, which is symmetric in .S and S, we
introduce the Rademacher variables through the fol-
lowing lemma (the full proof is given in Appendix B):

Lemma 3. With S and S defined as above, and con-
sidering o = (0;)i—; and v = (v;)7,, two sequences
of independent Rademacher variables of size n and m
respectively, the two following quantities are equal:

1. ES,§ SupQEQ(ngQ — EsQ)

n m

3 1
E,..5.55Wgeolmm 2im1 251

0-7/+’/‘7 Q(Jj“ ])
2.

+%Q(§jl7$;) e V] Q(x’u j) - 01+VJ Q(x’m ]

Proof. (of lemma 3) consider the part of the second
expression of the lemma which is inside the supremum,
and, for a given i, set 0; = —1. Then all the sum is the
same as in the first expression if we had swapped the
examples x; and Z; from the two considered samples
S and S. More generally, for any instance of ¢ and
v, this part of the expression corresponds to a swap
between S and S of the i-th z;s and the j-th s for

which o; = —1 and v; = —1. Since S and S have the
same distribution, swapping elements from one sample
to the other does not change the expectation over .S, S,
Therefore, for all o and v, the expectation over S, S of
the supremum of the second expression of the lemma is
equal to the first expression, and the theorem follows
by taking the expectation over o, v. O

Back to the demonstration of theorem 1 and decom-
posing the second expression of lemma 3 into four in-
dependent expectations of supremums of Rademacher
processes, we can notice that o has the same distri-
bution as —o, and that it is the same for v and —v,
()P, and (xl)z 1 and finally (z})72, and (Z})7L,,
and that therefore the four terms obtamed have the
same value. Thus, we can claim that:
Eg 5 sup (B5Q — EsQ) < RATT(Q)
QeQ

where R{UC(Q) is defined in equation 5. Putting it
together with equation 7 and with lemma 2 gives the-
orem 1. O

4. Calculating the bound using the data

An important characteristic of R{}{¢(Q) is that it can
be approximated using the training data. Indeed, we
have the following lemma, which, together with theo-
rem 1 give a generalisation error bound for the AUC
that can be computed on the data.

Lemma 4. Let Q be a class of functions mapping X2

0 [0,1]. Let S = (x1,...,%n, 21, ..., x},) be a sample
drawn according to DY x D™, then, with probability at
least 1 — 9, we have:

+m
Sy In(1/0)

Proof. The proof is analogous to the proof of lemma 2
(see Appendix A), by applying McDiarmid’s theorem

/

)}



to the following function:

f(S)=E oV SUPizZ

=1 j=1

al—i—uj

Qw4 75)

and by noting that for all zx and Iy, all Q € Q and
all o, v we have:

and, for all x} and &) we have, for all Q € Q, all o,v:

1 - o + vk , - o + vk
o | 2T Q)2 T

i=1

Q(zi, o}) I<

O

Although we now know that there exist some data-
dependent bounds for the AUC, we need to explic-
itly calculate RZ‘?},J,LC(Q) for some specific Q in order to
draw practical conclusions. In order to do this, con-
sider a kernel K over X2, B a strictly positive real
number and the following class of functions:

Fr.g={fw:X =R, fulz)
(8)

where ||z||x = /K(z,z). Given a sample S =
(T1y ey T, &Y, oy h,), the goal here is to provide a
generalisation error bound in terms of the variables
Gj=[p— Kw,z;) — K(w, )]+, where [z]4 denotes
the positive part of x and p plays an analogous role for
the AUC as the margin for classification. It is to be
noted that the (;; are the slack variables for the SVM
which optimise the AUC (Rakotomamonjy, 2004). In
order to simplify the notations we suppose here that
p = 1, but similar results stand for any reasonable
values of p.

= K(w,2) | [[w]|x < B}

In order to make the calculations, we need to define ¢ :
R — [0, 1], the 1-Lipschitz function such that: ¢(x) =
Oifx > 1, ¢p(z) =1if ¢ <0 and ¢(x) =1 — x for
0 <z <1. Then, we have, for f in Fi p:

Iiey<sey < o(f(@) — f(25)) < Gy 9)

and therefore Eg o I¢(0)<f(a) < Ezod(f(x) — f(2')).
Applying theorem 1 and lemma 4 to the right hand
term of this inequality leads to the fact that, with
probability at least 1 — ¢ over the samples S drawn
according to D} x D™;:

Ea:7w’If(z)§f(x’) < Ez,a:’(b(f(‘r) - f(l‘/))
. (10)
+ R0 (60 Frep) +5 % In(2/96)

where we have used the abuse of notation ¢ o Fx p =
{(z,2") = ¢(f(x) = f(')) | f € Fr,p}. This expres-
sion leads to the following lemma which provides an
upper bound for the generalisation error that can be
computed on the training set.

Lemma 5. Let ¥ be Lz’pshitz with constant L. Then,
for all S = (z1,...,wp, @4, ..., xl,) € X" we have:

he m

RAVC (40 Fic5) < Anmssi ¢Z ol + 11 3 — 2K (e, )

(4,)
2LB+/2(n+m)

with An,m,B,L = m

Proof. From the definition of Rf[fnc, we have:
RS (W0 Fi )
=4E,, sup —ZUlJrVJz/} K(w,z;) — K(w, 2

HwHK<B nm

2 m
<= E

(4,9)

sup 20177[} (w, ;) (w,x;))
j=1 ||wHK<BZ 1
2 n
+ %ZE sup Zl/]w (w,x;) (w,x]

i=1 [lwllx<B ;=

(11)

We obtain therefore a sum of m Rademacher aver-
ages (RA) of size n and n RA of size m. Now de-
noting <, > the scalar product in the implicit space
of K and ¢ the projection such that K(z,z') =<
o(x), p(x') >, and, for an element of the implicit space
v, llyll = v/<y,y >, we can apply theorem 7 of (Meir
& Zhang, 2003) (because 1 is L-Lipschitz) to the previ-
ous Rademacher averages,from which we directly get:

RAVC (o Fi )

2L
< — E, sup o[ K — K(w, z})]
nm ; IIwHK<B; !
2L n m
+— Y E, sup E vi|K(w,x;) — K(w,x;
nm — Iollss i ’ ’

\ /\

2LBZE ||Zaz z) — o)l
2LBZE||ZVJ — o)l
2LB(n+m>{n+mZE ||Zaz -Tz)_(P(

nm
j=1 i=1

n+m§ i

IN

2P}

(12)

]

)



where the second inequality is obtained using the bilin-
earity of <,> and Cauchy-Schwartz’s inequality, and
the third is due to |ly|| = +/||y||*> and to two con-
secutive applications of Jensen’s inequality (since the
square root is concave). Considering each term sepa-
rately, we have for example:

| Z aioilp(zi) — p(a))]|I”

<Y ailp(a) — o)), Y oip(xi) — e(af)] >
i=1 1=1

n

= ZZUZU; < [e(x;) — 80(509)], lp(zi) — Sﬁ(x”] >

i=1 =1

And, since the o; and o; are independent for i # [
with 0 mean, only the terms in o;04||[¢(x;) — cp(x;)||2
remain in the last sum when taking the expectation
over o, and, therefore:

Eoll Y ili(ai) — oI =

> llailli + llfl[F — 25 (i, 27)]

i=1

(13)

Using the same reasoning for v and putting it in equa-
tion 12 proves the lemma . O

Finally, using the result of lemma 5 in equation 10
leads to the following theorem:

Theorem 6. Using the notations defined above,
with probability at least 1 — § over samples S =
(X1 ooy T, &Yy oy ) drawn according to DY x D™,
the following inequality holds for all f € Fi p:

1
Boolf@<sen < > o(f(ai) — f(xh)
(i.9)

f(z5)) with >= . Gj, where (;; are defined above.
We therefore proved some generalisation bounds which
are analogous to the margin-based, data-dependent
bounds for kernel machines (Bartlett & Mendelson,
2003). Using equation 14, it is also easy to see that
if the data lie in a ball of the implicit space (i.e.
Vo € X,||z||k < B’), then the rate of convergence is

O(y/™2), and depends only on the maximal norm

of the weight vector of the functions. In particular,
the bound does not depend on the dimension of the
feature space, and can be applied to any kernel. As
direct consequences, this bound shows at first that op-
timising the relative difference of scores between in-
stances of different classes, which is the analogous to
optimising the margin in classification, actually leads
to good performance guarantees. This result is inter-
esting, because RankBoost applied to the AUC (Fre-
und et al., 2003), or the SVM for the AUC (Rako-
tomamonjy, 2004) optimise these relative differences
of scores?. Secondly, this bound shows that when we
can control the norm of the weight vector, we have
some generalisation guarantees which are in partic-
ular independent from the dimension of the feature
space, implicit or explicit. Therefore, as in classifica-
tion, sophisticated kernels can be used in order to ob-
tain non-linear ranking functions, and generalisation
performance is still guaranteed. More generally, we
have shown that the kernels used in classification can
also be used to learn a ranking function.

5. Conclusion and perspectives

In this paper, we have shown that data-dependent
bounds could be obtained for the AUC, and calcu-
lated the bound in the particular case of kernel classes
of functions with bounded weights. Our results also
confirm that the generalisation error is mainly con-
trolled by the number of instances in the minority

2B\/2(n+m)
§ ZBV2OEI) S+ g — 2
(4,4)
(n+m)

5
+ 2nm

In(2/0)

And, noting ¢ = max(max; ||z;|| k-, max; |[2}|]x )

Eoolf@)<p@n < % D> of (@) = J@)
(i-3) (14)

+4V3Bey/ ”T:me n 5\/% In(2/6)

We can notice, using equation 9, that the equalities of
the theorem are still true if we replace }; - ¢(f(z;) —

elass. Moreover, in terms of practical conclusions, we

z;, 2’ )have shown that the relative difference of scores be-

tween instances of the two different classes, the anal-
ogous of the margin in classification, is closely related
to the generalisation performance of the AUC. We also
showed that kernel functions can be used to learn com-
plex functions, in particular non-linear functions, while
keeping their generalisation performances given that
the weights are bounded. This leads to the last inter-
esting conclusion that the size of the weights is closely

2It is to be noted here that since the weights in Rank-
Boost are not chosen to be small, this bound is not appli-
cable directly. However, we showed a relationship between
the generalisation performance of the optimisation of the
AUC and the maximisation of the difference of the relative
scores.



related to the generalisation performance, and, in the
case studied here, is more important than the dimen-
sion of the implicit space.

Finally, the proofs follow the same steps as (Bartlett
& Mendelson, 2003) for the data-dependent bounds
for classification. However, we had to define specific
Rademacher averages for the case of AUC to derive
interesting and useful data-dependent bounds. This
shows in particular that they can be a useful tool to
analyse the generalisation properties of the AUC. How-
ever, the actual Rademacher averages used lack the
structural results which exist for the Rademacher com-
plexity used in classification (Bartlett & Mendelson,
2003). Therefore, more work is needed to study the
complexity defined in the paper, or to define another
complexity measure of classes of functions which would
allow at the same time for data-dependent bounds and
more general results.
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Appendix A: proof of lemma 2

The proof of the lemma is an application of McDi-
armid’s Theorem (McDiarmid, 1989) which can be ex-
pressed as follows:



Theorem 7. ((McDiarmid, 1989)) Let X1,..., X,
be independent random variables taking values in a set
A, and assume f: A" — R satisfies:

Vi<i<n :
sup |f(.’L'17 "'7x”)_f(x1’ "'a‘%iami+17 7‘r7l)| <g¢
T1,ey@Tp, &€
Then, for all € > 0:
—2¢2
P{f(Xla ,Xn)_Ef(Xl, aX'n,) Z 6}- S exp(ﬁ>
i=1"%
and:
—2¢2
P{Ef(Xla,Xn)_f(Xl,,Xn) ZE} Sexp( 2)

Z:'L:l &
Now let us apply the theorem to the function

f:8— sup(Ep,xp_,Q — IEJSQ) (15)
QeQ

where S = (21, ..., T, 2], ...2),) is a sample of size n+

m drawn according to D" x D™ (that is, all x;’s and

r’;’s are independent).

let k € {1,..,n}, 2 € X and S a sample of size
n + m, and let &; = z; if i # k, and denote S =
(1, ey B, 2y ey i), Let furthermore Q be an ele-

ment of Q. Then, we have - 3" | Zj L Q(w,2'5) —
o Do Do Q4. 2') L > Qg 2'5) —

Q(fck,x;)) Since @ takes its values in [0,1],
we have for all j | Q(wx,2'j) — Q(3y, 7)) [<
1, and, therefore | ﬁzl@:l Z;":l Qlxi,2'j) —

i 2oy 2oy Q(&4,2'4) |[< 5, which can be written
as | EsQ —EgQ |< 1.
Then, we have, for all Q in Q and all Zy:
~EsQ-L1<-EsQ<-E;Q+1
= EpQ —EgQ — § <EpQ —EsQ <EpQ - E;Q +

Taking the supremum over all @, the last equation
shows that, for all S, for all Z;, we have:

A . 1
| sup (EpQ — Es@) — sup (EpQ — EgQ) [< — (16)
QeQ QeQ n
which can be expressed as:
N 1
SUP | F(S) = F(T1y ooy Tl Bhey Tt 1y ey Ty Ty ey Ty ) | < —
S,dr n
(17)

where f is the function defined in equation 15 An anal-
ogous demonstration can be done to show that for
k € {1,...,m}, to show that

/ ! A1 /
Ty Ty ooy Tpg 15 Lpy Ty 15 -

sup | f(S)—f(z1, ...,

S,
(18)

Using McDiarmid’s theorem with the results of equa-
tions 17 and 18, we can now say that:

P'D?XDTI (f(S) - Ef > 6) < exp(n*(l/n)2fm*(1/m)2)
Pppxpm (f(S) —Ef >¢€) < eXp(iiinz)

And solving for € yields the result of lemma 2.

Appendix B: proof of lemma 3

In order for the proof to be readable, we first
define some notations. n, m, S = (x,x') =
(L1, Ty @i, 2, S = (X, X)) = (21,0, &, &, ),

o, v and Q have the same meaning as in lemma 3. We
define the function F(o,v,S,S) = F(o,v,x,x',%,X’)
to be equal to:

o'1+1/]

SuerQ{nm Zz 12; 1 Q(xu J)

QU a)) — 5 Qe ) — “HH Q)

(19)
We moreover denote by X = (X;)?", = (x,X),
that is X; = z; if 1 < i < n and X; = %,_, if
n+1 < i < 2n and X' = (X))i7 = (¥,%),
suchthatX’fx1f1<]§mandX:£;m

if m+1 < i < 2m. When the context is clear,
we will use the abuse of notation F(o,v,X,X’
for F(O7V7 (X )z 17(XI)J 17(X )z n+17(Xl)j m+1)
Moreover, if p is a permutation of {1,...,2n} and n a
permutation of {1,...,2m}, we note X, = (X))

and X', = (Xn(y))i 1. Finally, for a function Q € Q,
i€ {l,..,n} and j € {1,...,m}, we define the term
Fg"ss(z j) (or Fé’”’x’xl(i,j) using an abuse of

notation) to be equal to:

TN Q(4, %) + T5HQ(E4, 7)) — Z5LQ(wy, T)

_$Q(x“x;))

or, alternatively (the two expressions are obviously
equal):
UZ"'VJ Q( i m+j)+ oi—Vj

07,210 Q(X X7,n+j) _

(Xn+i7 Xj/)

ox.xy @

oitv;
2
such that we have:

F(o,v, X, X') = sup — F‘”’XX (1,7) (21)
e 2

1
5 m) |< ..
MAs a base for our demonstration, we can claim, using

standard probability arguments, that all the following



quantities are equal:

Exx x5 F(o,v,x,x',%,%)
EgsF(0,1,85,5)
Ex x F(o,v,X,X")
Ex x F(o,v,X,,X')

/—\/\A/-\
— O

[}
(@

that EJVSS'F =

In order to prove it,

We have to  prove

Egssupgeo(EsQ — EsQ).
we can first notice that, noting ¢(® = (1)7_, and
v = (1)™,, we have, for all (i, j):

5(0) ,,(0) LA
Fg 0 5) = QX i, Xy ) — Q(X5, X))
= Q(#:, %) — Q(xi, 7))

and, as a consequence, using equality between the ex-
pressions of equation 23 and 24:

]ES g sup (IAES'Q - ]]::SQ) = EX,X’F(U(O)7 V(O)v Xa X/)
Qe
= Eg 5P (0@, v, 5, 5)(26)
What remains to show is that
E07V7X7X/F(O', v, X, X/) = ]EX,X/F(O'(O)7 I/(O)7 X, X/)
(27)

In order to do that, we need the following notation: for
p € Nand k € {1,...,p}, let ¢y, be the permutation

of {1,...,2p} defined by:
{17 "'72p} - {1’ "'72p}
k—k+p
rp ktp ik | ke{l,..,p}t}

Lo Lif 1 {k,p+ Kk}

The demonstration of equation 27 can be done using
the following lemma:

Lemma 8. let 0 = (o)}, and v = (v;)]; be two se-
quences of Rademacher variables. Now deﬁne wandn,
permutations of {1,...,2n} and {1,...,2m} respectively

as:
¢2 (1 ‘71)

¢2(1 V?)

where QSZ denotes the power for the composition func-

tion, in particular, ¢* = ¢, ¢ Lo ¢ = Id, ¢° = Id

where Id is the identity function. Then, we have, for

dlQ, X, X', ie{l,..,n}, j€{1,...,m}:

(O8N ()X X'
(i

FUVXX(Zj) F

Proof. From equation 20, we have :

o), ()X X!
FQ (Z .7) Q(Xu(n+i)vX/ (m+j)) (28)

~Q(Xu Xl (29)

It is to be noted that, since p and n are the composi-
tions of inversions ¢y, , which leave invariant all values
different of k and k + p, we have pu(i) =i Apu(n+1) =
nt+ieo=1p0)=n+iApl) =i 0 =-1
3. and similar equivalences for 7. To prove the lemma,
we therefore just need to consider the four cases which
correspond to all the values the tuple (o;, ;) can take.

Case 1: (o4,v;) = (1,1).

o,v, X, X’
F (Z .7) Q(Xn"rlﬁXr/n—i-j)
FO'IIX,X/

Then we have
Q(Xi, X}) from the

definition of in equation 20. In this case,
from the equivalences between the values of p and 7
and o; and v;, we have u(i) =i Apu(n+1) =n+1 and
n(j) = j An(m + j) = m + j using the expression of
equation 29:

Fa(ma’j(o)vxwxln(

Q Z?]) = Q(Xn+laX7,7'L+j)

v, X X!

i, 5)

Case 2: (o;,v;) = (—1,1) From equation 20, we get
FG"XX (i) = Q(X:, Xy ;) — Q(Xapis X1). On the
other hand, we have p(i) = n+ i and p(n + 1) = i,
while n(j) = j and n(m + j) = m + j. Then, from
equation 29, we have:

@O x XL
FQ (L ) = QX Xr/nJrg) Q(XnJmXJ/‘)

Hence showing the equality of the lemma in this case.

The two other cases are shown in the same way. Since
only the four cases can appear, the equality of the
lemma is proved. O

Back to the demonstration of lemma 3, using the result
of lemma 8 and equation 21, we have:

F(o,1,X,X') = F(c© v X, X',)
Taking the expectation over (X,X’) of this expres-
sion and using the equality between the expressions of
equations 24 and 25, we have:

Ex x F(o,1,X,X') = Ex x F(¢®, 19 X, X)
Taking the expectation over (o, ) and using the equal-
ity between the expressions of equations 24 and 23
leads to:

E,, s5F(0,1,8,8) =Eg sF(c®, 1, 5,8)

which, from the equality of equation 26 and the defini-
tion of F' (equation 19) yields the result of the lemma.

3since there is an equivalence, p(i) and u(n +14) cannot
take other values



