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Abstract

Image registration is a technique for defining a geometric relationship between each point
in images. This paper presents a data distributed parallel algorithm that is capable of align-
ing large-scale three-dimensional (3-D) images of deformable objects. The novelty of our
algorithm is to overcome the limitations on the memory space as well as the execution
time. In order to enable this, our algorithm incorporates data distribution, data-parallel pro-
cessing, and load balancing techniques into Schnabel’s registration algorithm that realizes
robust and efficient alignment based on information theory and adaptive mesh refinement.
We also present some experimental results obtained on a 128-CPU cluster of PCs intercon-
nected by Myrinet and Fast Ethernet switches. The results show that our algorithm requires
less amount of memory resources, so that aligns datasets up to 1024 × 1024 × 590 voxel
images with reducing the execution time from hours to minutes, a clinically compatible
time.

Key words: Nonrigid image registration; Adaptive mesh refinement; Free-form
deformation; Data distribution; Load balancing

1 Introduction

Image registration [1,2] is the process of matching images so that defines a geomet-
ric relationship between each point in the images. This technique is increasing its
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role in medical diagnosis with the rapid advances in radiologic imaging such as X-
ray computed tomography (CT) and magnetic resonance (MR) scans. For instance,
it assists surgeons by relating preoperative images to intraoperative images dur-
ing image-guided surgery [3–5], creates novel multimodality images by combining
information from different modality images [6–8], and helps medical doctors in de-
tecting cancers by monitoring changes in size, shape, or image intensity over time
intervals [9, 10].

Registration algorithms can be classified into two groups whether they intend to
align the rigid body or the nonrigid body. Rigid registration relates images by a
rigid transformation with 6 degrees of freedom (DOF), representing rotations and
translations. In order to correct the influences of image distortions such as scaling
and skewing errors, some algorithms are further parameterized by an affine trans-
formation, which has additional 6 DOF to enable scaling and shearing of images.
Although 12 DOF are sufficient for rigid registration, more DOF are required for
nonrigid registration, which addresses deformable objects. For instance, a B-spline
free-form deformation (FFD) [9] defined by a 10 × 10 × 10 mesh of control points
yields a transformation with 3000 DOF [9], so that successfully aligns images of
deformable objects such as brains [4,5,11,12], breasts [5,9,12], and livers [10,11].
However, these many DOF increase the amount of computation required for non-
rigid registration tasks. For example, our preliminary experiments show that align-
ing 512 × 512 × 295 voxel images of the liver takes approximately 12 hours on
a single Pentium III 1-GHz system. This long execution time is unacceptable to
image-guided surgery, where the execution time must be less than 10 minutes to
reduce patients physical load such as blood transfusions. Therefore, in order to
achieve intraoperative nonrigid registration, one major challenging problem is to
reduce its execution time without degrading the accuracy of alignments and the
resolution of images.

Earlier projects tackle this problem by employing high performance computing
(HPC) approach with shared memory architectures [4, 5, 13, 14] and distributed
memory architectures [4,13–17]. These projects successfully demonstrate the time
benefits of HPC. However, except for Hastings’s pipeline algorithm [17], all of their
algorithms are lacking the capability of data distribution, so that every processor
holds the entire 3-D images during registration process. Therefore, the image size
available on a HPC system is strictly bounded by the memory space of a node in
the system. This strict restriction is undesirable for registration of high-resolution
images because on-memory computation is essential to enable fast registration. For
example, aligning two 1024 × 1024 × 1024 voxel datasets, each represented in 16-
bit color depth, requires at least 4 GB of physical memory to carry out on-memory
computation.

The purpose of this paper is to demonstrate the space benefits of HPC as well as
the time benefits. To do this, we present a data distributed parallel algorithm that is
capable of large-scale image registration with scalable performance on distributed
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memory multiprocessor systems. Our algorithm parallelizes Schnabel’s registra-
tion algorithm [11] that enables robust multimodality registration with no user in-
teraction and preprocessing. Furthermore, our parallel algorithm uses Rohlfing’s
numerical optimization [5] with the following three techniques.

Data distribution: Data distribution enables us to increase the data size available
on a HPC system by assigning a portion of 3-D images to processors.

Data-parallel processing: Data-parallel processing realizes fast registration by al-
lowing processors to independently process the assigned portion in parallel.

Load balancing: Load balancing improves parallel efficiency by balancing pro-
cessor workloads imbalanced due to the difference of computational costs asso-
ciated with each portion.

The remainder of the paper is organized as follows. Section 2 introduces some re-
lated work on parallelization of image registration. Section 3 presents an overview
of the sequential algorithm proposed by Schnabel et al. and Section 4 describes the
design and implementation of our algorithm that parallelizes the sequential algo-
rithm. Section 5 shows experimental results on a 128-CPU cluster of PCs. Finally,
Section 6 concludes the paper.

2 Related Work

Several recent works employ HPC approach for image registration. Warfield et
al. [14] present a parallel nonrigid algorithm based on the workpile paradigm [18],
in which one manager process manages a pool of tasks while the remaining worker
processes request a task and independently perform the task assigned from the man-
ager. On a cluster of two Sun Enterprise Server 5000s each with eight 167 MHz
CPUs, their algorithm obtain intrapatient and interpatient registrations of 256 ×
256 × 52 voxel images in less than 10 minutes, which is a clinically compatible
range. They also present another algorithm [4] that takes account of a biomechan-
ical model of the brain. This algorithm realizes intraoperative registration of the
brain within 10 seconds on a Sun Ultra HPC 6000 with twenty 250 MHz CPUs.
Although it employs a static load balancing strategy with equally sized domains
being assigned to each CPU, the speedup for 20 CPUs is approximately a factor of
8, so that the load imbalance issue remains unaddressed. Nevertheless, their HPC
approach has successfully assisted surgeons during surgery.

Christensen [13] compares registration algorithms implemented on multiple in-
struction multiple data (MIMD) and single instruction multiple data (SIMD) com-
puters. In this comparison, a 16-CPU SGI Challenge, a SIMD computer, show a
nearly linear speedup for 128 × 128 × 100 voxel images. In contrast, a 128 × 128
mesh connected MasPar MP-2, a MIMD computer, suffers a loss in efficiency be-
cause the nonlinear nature of the deformations requires random access to the whole
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memory, reducing data transfer parallelism on the mesh-connected network.

Rohlfing et al. [5] employ a numerical optimization technique as well as HPC ap-
proach. Their method accelerate nonrigid registration for brain MR images of 256
× 256 × 100 voxels from an hour on a single CPU system to approximately a 100
seconds on a 64-CPU SGI Origin 3800 running at 400 MHz. Because this multipro-
cessor system offers a shared address space, it allows existing sequential algorithms
to be converted easily for parallel execution. However, shared memory systems are
much expensive compared to distributed memory systems such as clusters of PCs,
which mainly consist of off-the-shelf components [19, 20].

Ourselin et al. [15] demonstrate affine registration on a 20-CPU cluster of off-the-
shelf symmetric multiprocessor (SMP) PCs, yielding a speedup of a factor of 8.
Their implementation is based on a combination of the message passing paradigm
[21] and the shared memory paradigm [22] for inter-node and intra-node commu-
nication, respectively. Butz et al. [16] also present parallel affine registration based
on genetic optimization. Their master/slave implementation on a 20-CPU cluster of
Pentium III 550-MHz PCs takes approximately 30 minutes for 256 × 256 × 123
voxel images.

Another emerging HPC infrastructure is the Grid [23, 24], where HPC resources
are dynamically shared among virtual organizations over the Internet. Hastings et
al. show a toolkit [17] that allows rapid and efficient development of image seg-
mentation and registration applications in a distributed environment. To deal with a
time series of 3-D images, their toolkit exploits task and data parallelism in a chain
of processing operations that begins with data acquisition and ends with data visu-
alization. They employ a data-stream programming model, in which the data flows
through pipeline stages, each accelerated by data-parallel processing. Because ev-
ery stage processes a portion of the data, this model relaxes the requirement of the
memory space at each stage. It achieves full acceleration if every pipeline stage
takes the same time and data transfer between the stages takes much shorter time
than data-parallel processing at each stage. They are currently developing inter-
faces to the Globus Toolkit [25], which provides standard Grid mechanisms such
as resource, security, and file management.

In contrast to the above earlier works that mainly demonstrate the time benefits of
HPC, the novelty of the paper is to reduce the memory usage per node in a data-
parallel programming model, aiming to demonstrate the space benefits of HPC.
Note here that the data-stream programming model also reduces the memory usage
per node. However, to take this advantage, the entire data must be decomposed into
portions such that each portion can be locally processed at every pipeline stage.
Moreover, we also have to form the registration algorithm in a pipeline such that
every pipeline stage takes the same processing time to obtain full acceleration. For
time series images, this could easily be realized by streaming each time step image
through the stages, because in many cases, different images produced at different
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time could independently be processed at the same time. However, it is not easy
for 3-D images, because the deformations in the 3-D space prevent us from de-
composing them into small portions, for example, 2-D slices or 3-D blocks. Such
decompositions are available only if the deformations of each portion do not influ-
ence those of others. Therefore, we think that the data-parallel programming model
is more flexible with 3-D image registration, as compared to the data-stream pro-
gramming model.

3 Nonrigid Image Registration

For better understanding of our parallel algorithm, this section briefly summarizes
overviews of Schnabel’s algorithm and Rohlfing’s optimization presented fully in
[11] and in [5], respectively.

Let F and R be the floating and reference images, respectively. In order to reg-
ister images F and R, Schnabel’s algorithm computes a nonrigid transformation
that optimizes function C, a cost function associated with a voxel-based similarity
measure between F and R. This algorithm has three advantages as follows:

• Hierarchical, locally controlled FFDs [9] by B-spline functions [26];
• A robust similarity measure [27] by normalized mutual information (NMI);
• An efficient registration by adaptive mesh refinement [11].

3.1 B-spline Free-Form Deformations (FFDs)

One familiar technique to represent a nonrigid transformation is to employ spline
functions such as B-splines [26], thin-plate splines [28], and elastic-body splines
[29]. Because B-splines are locally controlled, they are computationally efficient
compared to the other globally controlled splines.

As illustrated in Fig. 1(a), a B-spline FFD [9] represents a nonrigid transforma-
tion by manipulating a mesh of control points arranged in the image domain, Ω =
{(x, y, z) | 0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z}. Let Φ be a 3-D mesh of control
points and T : (x, y, z) �→ (x′, y′, z′) be a transformation of any point (x, y, z) in
image F to its corresponding point (x′, y′, z′) in image R. Given a mesh of control
points φi,j,k with uniform spacing δ mm, nonrigid transformation T by B-spline
functions is defined by

T(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n, (1)
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Fig. 1. Hierarchical B-spline free-form deformations (FFDs) based on adaptive mesh refine-
ment. (a) Deformations of a floating image are performed by manipulating an overlaying
mesh of control points in a coarse to fine fashion. δ represents the spatial resolution of con-
trol points and φi,j represents the control point located on the i-th column of the j-th row.
(b) Control point φi,j affects points only inside its 4δ × 4δ neighborhood domain ωi,j . (c)
During these deformations, only active control points are allowed to move while passive
control points stay fixed.

where i = �x/δ� − 1, j = �y/δ� − 1, k = �z/δ� − 1, u = x/δ − �x/δ�, v =
y/δ − �y/δ�, w = z/δ − �z/δ�, and Bl represents the l-th basis function of cubic
B-splines. Eq. (1) indicates that B-spline FFDs are locally controlled because the
deformation of any point (x, y, z) is determined by its surrounding 4 × 4 × 4
neighborhood of control points. In other words, as shown in Fig. 1(b), each control
point φi,j,k affects only its 4δ × 4δ × 4δ neighborhood domain ωi,j,k, a subdomain
of Ω. Furthermore, by organizing mesh Φ and images F and R in a hierarchy, the
B-spline FFD represents a wide range of deformations with a lower computational
complexity. Thus, Schnabel’s algorithm aligns images in a coarse to fine manner,
where the spatial resolutions of images and control points, γ and δ, respectively,
are decreased at each level of hierarchy, namely deformation level.

Note here that Eq. (1) is computed for all points (x, y, z) in Ω by a triple nested
zyx-loop, and moreover, it can be rewritten as

T(x, y, z) =
3∑

l=0

Bl(u)φ̂i+l, (2)

where φ̂i+l =
∑3

m=0

∑3
n=0 Bm(v)Bn(w)φi+l,j+m,k+n, as Rohlfing et al. [5] pointed

out. Eq. (2) indicates that the computed result of φ̂i+l is the same for all points
(x, y, z) in one row located within the same cell of the mesh. Therefore, moving
this computation outside the most inner x-loop reduces the total computational cost
for the triple nested loop.
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3.2 Similarity Measure by Normalized Mutual Information

The second advantage of Schnabel’s algorithm is a similarity measure based on
information theory, which realizes robust registration of multimodality images and
contrast-enhanced images [5,7,9–12,30]. This similarity measure is based on NMI
proposed by Studholme et al. [27] who have been experimentally confirmed that
NMI is more robust than mutual information proposed by Maes et al. [7].

NMI represents the amount of information that one image, A, contains about a
second image, B. The similarity measure between images A and B is given by

Csimilarity(A, B) =
H(A) + H(B)

H(A, B)
, (3)

where H(A) and H(B) are the marginal entropies of A and B, and H(A, B) is
their joint entropy, each given by

H(A)=−∑
a

pA(a) log pA(a), (4)

H(A, B)=−∑
a,b

pAB(a, b) log pAB(a, b), (5)

where pA(a) and pAB(a, b) are the marginal and joint probability distributions of
the intensity values, respectively. Both distributions are obtained by normalizing
the two-dimensional (2-D) joint histogram h(A, B) of A and B. When A and B are
matched, NMI is maximized because A explains B most effectively.

By using nonrigid transformation T and similarity measure Csimilarity, the cost func-
tion for optimization is defined as follows:

C(Φ) = −Csimilarity(R,T(F )). (6)

In order to find the optimal transformation parameter Φ that minimizes Eq. (6),
the algorithm employs the steepest descent optimization [31] during registration
process. The algorithm stops this optimization if a local optimum has been found.
Here, it assumes a local optimum if ||∇C|| ≤ ε, where ||∇C|| and ε represent the
gradient norm of cost function C and a threshold for minimization, respectively.
The gradient ∇C of the cost function is estimated by using the finite-difference
approximation [31]. As we mentioned in Section 3.1, this optimization is performed
from coarse to fine resolution by traveling deformation levels.
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3.3 Adaptive Mesh Refinement

Adaptive mesh refinement [11,30,32] is a technique to further reduce the computa-
tional complexity given by hierarchically organized B-spline FFDs. This technique
allows control points to move only where deformations need to be modeled.

To enable this, Schnabel’s algorithm associates each control point φi,j,k with a sta-
tus, S(φi,j,k) ∈ {active, passive}, as shown in Fig. 1(c). During registration pro-
cess, active control points are allowed to move while passive control points stay
fixed. Thus, only active control points are parameters of cost function C, so that the
algorithm minimizes C(Φ+), where Φ+ represents a mesh of active control points.

Status S(φi,j,k) is given by

S(φi,j,k) =

⎧⎪⎨
⎪⎩

active, if M(ωi,j,k) > α,

passive, otherwise,
(7)

where M represents a statistical measure and α represents a threshold for selection.
The statistical measures employed in Schnabel’s algorithm are as follows.

• Reference image measures for excluding image background regions at the be-
ginning of deformation levels. They propose two reference image measures: the
Shannon-Wiener entropy H and intensity variance σ.

• Joint image pair measures for describing the degree of image alignment after
each deformation. They propose a consistent, generalized measure based on the
local gradient ∂C/∂φi,j,k of cost function C.

We experimentally determined the following two measures for our parallel algo-
rithm. For reference image measures, we use H(ωi,j,k)/H(R), where H(ωi,j,k) is
the local image entropy computed over subdomain ωi,j,k. For joint image pair mea-
sures, we use ||∂C/∂φi,j,k||/||∂C/∂Φ+||, where ||∂C/∂φi,j,k|| represents the norm
of local gradient ∂C/∂φi,j,k.

4 Parallelizing Nonrigid Image Registration

This section describes why we use the three techniques mentioned in Section 1
and how we incorporate them into our algorithm. Fig. 2 summarizes our parallel
algorithm.
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Parallel nonrigid registration algorithm

initialize γ and δ, the spatial resolution of images and that of control points, respectively.
repeat

load a responsible portion of images F and R with γ. // Data distribution
initialize control points Φ+ and each status S by a reference image measure.
repeat

compute in parallel the gradient vector of the cost function in Eq. (6) with
respect to nonrigid transformation parameters Φ+:

∇C = ∂C/∂Φ+. // Gradient computation
update Φ+ and S by a joint image pair measure.
compute in parallel the cost function C(Φ+). // Similarity computation
while C(Φ+) approaches to the optimum do

compute control points Φ+ = Φ+ + ∇C/||∇C||.
compute in parallel C(Φ+). // Similarity computation

until ||∇C|| ≤ ε.
increase deformation level L by decreasing spatial resolutions γ and δ.

until γ and δ reach the finest resolution.

Fig. 2. Parallel nonrigid registration algorithm based on Schnabel’s algorithm [11]. Our
parallel algorithm mainly consists of data distribution, gradient computation, and similarity
computation. This pseudo code uses Rueckert’s representation [9].

4.1 Performance Analysis of Sequential Algorithm

Before describing the details of our parallel algorithm, we first present the pre-
liminary performance analysis of the sequential algorithm. The algorithm has two
performance bottlenecks: the gradient computation required for the steepest de-
scent optimization and the similarity computation required for the cost function
evaluation, accounting for 92% and 7% of total execution time, respectively.

In the gradient computation, the algorithm computes local gradient ∂C/∂φi,j,k for
each active control point φi,j,k. This gradient can be computed from small 4δ ×
4δ × 4δ neighborhood subdomain ωi,j,k, because B-splines are locally controlled.
However, the gradient computation becomes a performance bottleneck at finer de-
formation levels, because the total number of control points significantly increases
after mesh refinement.

On the other hand, the similarity computation mainly consists of the construction
of 2-D joint histogram h(R,T(F )). Although this construction seems to be a small
bottleneck, it also has to be parallelized in order to obtain scalable performance
on our cluster with more than 100 processors. Otherwise, as Amdahl’s law [33]
says, the speedup for N processors is bounded by a factor of limN→∞(100/(7 +
92/N)) < 15. That is, although many processors are available, the speedup never
reaches a factor of 15 if the similarity computation is processed in sequential.

According to the above analysis, our algorithm parallelizes both the gradient com-
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putation and the similarity computation in order to enable large-scale registration
with scalable performance.

4.2 Data Distribution

In the sequential algorithm, 3-D images F and R occupy the most of memory space
compared to the remaining data structures such as joint histogram h(R,T(F )) and
transformation parameters Φ. Therefore, we focus on how to distribute F and R
with less performance loss. Note here that data distribution is necessary only at fine
resolution levels where on-memory computation is unavailable due to the lack of
physical memory. At coarse resolution levels where the image size is small enough
due to large sampling rate γ, our algorithm uses no data distribution scheme to
obtain higher performance with less communication.

Our algorithm uses a block distribution in order to achieve higher speedup for the
hotspot of the sequential algorithm. As we mentioned in Section 4.1, the hotspot is
the gradient computation, where each active control point φi,j,k requires neighbor-
hood block domain ωi,j,k to compute local gradient ∂C/∂φi,j,k. Therefore, although
cyclic distributions enable statically load balanced computation, we avoid using
them because they significantly decrease the speedup due to frequent communica-
tion caused by this data access pattern.

We now describe how the algorithm determines the block size for N processors.
An appropriate block size depends on the tradeoff between the memory usage and
the execution time. Maximizing the block size corresponds to no data distribu-
tion, which achieves the best performance with less communication but needs many
memory resources at every processor. In contrast, minimizing the block size corre-
sponds to disjoint block distribution (Fig. 3(a)), which realizes the minimum usage
of memory resources but requires many communication due to the gradient com-
putation computed from neighborhood domain ωi,j,k.

Our approach is to select a balancing point of this tradeoff. As illustrated in Fig.
3(b), the algorithm divides the images into partially overlapped blocks with marginal
length l in order to prevent communication during data-parallel processing of per-
formance bottlenecks: the gradient computation and the similarity computation. In
the following discussion, let Ωs be a disjoint block of domain Ω in which proces-
sor Ps takes responsibility for computation, where 1 ≤ s ≤ N and s represents a
processor id. Let Fs and Rs also denote subimages of F and R that processor Ps

loads, respectively. For all 1 ≤ s ≤ N , the algorithm satisfies the following two
conditions to select the balancing point.

• C1: Condition for the gradient computation.
For all active control points φi,j,k in subdomain Ωs, subimage Fs includes 4δ

× 4δ × 4δ neighborhood domain ωi,j,k and subimage Rs includes transformed
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Fig. 3. Image distribution for 4 processors. (a) Disjoint block distribution, (b) partially
overlapped block distribution with marginal length l, and (c) its zooming view. For all
1 ≤ s ≤ N , processor Ps holds subimage Fs and takes responsibility for computation in
subdomain Ωs. Each point is allowed to move within 2d × 2d deformable region.

neighborhood domain T(ωi,j,k).
• C2: Condition for the similarity computation.

For all points (x, y, z) in subdomain Ωs, subimage Fs includes (x, y, z) and
subimage Rs includes transformed point T(x, y, z).

The above conditions C1 and C2 allow every processor Ps to locally compute ev-
ery gradient ∂C/∂φi,j,k in each responsible block Ωs and to locally create a joint
histogram for Ωs, respectively.

An appropriate marginal length for satisfying both conditions C1 and C2 is deter-
mined as follows. Given the maximum length of correct deformations in v mm,
marginal length l is given by

l = d + 2δ such that d ≥ v, (8)

where d is the length for deformable region in mm, as shown in Fig. 3(b). Eq. (8)
satisfies condition C1 because l ≥ v + 2δ. It also satisfies condition C2 because
l > v.

Eq. (8) assumes that the correct length v is known before registration. Although
this precise length is usually unknown, we think that the algorithm is acceptable to
clinical use, because a typical value estimated roughly from users’ experiences can
be substituted for v.

4.3 Parallel Gradient Computation

Because adaptive mesh refinement causes active control points in a non-uniform
distribution, the processor workloads associated with each subdomain Ωs become
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imbalanced in the compute-intensive gradient computation. To address this load
imbalance issue, we first analyzed the distribution characteristics of active control
points by using liver images (Fig. 1(a)). We then found that the workloads become
more imbalanced as N increases. For example, only a quarter of 128 processors are
responsible for more than 80% of active control points. The remaining processors
have few active and many passive control points, because their responsible subdo-
main corresponds mainly to rigid objects, such as the bone and image background,
which rapidly complete the alignment compared to nonrigid objects.

To give an answer to this issue, our algorithm employs two load balancing strate-
gies. One is for coarse resolution levels where data distribution is unnecessary and
the other is for fine resolution levels where data distribution is necessary to carry
out on-memory computation.

For coarse resolution levels, since every processor holds the entire images and
knows which control points are active, we simply assign active control points to
processors in a round-robin manner.

For fine resolution levels, our load balancing strategy uses a greedy algorithm to
place processors into groups such that a group consists of at least one high-loaded
processor and some low-loaded processors. This strategy aims to balance the work-
loads within the same group, enabling less communication by preventing proces-
sors from communicating between different groups. Note here that our algorithm
is similar to Graham’s list scheduling algorithm [34], a greedy algorithm to sched-
ule tasks to processors. That is, tasks and processors in Graham’s algorithm are
regarded as processors and groups of processors in our algorithm, respectively.

Let Φ+
s be a set of active control points in subdomain Ωs, where 1 ≤ s ≤ N . Let

M denote the number of high-loaded processors defined as processors with more
than W active control points, where W =

∑N
s=1 |Φ+

s |/N , representing the number
of active control points per processor. Then, our algorithm classifies processors into
groups in the following two phases.

(1) Group initialization: The algorithm creates M groups of processors, G1, G2,
. . ., GM , each initialized with a different one of the M high-loaded processor.

(2) Group construction: The algorithm create a list, L, in which the remaining
N − M low-loaded processors are sorted by |Φ+

s | in an ascending order.
Then, it repeats the following operations until L becomes empty: Select group
Gt such that W (Gt) is the maximum, where 1 ≤ t ≤ M and W (Gt) =∑

Ps∈Gt
|Φ+

s |/|Gt|, representing the number of active control points per pro-
cessor in Gt; Delete a processor from the head of L and add it to Gt.

After the above phases, the algorithm obtains M groups, each represented as Gt =
{Pt,1, Pt,2, . . . , Pt,|Gt|}, containing one high-loaded processor Pt,1 and some low-
loaded processors Pt,2, . . . , Pt,|Gt| (if any), where 1 ≤ t ≤ M .
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We now describe how the algorithm performs load balancing for given group Gt,
where 1 ≤ t ≤ M . To enable this, low-loaded processors Pt,2, . . . , Pt,|Gt| have to
share the data assigned to high-loaded processor Pt,1. Such data contains subimages
Ft,1 and Rt,1, and information on active control points Φ+

t,1. In addition to phases
(1) and (2), the following phases perform the parallel gradient computation with
load balancing capability.

(3) Data redistribution: For all 1 ≤ t ≤ M , high-loaded processor Pt,1 multicasts
subimages Ft,1 and Rt,1, and active control points Φ+

t,1 to the remaining low-
loaded processors Pt,2, . . . , Pt,|Gt|.

(4) Workload distribution: For all 1 ≤ t ≤ M , active control points Φ+
t,1 are

disjointly decomposed into λt,1, λt,2, . . . , λt,|Gt| such that |λt,1| = W (Gt) and
|λt,u ∪ Φ+

t,u| = W (Gt), for all 2 ≤ u ≤ |Gt|.
(5) Gradient computation: For all 1 ≤ t ≤ M , processors Pt,1 and Pt,u, where

2 ≤ u ≤ |Gt|, independently compute gradients for λt,1 and λt,u ∪ Φ+
t,u,

respectively.
(6) Result distribution: Pt,1 gathers the computation results from Pt,2, . . ., Pt,|Gt|,

and then broadcasts them to all N processors.

4.4 Parallel Similarity Computation

In order to accelerate the similarity computation, our algorithm parallelizes the con-
struction of the 2-D joint histogram by means of the binary-swap (BS) method [35].
The BS method is originally proposed to generate a single image by compositing
N locally rendered images. This computation is similar to the similarity compu-
tation, where processors locally construct joint histograms h1, h2, . . . , hN for their
responsible subdomain Ω1, Ω2, . . . , ΩN , respectively, and then merge them into a
global joint histogram h(R,T(F )) for the entire domain Ω. One advantage of BS
is highly scalable performance produced by data-parallel processing and tree struc-
tured merging. As illustrated in Fig. 4, it finishes merging the local images in log N
stages, in which all N processors participate in performing tasks.

Our algorithm produces joint histogram h(R,T(F )) in the following two phases.

(a) Local histogram construction: For all 1 ≤ s ≤ N , processor Ps independently
creates local joint histogram hs for its responsible subdomain Ωs.

(b) Binary-swap merging: All created local histograms h1, h2, . . . , hN are merged
into the global histogram h(R,T(F )) by the BS method. As illustrated in
Fig. 4, every processor is paired up. Every pair of processors splits its local
histogram into two pieces, and each processor takes responsibility for one of
the two pieces. Repeating this splitting and exchanging with different pairs
for log N stages generates the global histogram h(R,T(F )) in a distributed
manner.
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P1
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h1
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h(R, T(F))

Fig. 4. Binary-swap (BS) method applied to joint histogram construction on 4 processors.
h1, . . . , h4 represent local joint histograms computed from each responsible subdomain.
On N processors, each processor has 1/N portion of the joint histogram h(R,T(F )) after
log N stages.

We now describe how our algorithm computes the similarity measure Csimilarity(A, B)
from a distributed joint histogram h(A, B). Let c(a, b) be the frequency count of
pair (a, b) of intensity value appeared in h(A, B). Then, probability distributions
pA(a) and pAB(a, b) required for Csimilarity(A, B) can be computed by

pA(a)=
c(a)∑

a,b c(a, b)
, (9)

pAB(a, b)=
c(a, b)∑
a,b c(a, b)

, (10)

where c(a) =
∑

b c(a, b). Substituting Eqs. (9) and (10) to Eqs. (3)–(5) gives

Csimilarity(A, B) =
(−E1 + E4 log E4) + (−E2 + E4 log E4)

−E3 + E4 log E4
, (11)

where E1 =
∑

a c(a) log c(a), E2 =
∑

b c(b) log c(b), E3 =
∑

a,b c(a, b) log c(a, b),
and E4 =

∑
a,b c(a, b). Note here that E1, . . . , E4 are represented as reduction oper-

ations over the joint histogram h(A, B). Therefore, in order to compute E1, . . . , E4,
the algorithm sweeps h(A, B) in the row and column directions, as illustrated in
Fig. 5. This sweep operation can be parallelized by means of data-parallel process-
ing followed by one collective communication as follows.
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Fig. 5. Reduction operation for similarity computation on 4 processors. Given distributed
na × nb joint histogram h(R,T(F )), each processor locally sweeps its responsible his-
togram in the row and column directions, and then participates in a collective communica-
tion in order to perform a global sweep in the column direction.

(c) Parallel sweep: For all 1 ≤ s ≤ N , processor Ps independently sweeps its re-
sponsible portion of h(A, B) in the row and column directions so that obtains
local sums of E1, . . . , E4.

(d) Similarity computation: All processors participate in a collective communi-
cation to reduce local sums into global sums E1, . . . , E4. After this reduction
operation, processor P1 computes Csimilarity(A, B) according to Eq. (11).

(d) Result distribution: P1 broadcasts Csimilarity(A, B) to all processors.

Note here that processors are allowed to communicate only reduced values instead
of 2-D histograms, because the BS method generates h(A, B) in a distributed man-
ner. Thus, this distributed histogram generation reduces the amount of communi-
cation. Furthermore, because every processor generates an equally sized portion of
h(A, B), it allows processors to immediately begin the succeeding sweep operation
with perfect load balancing.
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Table 1
Parameter values used for experiments. L, δ, γ, d, and ε represent deformation level, con-
trol point spacing, image sampling rate, length for deformable region, and threshold for
optimization, respectively.

L δ γ d ε Image size Data distribution

(mm) (mm) (mm) (voxel)

1 42.88 2.68 14 0.001 128 × 128 × 74 Off

2 21.44 1.34 14 0.001 256 × 256 × 148 Off

3 10.72 0.67 14 0.001 512 × 512 × 295 On

4 5.36 0.34 14 0.001 1024 × 1024 × 590 On

5 Experimental Results

To evaluate our parallel algorithm on its execution time and memory usage, we have
implemented it on a cluster of PCs. Our implementation uses the C++ language and
MPICH-SCore library [36], a highly portable and efficient implementation of the
Message Passing Interface (MPI) standard [21].

The cluster is composed of 64 nodes, each with two Pentium III 1-GHz CPUs and
2 GB of main memory. These nodes connect to Myrinet [37] and Fast Ethernet
switches, which provide the link bandwidth of 2 Gb/s and that of 100 Mb/s, respec-
tively. In addition to these computing nodes, there is a file server with a Gigabit
Ethernet adapter that provides an NFS mounted storage for the nodes.

5.1 Registration Process

We applied our algorithm to four datasets of contrast-enhanced liver CT images,
which have a size of 512 × 512 × 159 voxels with spatial resolution of 0.67 ×
0.67 × 1.25 mm. Table 1 shows the parameter values used for the experiments.
We refined control mesh Φ by four levels with reducing image sampling rate γ and
control point spacing δ. As we mentioned in Section 4.2, this image resampling
reduces the data size, so that the resampled images at the first and second levels
were small enough to carry out on-memory computation without data distribution.
Therefore, we distributed data only at the third and last levels.

We initialized status S in accordance with α = 0.65 at the beginning of each de-
formation level and updated it by α = 0.005 after each deformation. In addition to
these coefficient values for reference image and joint image pair measures, thresh-
old ε for optimization is also experimentally determined.
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(a)

(b)

(c)

(d)

Fig. 6. Checkerboard visualization of four contrast-enhanced liver CT images: (a) dataset
#1; (b) dataset #2; (c) dataset #3; and (d) dataset #4 obtained from different subjects. Ref-
erence and floating images in the left-hand side are aligned after registration, as presented
in the right-hand side. Maximum deformations were 15.7, 11.4, 16.1, and 10.1 mm, respec-
tively.
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Table 2
Execution time measured on Myrinet and Fast Ethernet for four datasets. Time is presented
in minutes. Registration tasks are stopped immediately after the third deformation level.

N Myrinet (m) Fast Ethernet (m)

#1 #2 #3 #4 #1 #2 #3 #4

1 1073.4 1093.5 1001.2 741.4 1073.4 1093.5 1001.2 741.4

8 139.2 141.9 127.8 96.6 142.7 144.6 133.0 98.5

16 71.2 71.5 66.0 49.2 75.7 78.3 71.5 53.7

32 37.2 37.4 35.1 26.3 43.2 43.7 44.1 32.8

64 19.8 20.0 19.1 14.3 27.7 27.4 27.6 21.3

128 11.2 11.2 10.1 7.8 20.2 20.5 20.4 16.6

Table 3
Speedup measured on Myrinet and Fast Ethernet for four datasets.

N Myrinet Fast Ethernet

#1 #2 #3 #4 #1 #2 #3 #4

8 7.7 7.7 7.8 7.8 7.5 7.6 7.5 7.5

16 15.0 15.3 15.2 15.1 14.2 14.0 14.0 13.8

32 28.8 29.2 28.5 28.2 24.8 25.0 22.7 22.6

64 54.3 54.7 52.3 51.9 38.8 39.8 36.3 34.7

128 95.9 97.6 99.2 95.1 53.1 53.2 49.0 44.7

Fig. 6 shows an example of registration results. In this figure, the reference and
floating images are alternately shown in a checkerboard pattern. For all datasets,
the maximum deformations were between 11.4 and 16.1 mm. Therefore, a marginal
region with length d = 14 mm is large enough for these datasets, because it allows
deformations with less than 14

√
2 mm.

5.2 Execution Time

Tables 2 and 3 show the execution time and speedup measured for four datasets.
During this measurement, we stopped registration tasks immediately after the third
level, because the finest level takes more than a half hour (as presented later in
Section 5.3), which is unacceptable to clinical use.

On 128 processors with Myrinet, our algorithm reduces the execution time approx-
imately from 15 hours to 10 minutes with high speedups ranging from a factor of
95 to that of 99. Thus, our algorithm realizes large-scale registration with a scal-
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Table 4
Breakdown of execution time for dataset #1. Time is presented in minutes.

N Execution time on Myrinet (m) Execution time on Fast Ethernet (m)

Gradient Similarity Others Total Gradient Similarity Others Total

1 991.7 73.6 8.1 1073.4 991.7 73.6 8.1 1073.4

8 127.2 10.2 1.8 139.2 129.4 10.8 2.5 142.7

16 64.9 5.1 1.2 71.2 67.8 5.8 2.1 75.7

32 33.6 2.7 0.9 37.2 37.3 3.8 2.1 43.2

64 17.6 1.4 0.8 19.8 22.8 2.5 2.4 27.7

128 9.6 0.8 0.8 11.2 15.4 2.6 2.2 20.2

Table 5
Ratio of communication time for dataset #1. Communication time contains data transfer
time and waiting time.

N Ratio on Myrinet (%) Ratio on Fast Ethernet (%)

Gradient Similarity Others Total Gradient Similarity Others Total

8 0.07 0.07 0.83 0.08 1.8 5.6 28.6 2.5

16 0.11 0.15 1.63 0.13 4.4 12.2 43.8 6.1

32 0.13 0.29 2.44 0.19 10.0 29.2 58.2 14.1

64 0.20 0.55 3.53 0.36 23.0 44.3 67.8 28.8

128 0.54 0.82 5.49 0.83 38.0 69.5 65.6 45.0

able speedup on Myrinet. In contrast, it also offers high speedup on Fast Ethernet
when using less than 32 processors. However, it decreases parallel efficiency as the
number of processors increases, so that Myrinet provides twice shorter execution
time compared to Fast Ethernet on 128 processors. This performance loss is due to
the lack of the link bandwidth, as presented later in this section.

Table 4 shows the breakdown of the execution time for dataset #1. On 128 pro-
cessors with Myrinet, our algorithm accelerates the gradient computation and the
similarity computation by a factor of 103 and that of 92, respectively. Both these
high speedups contribute to the total speedup of a factor of 96. If the algorithm
performs the similarity computation in sequential, the execution time on 128 pro-
cessors can be estimated as 84 minutes, resulting in a low speedup of a factor of
13, as we mentioned in Section 4.1.

The remaining time corresponds to other computations, such as image loading and
resampling. In our current implementation, we experimentally tuned input/output
(I/O) performance to our cluster, so that 4 nodes simultaneously load a quarter of
images from the NFS server through Fast Ethernet, and then broadcast it to the
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remaining nodes in order to distribute the responsible portion of data. In spite of
this tuning, we obtained a low speedup of a factor of 9 for image loading and
resampling. This low speedup is mainly due to disk access that takes about 25
seconds to load images F and R from the NFS server. Therefore, file I/O can reveal
as a performance bottleneck on large-scale clusters if we are unable to preload
the images before surgery, for example, in a case where intraoperatively obtained
images are essential to guide surgeons during surgery.

Table 5 shows the ratio of the communication time for each part presented in Table
4. Here, the communication time is defined as the sum of data transfer time and
waiting time. We can see that our algorithm running on Myrinet realizes a low ratio
of at most 0.83%. Thus, most of the execution time on Myrinet is spent in computa-
tion. In contrast, on Fast Ethernet, the ratio increases with the number of processors
and reaches 45.0% when using 128 processors. Therefore, the communication time
must be further reduced for this low-bandwidth, high-latency network.

One solution for reducing the communication time is to improve the compositing
method in the similarity computation by exploiting the sparsity of the transmit-
ting data. For example, some BS-based methods [38, 39] integrate a lossless data
compression algorithm into the BS method in order to realize this reduction. Other
methods [40, 41] also achieve this by using categorized pixel information, which
aims at minimizing both the amount and the occurrence of communication.

To make clear the benefits of our load balancing technique, we now compare the
following three algorithms.

• PDL: Parallel nonrigid registration with data distribution and load balancing.
• PD: Parallel nonrigid registration only with data distribution.
• PL: Parallel nonrigid registration only with load balancing.

Fig. 7 shows the speedup for the optimization at the third level. On 128 processors
with Myrinet, our load balancing algorithm increases the speedup by three times,
from a factor of 33 (PD) to that of 103 (PDL). However, the speedup of PDL is 16%
lower than that of PL, a factor of 123. Thus, our algorithm enables data distribution
with low performance loss.

Fig. 8 shows the distribution of the execution time required for an iteration of the
gradient computation on Myrinet. In PD, processor P7 takes responsibility for the
maximum of 185 active control points, so that it takes the maximum of 436.3 sec-
onds for the gradient computation while several processors take less than 0.1 sec-
onds. In contrast, PDL balances the processor workloads, so that the maximum
time reduces to 94.7 seconds. For example, our load balancing technique enables
high-loaded processor P7 to distribute its workload to six low-loaded processors P1,
P29, P35, P49, P53, and P57. Therefore, our PDL achieves better load balance com-
pared to PD, which statically assigns equally sized domains to processors. Actually,
the standard deviations of the execution time in PDL, PD, and PL are 9.28, 107.4,
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Fig. 7. Speedup measured on (a) Myrinet and (b) Fast Ethernet for optimization at the third
deformation level.
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Fig. 8. Distribution of execution time required for an iteration of gradient computation in
(a) PD, (b) PDL, and (c) PL, running on Myrinet.

and 0.37 seconds on Myrinet and 9.29, 108.3, and 0.44 seconds on Fast Ethernet,
respectively.

Although PDL requires data redistribution from high-loaded to low-loaded proces-
sors, it takes only 1.1 seconds on 128 processors with Myrinet. For all four datasets,
the amount of transmitted data is 28.8 MB composed mainly of subimages Ft,1 and
Rt,1 with many active control points Φ+

t,1, where 1 ≤ t ≤ M . Furthermore, although
|Gt| ranges from 2 to 7 processors, the communication imbalance associated with
this redistribution has little effect on the total performance on Myrinet. However,
it is a performance bottleneck on Fast Ethernet due to low bandwidth. Thus, al-
though load balancing is achieved on Fast Ethernet, data redistribution takes long
time on this low bandwidth network, and thereby Fast Ethernet takes twice longer
time compared to Myrinet.
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Table 6
Breakdown of memory usage in MB. PL fails to perform registration tasks at the finest level
due to the lack of physical memory.

L Algorithm Breakdown Total

u1: Image u2: Margin u3: Shared Others

3 PL 295.0 — — 54.2 349.2

PD 4.6 24.2 — 29.1 57.9

PDL 4.6 24.2 28.8 20.8 78.4

4 PL 2355.0 — — Unknown At least 2355.0

PD 37.0 97.4 — 113.4 247.8

PDL 37.0 97.4 134.4 59.3 328.1

5.3 Memory Usage

Table 6 shows the breakdown of memory usage required for each algorithm. In
this table, u1, u2, and u3 represent the data size for subimages without marginal
regions, that for marginal regions, and that for shared subimages redistributed to
low-loaded processors, respectively. The total amount indicates that our PDL re-
duces the amount of memory usage by 77% and 86% compared to PL at the third
and finest levels, respectively. It also shows that PDL needs approximately 35%
additional amount of memory compared to PD.

Note here that (u1 + u2)/u1 approaches to 1.0 as deformation level L increases,
where u1 + u2 denotes the amount of memory usage for subimages with marginal
regions. For example, (u1 + u2)/u1 indicates that partially overlapped images re-
quire approximately six times more memory resources than disjoint images at the
third level, but three times at the finest level. This decrease can be explained as fol-
lows. Increasing L makes δ smaller, so that l (= d + 2δ) decreases as L increases.
Therefore, as the resolution of images increases, the memory usage for PDL ap-
proaches to that for PD.

As shown in Table 6, data distribution technique enables us to register images at
the finest resolution level. Without data distribution, the optimization at this level
requires more than 2 GB of physical memory to load the entire of two 1024 ×
1024 × 590 voxel images, so that out-of-core computation occurs on our cluster.
Since this computation takes significant execution time, PL is unsuitable for high-
resolution image registration. On the other hand, PD enables on-memory computa-
tion, however, it takes 105 minutes on 128 processors while PDL takes 47 minutes
on Myrinet. Thus, our PDL algorithm increases the resolution of images available
on a system with high efficiency provided by a load balancing capability.

Fig. 9 shows the optimization progress on 128 processors with Myrinet. It is clear
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Fig. 9. Optimization progress on 128 processors using Myrinet.

that increasing deformation levels obtain more accurate results. For dataset #3, the
optimization at the finest level raises NMI by 0.015 while the total improvement
is 0.067. Since this level takes much longer time than the former levels to com-
plete registration, deciding the finest level in which the registration is terminated
is important for clinical use, where a series of images can be produced in rapid
succession.

5.4 Discussion

The above experimental results show that our algorithm running on a 128-node
cluster with Myrinet interconnection satisfies the time constraints for the following
two scenarios.

• Intraoperative registration, which requires highly available, dedicated HPC re-
sources to perform critical missions in a rapid, reliable manner. Our algorithm
running on a dedicated cluster reduces the registration time to a clinically com-
patible time of approximately 10 minutes, so that it realizes intraoperative regis-
tration for datasets up to 512 × 512 × 295 voxel images.

• Preoperative registration, which requires HPC resources to perform medical di-
agnosis for developing an accurate, detailed surgical plan based on high-resolution
images. Our algorithm aligns 1024 × 1024 × 590 voxel images in about 50 min-
utes. Though this acceleration is not sufficient for surgical use, it is short enough
for this diagnosis. As compared to intraoperative procedures, such preoperative
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procedures are not so severe on the time constraints, because their objective is
to plan surgical strategy for obtaining better surgical outcomes with increased
surgical safety, well in advance of the surgery date. For example, high-resolution
image registration is necessary for accurate detection of cancers, which mini-
mizes the removal of normal tissue.

In the following, we discuss the usability of the Grid infrastructure for the above
two scenarios. To use the Grid infrastructure for these scenarios, we must consider
the two differences between clusters and Grids, as follows.

• Decentralized control of resources. The first concern is the decentralized control
of Grid resources [24], because the Grid integrates and coordinates resources
from multiple organizations. This decentralized nature of the Grid causes diffi-
culties in using itself for intraoperative registration. To perform this critical mis-
sion in a rapid, reliable manner, Grid resource brokers must monitor the status of
resources to provide highly available, dedicated resources in a short time. From
the viewpoint of giving a realistic solution to these qualitative requirements, ded-
icated clusters with centralized control systems are more stable and secure than
Grids, because such centralized system can easily provide sufficient resources
whenever a registration task is submitted, and guarantee that the allocated re-
sources will be dedicated to the task until its completion. This is not easy for the
Grid, where resources such as processors, memory, and interconnection belong
to different control domains.

• Lower performance of interconnection. The second concern is the Grid intercon-
nection, which usually has lower bandwidth and higher latency than the cluster
interconnection. Due to this slower network, Grid applications must minimize
the amount of communication to obtain higher performance. As we mentioned
in Section 5.2, lossless data compression algorithms will play an important role
in achieving this minimization if the link bandwidth is less than 100 Mb/s. In
addition to this application layer issue, resource brokers also must rapidly gather
the status of resources and provide them through this slower network. If a Grid
consists of less than a few hundred nodes, this resource management will not be a
significant problem in recent brokers such as the Globus Toolkit Monitoring and
Discovery Service (MDS) [42] and the Condor Hawkeye [43], because Zhang’s
performance study [44] shows that they take less than 10 seconds to gather the
status from 200 nodes. However, this study also shows that the Condor Hawkeye
takes about one minute on 1000 nodes, so that as the number of nodes increases,
resource selection will become a performance bottleneck when using the Grid
for intraoperative registration.

Summarizing the above discussion, we think that it is not easy to use the Grid in-
frastructure for surgical use mainly due to its decentralized nature rather than the
time constraints. However, this infrastructure is attractive for medical diagnosis,
because such preoperative procedures are not critical missions, and combining our
algorithm with a lossless data compression algorithm will satisfy the timing con-
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straints for this use.

6 Conclusions and Future Work

We have presented a data distributed parallel algorithm for nonrigid image regis-
tration on distributed memory multiprocessors. To realize large-scale registration
with scalable performance, our algorithm uses a robust and efficient registration al-
gorithm [11] with three techniques: data distribution, data-parallel processing, and
load balancing.

The experimental results show that our data distributed algorithm reduces the amount
of memory usage by at least 77% compared to a data undistributed algorithm, en-
abling us to increase the resolution of images available on a system. Furthermore,
with 35% additional amount of memory, our load balancing technique reduces the
execution time in half. As a result, our algorithm enables nonrigid registration of
liver CT images of 512 × 512 × 295 voxels in less than 10 minutes on 128 proces-
sors, which takes approximately 15 hours on a single CPU system.

Future work includes the development of a load balancing technique and the inte-
gration of a lossless data compression algorithm that further improves the perfor-
mance on low-bandwidth, high-latency network with many nodes, for example, the
Grid.
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