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ABSTRACT The operational stability of public transport is significant for both passengers and operators.

Affected bymany stochastic factors, such as traffic congestion, traffic signals and passenger demand at stops,

the headway always become uneven, which greatly reduces the service quality. This paper used the big global

positioning systems (GPS) trajectory data to analyze the headway stability of bus system from the perspective

of network. A statistical method is proposed to analyze the operational vehicle performance of bus network.

The GPS trajectory data of Jinan is used to test the model. The results show that the average dwell time,

actual headway, and headway stability index of stations follow lognormal distributions with obvious right

tails. Moreover, the seriously unstable situations do not appear in the peak hours, but in the time periods

before peak hours. In addition, the stations with most unstable headway are located in the suburbs and the

fringe area of downtown. The outcomes suggest that operators should pay more attention to the suburbs

and the fringe area of downtown, and the time periods before peak hours to efficiently improve the service

quality.

INDEX TERMS Public transport network, stability of headway, GPS trajectory data, data-driven analysis.

I. INTRODUCTION

Operational stability of bus arrival time at stops plays a

crucial role in enhancing the attractiveness and efficiency

of public transport. Improving the stability of bus system is

conducive to both operators and passengers. However, travel

time fluctuates due to many stochastic factors such as road

congestion, uneven passenger loads and weather conditions,

thereby resulting in irregular arrival time and bus bunching

[1], [2]. For operators, understanding the actual performance

of bus systems is an import part in rescheduling timetable,

avoiding bus bunching etc.

Data-drivenmethods become a powerful tool to understand

the mechanism of public transport system operations and

many other systems [3], [4]. In transportation systems, agent

behavior plays a significant role in transportation dynam-

ics [5]. Data-driven could exhibit the panorama of system

operations that affected by agents and stochastic factors.

Recently, exploring the operational characteristic of routes
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draw many attentions using automatic collected data such

as global positioning systems (GPS) point data and smart

card data that contain many kinds of useful information like

vehicle position, number of passengers and so forth [6], [7].

The GPS point data have been widely used to analyze the

operational features of routes such as travel time distribution,

variability and reliability [8]–[11]. Besides that, GPS data

provide an indispensable source to predict travel time and

control vehicles to avoid bus bunching [12]–[14].

Service reliability is a critical indicator of transit perfor-

mance, which is relevant to traffic condition, demand of sta-

tions and other stochastic factors. The irregular headway may

result in long waiting time for passengers and low efficiency

in transit systems. The extreme case of irregular headway is

called bus bunching that the adjacent vehicles are too close on

the road. Essentially, bus bunching is caused by minor distur-

bance that can easily propagate. Fonzone et al. [15] pointed

out that non-uniform arrival patterns could significantly influ-

ence the bus bunching process. Ma et al. [16] used AVL data

and smart card data to analyze the bus travel time reliability

and found congestion, traffic signal and passenger demand at
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stops were three main important factors. Most studies have

focused on passengers’ or operators’ perspectives on service

reliability.

The aforementioned studies mainly highlighted the relia-

bility of a single route, few studies concerned reliability of

the entire network. Network performance of public transport

describes the operational states of entire network containing

all routes. Better understanding network performance is a

prerequisite for analyzing the stability, weak points and the

reasons for them. Public transport networks are fragile to

many uncertainties [17]. This paper proposes a framework

to study the operational performance of entire network by

analyzing a large-scale empirical arrival-departure time data

in Jinan, China.

The rest of paper is organized as follows. Section 2 gives

the literature review. Section 3 introduces the perfor-

mance metrics. Section 4 gives network representation. Data

description is introduced in section 5. Section 6 presents the

results. Conclusions are given in section 7.

II. LITERATURE REVIEW

A. BUS ROUTE PERFORMANCE

It is important for operators to grasp the operational condition

for making suitable arrangement of bus operations. Bus per-

formance evaluation has drawnmuch attention since the auto-

matic data is available. Kathuria et al. [18] found that travel

time of bus transit varied in different time periods within a

day and it was larger in peak hours. Statistical analysis shows

that travel time is asymmetric and skewed to right compared

with normal distribution [8], [19]. Some researches pointed

out Gamma, loglogistic and Weibull distribution could fit the

travel time [6], [20].

Travel time consists of running time between stations

and dwell time at stations. Studies show that running time

between stations is related with traffic condition and traffic

signal [18], [21], [22]. Dwell time contains the time spent on

opening the door, passengers’ boarding and alighting, closing

the door, which consume up to 26% of total travel time [23].

In general, the number of passengers who board and alight is

the key factor to determine the dwell time [24].

Reliability of bus operation is a crucial indicator that both

operators and passengers concern. Sterman and Schofer [25]

gave the concept of reliability and qualitative analysis of

influential factors. Early studies depend on investigating data

and monitoring equipment at the roadside, which has a low

accuracy [26], [27]. With the development of advanced auto-

matic data collected devices, more accurate data are available

for evaluating the transit performance. Mazloumi et al. [28]

studied the transit travel time variability by investigating day-

to-day variability based on GPS data, and they found travel

time variability was higher in the AM peak and lower in the

off-peak. In recent decade, a large number of studies focus

on the reliability of travel time of route according to the GPS

data [29], [30]–[32]. Cats and Gerasimos [33] utilized auto-

matic vehicle location data to provide real-time bus arrival

information. Recently, researches start to highlight travel time

prediction to overcome the stochastic influence for providing

a better service [14], [34], [35].

B. NETWORK EVALUATION

Bus networks are complex networks with complex structure

and functions. It is indispensable to understand the perfor-

mance of bus network, especially in the place where the

service does not match with the demand. Operation syn-

chronization of bus timetable is a key issue to keep transfer

efficiency for passengers. Ceder et al. [36] developed a model

including hold and skip strategies to keep transfer synchro-

nization of bus network. Dou et al. [37] proposed a time

control point strategy coupled with transfer synchronization

to resolve the schedule design problem to improve schedule

adherence. Numerous studies focus on the design process

of timetable and vehicle scheduling with consideration of

transfer synchronization [38]–[41]. Recently,Wang et al. [42]

built a data-driven model to optimize the bus scheduling,

which could largely reduce the waiting time.

Bus network evaluation is a prerequisite to provide better

service. Presently, the network evaluation mainly contains

network structure and service from survey. Zhang et al. [43]

constructed a framework to evaluate public transit service

with survey data considering convenience, comfort, security,

facility etc. For network structure, there is a large num-

ber of studies using graph theory and complex network

theory to analyze the topology characteristics [44]–[46].

Zhang et al. [47] proposed a node failure process to identify

hub nodes in bus networks. To better exhibits the network

functions, some researches focus on networks with weights

such as boarding passenger volume and travel time [48],

[49]. Synchronization and robustness of bus network from the

perspectives of network topology have been widely studied

during the past years [50]–[52]. Recently, Jia et al. used

complex network theory to evaluate the urban transit net-

work and proposed a sustainable transit network optimization

method considering station and road conditions [53]. Xu and

Yang proposed a geographically weighted regression model

to determine the correlation between transit accessibility and

urban land use characteristics [54]. Park et al. used real-time

vehicle location data to study the spatiotemporal patterns

of bus operation delays in Columbus and found that the

prevailing delays concentrated on certain stops in downtown

and core suburban locations [55].

To clearly exhibit the network evaluation of transit net-

work, we summarize the related works in Table 1. The

transit network evaluation mainly focuses on topological

structure utilizing complex network theory. Transit struc-

ture evaluation used route information to construct network

and can only reflect the structure characteristics from the

perspective of topology structure. In the last two decades,

transit networks involving bus and metro have been studied

by many works containing evaluation of network, finding

important nodes, network robustness. The route information

could not reflect the characteristics of economic, society
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TABLE 1. Related studies of transit network evaluation.

and operations. To overcome the shortage, many studies used

multifarious data to evaluate transit networks such as points

of interest data (POI) and GPS trajectory data [56]–[58]. POI

data could reflect the land use and other information. The

GPS trajectory data is always used to measure the operational

performance of transit routes. For bus systems, delay is a pre-

vailing, which hinders the development of bus. Furthermore,

uneven headway become one of the chief reasons for passen-

gers to dislike to use buses. In the last years, many works

emphasized the delay of transit vehicles from the view of

routes. However, bus operational vehicle performance from

perspective of bus network has seldom studied because of

complexity. To fill this gap, this paper intends to study the

vehicle performance of bus network based on real GPS tra-

jectory data to provide suggestions for improving the service

of bus systems.

III. PERFORMANCE METRICS

A. PROCESS OF BUS OPERATION

Each bus run is regarded as a series of events containing

arrivals and departures, which has specific arrival time and

departure time at each stop along the route. The total travel

time can be expressed as

T =

n
∑

k=1

DTk +

n−1
∑

k=1

RTk,k+1 (1)

where T is the total travel time, DTk is the dwell time at

station k , RTk,k+1 is the running time between station k and

station k + 1.

B. HEADWAYS

Headway is defined as time difference between two consecu-

tive vehicles that belongs to a same line. It can be calculated

with the formula

1H
i,j
k =

{

0 j = 1
∣

∣

∣
h
i,j+1
k − h

i,j
k

∣

∣

∣
, otherwise

(2)

FIGURE 1. Illustrations of bus operation stability of a line.

where 1H
i,j
k is the headway between vehicle j and the former

vehicle of line i at station k , set the headway for the first vehi-

cle 0; h
i,j
k is the arrival time of vehicle j of line i at station k .

The bus runs according to a scheduled headway at the

original stations. However, the actual headway fluctuates

because of the stochastic factors. For instance, when a bus

vehicle suffers from large passengers at stations, it stops a

longer time. Then, the following vehicle is close to the vehi-

cle. Under some conditions, the consecutive vehicles arrive

at a station simultaneously, which is called bus bunching.

Fig. 1 shows the illustrations of bus operation stability of a

route. In case 1, the buses have equal headways; in case 2,

the bus j + 1 delays and results in small and large headway

between it with backward and forward vehicles respectively;

in case 3, bus j+1 and j+2 bunching, which bring very large

headway between bus j and j+ 1. The irregular headway will

bring longer waiting time for the passengers and the waste of

capacity for the bunching vehicles.

C. HEADWAY STABILITY OF NODES

Firstly, the operation stability of a line at a station is

defined as

δ
i,j
k,t =

∣

∣

∣
1H

i,j
k,t − H i

t

∣

∣

∣

H i
t

(3)

where i = 1, · · · ,m represents the line number, j = 1, · · · , ni
is the vehicle number of line i, k = 1, · · · , li is the station

number of line i; t is the time period; H i
t is the plan headway

of line i in time period t .

The headway varies in a different time, so we calculate the

stability of a node for line i in time period t as

δik,t =

nt
∑

j=1

δ
i,j
k,t/nt (4)

Then, we define the operation stability of a station as

¯δk,t =

m
′

∑

i=1

δik,t/m
′

(5)

where ¯δk,t is the operation stability of station k in time period

t , m
′
is the number of lines stop at station k .

96406 VOLUME 7, 2019



H. Zhang et al.: Data-Driven Analysis for Operational Vehicle Performance of Public Transport Network

TABLE 2. Illustration of GPS trajectory data of route 116.

TABLE 3. Departure-arrival time records achieved from GPS trajectory data.

FIGURE 2. Layout of Jinan bus network: points represent stations.

IV. NETWORK REPRESENTATION

In this paper, the bus network is represented as a weighted

graph G = (V ,E,W ), V is the set of nodes and E is the set

of edgeswithweightW .G is theN×N adjacencymatrix {eij}.

If there exists an edges between node i and node j, eij = 1;

otherwise, eij = 0. wij is the weight of eij. The weight can

represent length of edge, running time of edge, etc.

V. DATA DESCRIPTIONS

The data was collected from December 1 to December 31,

2018 in Jinan, China, where each bus vehicle was installed

with automatic vehicle location equipment. The devices send

information such as location, timestamp, velocity and so on

every five seconds. There are 280 lines that comprise ten BTR

lines and 2167 stations in the main urban area. Fig. 2 shows

the layout of Jinan bus network, and red points represent

stations.

The data set used in this paper is called departure-arrival

data that come from the GPS trajectory point data collected

by the devices on the vehicles. The raw information contains

line number, the ID of GPS device, time stamp, latitude,

longitude, instantaneous velocity, station or not, road name,

up or down streams, etc. Table 2 illustrates the GPS trajectory

data of route 116. Each raw record is a GPS point data

containing the aforementioned information, where the field

‘‘Station’’ is 0 means the point is not in stations and other

numbermeans in stations. The field ‘‘Up or down’’ is 0means

the route is upstream while 1 means downstream. The device

installed on the buses send a record about 5 seconds.

We extract the departure time and arrival time of all vehi-

cles of routes from the raw data. Table 3 shows the forms of

departure-arrival time data. We give a unique ranked number

to a station from 1. . .N, where N is the total number of

stations. From the arrival time and departure, section running

time (SRuTime) and stopping time at stations (StopTime)

can be achieved. The section running time is the difference

between the arrival time of a station and the departure time

of the former station. The stopping time is the difference

between departure time and arrival time of a station. The data

will be preprocessed to remove the outliers.

VI. RESULTS

The evaluation method described in the former section was

implemented to study the operational performance of bus

system in Jinan, China. There are 1,023,710 raw records used

in the studies. We removed 10,537 outliers from the dataset.

In this paper, we divided the data into two categories accord-

ing to weekday and weekend. Results are given separately

for the two categories. Each result is corresponding to an

average of days’ data in the group. We first analyze the dwell

time of stations onweekday involving distribution in different

time period of a day. Then actual headway performance and

operation stability of stations are studied. Finally, we analyze

the situation on weekend.

A. DWELL TIME OF STATIONS

Dwell time is a key factor that influence the stability of bus

operations, which is subjected to the number of passengers

that alight and board, pay modes and the occupancy situation

of stations. The data set includes accurate dwell time of

each stations. Fig. 3 illustrates the average dwell time (sec-

onds) distributions of stations in different time periods of

a day: (a) 8:00–9:00, (b) 12:00–13:00, (c) 18:00–19:00,

(d) 20:00–21:00. The time periods can reflect the situations

of morning peak time, noon time, evening peak time and
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FIGURE 3. Average dwell time distribution of stations in different time
period of weekday.

TABLE 4. Basic statistics of average dwell time of stations: (a) 8:00-9:00;
(b)12:00-13:00; (c) 18:00-19:00; (d) 20:00-21:00.

off-peak time. The value is the average dwell time of each

vehicle in the studied time period. As can be seen, most

average dwell time of stations concentrate in the range [0, 50].

For instance, the dwell time that is smaller than 50 seconds

accounts for 88.2% in 8:00 time section in Fig. 3(a).

The distribution of average dwell time of stations seems

normal distribution with right tails. Jarque-Bera test refuses

that it follows normal distribution. Table 4 shows the basic

statistics of average dwell time of stations.We can see that the

mean value is large than median value, which indicates that

the distribution is right skewed distribution. The skewness

value can reflect the symmetry situation of distribution. The

value of zero means it is symmetrical; the positive value

means right skewed distribution; the negative value means

left skewed distribution. In the section, the skewness values

are 7.72, 7.73, 7.54 and 7.47, which validate the distribution

is right skewed distribution. In Fig. 3, the red curves are

the fit curves of a lognormal distribution, which can fit the

distributions of average dwell time of stations.

Fig. 4 exhibits the top 20 stations with large and small

values of average dwell time. As can be seen, stations with

large values are located in the suburbs, while stations with

small values are located in downtown in day time periods:

8:00–9:00, 12:00–13:00 and 18:00–19:00. The reason is that

there are few routes in the suburbs and the headway is also

large, hence the number of passengers waiting for boarding

is large. Fig. 4(d) indicates that the stations with small values

are located in the suburbs, while stations with large values are

located in both downtown and suburbs. That’s because there

are some stations in the suburbs with many residential areas,

FIGURE 4. Stations with top 20 large and small values of average dwell
time.

FIGURE 5. Plan headway of lines.

where lots of passengers intend to go back home. The results

indicate that operators should try their best to improve the

service quality for the suburbs.

B. ACTUAL HEADWAY PERFORMANCE OF STATIONS

In transit system, headway reflects the service quality. Pas-

sengers prefer small headway to reduce their waiting time,

while operators attempt to adopt suitable headway to increase

revenue. In the past years, researchers focus on how to make

suitable headway to satisfy traffic flow demand and the syn-

chronization of headways. Understanding the actual headway

of bus networks will provide a great help for these studies.

In this part, we concern the actual headway of each vehicles

at all stations. To better understand the headway of each

vehicle, we plot the plan headway first in Fig. 5. We can

see that approximate 71.7% headways that are smaller than

1000 seconds. In the figure, there are some lines with large

headway and range, which are customized shuttle bus. Take

line 313 for instance, the minimum headway is 1200 seconds,

while the maximum headway is 3600 seconds. It is noticed

that the headway of a line fluctuates, which is in line with the

fluctuation of passenger flow demand. In peak hours, small

headway is needed, while headway is larger in off-peak hours.

In bus networks, service at stations is an important factor to

attract passengers. Understanding the service level of stations

provide a deep insight to improve the bus service. To this

end, we represent the average headway of ‘‘spring square’’
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FIGURE 6. Average headway of ‘‘spring square’’ station in 8:00-9:00.

FIGURE 7. Average headway during a weekday of three bus lines at
spring square station.

station in an hour, which is located in the center of downtown

and 15 lines pass by the station. Fig. 6 illustrates the aver-

age headway of ‘‘spring square’’ station between 8:00 and

9:00. The range of average headway in 8:00–9:00 is between

265 seconds and 609 seconds.

To better reflect the service of stations, we represent

average headway during a weekday of three bus lines at

spring square station in Fig. 7. As can be seen, the average

headways fluctuate in different hours. Take line ‘‘K96’’ for

example, the average headway is 745, 352 and 750 seconds

in 6:00–7:00, 9:00–10:00 and 20:00–21:00. Another inter-

esting finding is that the average headway is higher in the

beginning and end time periods. That’s because passengers

are less in the two time periods and the planning headway is

larger than other time periods. For a station, the service level

is composed of all lines’ performance.

Fig. 8 plots the average actual headway distribution of

stations in different time period of a day. The value is the

average of actual headway of each vehicle that stops at a

station in the bus network. We can see that the distribution

can also be fitted by lognormal distribution. Most stations’

actual headway is less than 1000 seconds, which is in line

with the plan headway. Furthermore, the mean values of

average actual headway are 784.3, 984.9, 840.0 and 780.4

seconds during the time periods 8:00–9:00, 12:00–13:00,

FIGURE 8. Average actual headway distribution of stations in four
different time periods of weekday.

FIGURE 9. Average values of headway stability of stations in Jinan bus
network.

18:00–19:00 and 20:00–21:00. The results indicate waiting

at noon time may spend more time.

C. STABILITY OF HEADWAY OF STATIONS

Fig.9 presents the average values of average headway sta-

bility stations in four different time periods of weekday.

The values between 20:00 and 21:00 are larger than other

time periods. The outputs illustrate the headway stability is

stronger in the off-peak hours when the traffic condition is

better than other periods.

We plot the distributions of average headway stability of

stations index in Fig. 10 in four different time periods of a

day. The distributions are also skewed distribution with right

tails and most values are between 0 and 0.5. Specifically, the

proportions that the value is smaller than 0.5 are 89.08%,

96.41%, 86.08% and 95.44%. The outputs indicate that the

performance in noon time and off-peak hours is superior to

peak hours. We notice that the performance in the noon time

is good, where 88.67% of the values of stations are smaller

than 0.3. However, there are some stations with very high

values in this time periods. Approximate 0.8% of stations are
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FIGURE 10. Average headway stability index distributions of stations in
four different time periods of weekday.

FIGURE 11. Stations with top 20 large and small values of average
headway stability index.

with values that are larger than 2. The reason is that there are

some special lines with irregular headway in the noon time

such as customized shuttle bus. These buses always meet big

flow, which disturb the stability of headway.

In Fig. 11, we exhibit the stations with top 20 large and

small values of average headway stability index. As can be

seen that stations with high and small values concentrate on

the suburbs during 8:00–9:00, 12:00–13:00 and 18:00–19:00.

The results show that the performance of stations in sub-

urbs should be improved in day time. During 20:00–21:00,

the stations with large values are located in fringe area of

downtown. The reason is that many passengers emerge during

this time period, which delay the bus vehicles. Because most

lines stop operations after 9:00 in Jinan during winter time,

most passengers go to their home in the suburbs before 9:00.

Operators should prolong the operation time in winter time to

enhance the service quality.

To better understand the average headway stability of sta-

tions, Fig.12 plots the median value, mean value and standard

deviation of average headway stability index in different

FIGURE 12. Median, mean and standard deviation values of average
headway stability index in different hours of weekday.

hours of a day. The distributions exhibit two peaks for the

three measures. It is noted that the peaks do not appear in

the peak hours, but in the time periods before peak hours.

The reason is as follows. In peak hours, the plan headway is

small, which means there are many vehicles for passengers.

In off-peak hours, the traffic demand is small, which cannot

bring big fluctuation of vehicle headway. However, the traffic

demand fluctuates strongly in the time periods before peak

hours.

The headway stability index can only reflect the devia-

tion of actual headway against the plan headway, it cannot

reflect the positive or negative deviations. In bus systems,

the actual headway does not strictly adhere to the plan head-

way, because the continuous bus cannot arrive on time. On the

other side, the actual headway changes according to the

discussed stochastic factors. Understanding the positive and

negative deviation is help to even headway by operators.

Similarly, we introduce the concept of advanced headway

stability index as follows:

δ
i,j,∗
k,t =

1H
i,j
k,t − H i

t

H i
t

(6)

so, we calculate the advanced headway stability of a node for

line i in time period t as

δ
i,∗
k,t =

nt
∑

j=1

δ
i,j,∗
k,t /nt (7)

Then, we define the advanced headway stability of a

station as

¯δ∗
k,t =

m
′

∑

i=1

δ
i,∗
k,t/m

′

(8)

Fig.13 illustrates values of advanced headway stability of

stations in four time periods of weekday. We observe that

the positive values account for small proportions. Concretely,

the positive values account for 33.87%, 51.1%, 43.8% and

18% during the time 8:00-9:00, 12:00–13:00, 18:00–19:00

and 20:00–21:00. The results imply that most stations suf-

fer from small headway in reality, which could reduce the
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FIGURE 13. Average values of advanced headway stability index of
stations in four time periods of weekday.

service quality. During the noon time, the number of pos-

itive values increase sharply, and there are many stations

that have very large value. It means that the many vehicles’

headway is larger than plan headway and the service quality is

worse, which validate the aforementioned results. Moreover,

the negative values in the noon time are with small absolute

values, which indicate the small headway or bus bunching can

bring large headway of the continuous vehicles.

Another reason for the phenomenon that the negative val-

ues account for large part is that the actual headway is smaller

than plan headway. Operators always to arrange more vehicle

to overcome the bus bunching in peak hours. Therefore,

the optimization of plan headway is a complicated question

that perplex researchers. We also notice that the values of

some stations are zeros during 20:00–21:00. That’s because

many lines stop operations after 20:00 and there is no value

of these stations that serve these lines.

D. PERFORMANCE ON WEEKEED

On weekend, most people do not work and the commuter

flow decreases. In this part, we exhibit the performance of

bus vehicles on weekend to compare with weekday.

1) HEADWAY PERFORMANCE OF STATIONS

Fig. 14 shows the average actual headway distributions in

four time periods of weekend. As can be seen, the distribu-

tions can be better fitted by lognormal distribution. Compared

with weekday, there is less stations with small value of aver-

age headway at noon time. There are more stations on week-

end with large average headway between 20:00 and 21:00.

Totally, the headway performance of stations on weekend is

different from weekday.

2) STABILITY OF HEADWAY OF STATIONS

In order to display the performance of bus stability on

weekend, Fig. 15 plots the average headway stability index

distributions of stations in four different time periods.

FIGURE 14. Average actual headway distribution of stations in four
different time periods of weekend.

FIGURE 15. Average headway stability index distributions of stations in
four different time periods on weekend.

The outcomes show that these distributions can also be fitted

by lognormal distribution. Compared with weekday, there

exists some stations with large values during the time periods

18:00-19:00 and 20:00-21:00.

VII. CONCLUSIONS

GPS trajectory data from devices on buses could provide

many kinds of information to reflect the details of operation

process. Traditional studies focused on the travel reliability

of single route, while the network performance is lack of

exhibition. Indeed, the macroscopic understanding of opera-

tion performance of bus networks can give a great help for

improving the service quality. This paper proposes a data-

driven framework to analyze the headway stability from the

perspective of the entire network, which is conducive to

identify the key stations and improve the stability of bus

operations.

The outcomes show that the average dwell time, average

headway and average headway stability index follow lognor-

mal distributions, which have obvious right tails. Specifically,

most values of the average headway stability index are lower

than 0.5 and a small proportion of stations have the values
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that are larger than 1. It is worth nothing that large values of

average headway stability index of network do not appear in

the peak hours, but in the time periods before peak hours.

In addition, the stations with most unstable headway are

located in the suburbs and the fringe area of downtown. The

outcomes suggest that operators should pay more attention to

these areas and these time periods to efficiently improve the

headway stability.

This study could provide a help for operators to improve

the service quality. In the future study, we intend to take into

account passenger demand of stations to better evaluate the

performance of public transport networks.
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