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Abstract

Personal narratives typically involve a narrator who participates in a sequence of events in the

past. The narrator is therefore present at two narrative levels: (1) the extradiegetic level, where

the act of narration takes place, with the narrator addressing an audience directly; and (2)

the diegetic level, where the events in the story take place, with the narrator as a participant

(usually the protagonist). Although story understanding is commonly associated with semantics

of the diegetic level (i.e., understanding the events that take place within the story), personal

narratives may also contain important information at the extradiegetic level that frames the

narrated events and is crucial for capturing the narrator’s intent. We present a data-driven

modeling approach that learns to identify subjective passages that express mental and emotional

states of the narrator, placing them at either the diegetic or extradiegetic level. We describe an

experiment where we used narratives from personal weblog posts to measure the effectiveness of

our approach across various topics in this narrative genre.
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1 Introduction

Beyond communicating a simple description of a sequence of connected events, personal

narratives are often crafted to evoke emotions or sway opinions by delivering a story through

the point-of-view of one of its participants. Fully understanding a personal narrative therefore

requires more than an accurate representation of the semantics of the story; the storyteller’s

intent is often expressed through subjective statements that may be used to frame specific

events in ways that influence their interpretation by the audience. Similarly to how a

soundtrack can set a specific mood in film to heighten the emotional impact of the sights
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and sounds of a story, skilled rhetoric can serve to enhance the impact of events depicted in

writing.

Subjective language, which expresses opinions, emotions, thoughts, preferences, and other

mental states of the narrator, is crucial for delivery of the intended interpretation of a

personal story. Despite significant efforts in research on identification of subjective language

and detection of sentiment polarity for a handful of language genres, existing approaches fall

short of the requirements for modeling subjectivity in personal narratives. Homodiegetic

narrative, where the narrator is also a character in the story, presents an interesting challenge:

subjective language may refer to mental or emotional states of the narrator as the storyteller,

or of the narrator as a participant in the story. One way to characterize this distinction is to

place specific instances of subjective language as referring to one of two narrative levels: the

extradiegetic level, where the narration takes place, or the diegetic level, where the events of

the story take place. In addition to its importance in interpreting narrative discourse, where

it is important to distinguish emotional states occurring within the story from those that

apply to the storyteller during the act of narration, automatic classification of diegetic level

and subjectivity of narrative segments can be beneficial in a variety of practical applications

involving narrative data. For example, when searching a large corpus of narratives by

specific activities, such as visits to the zoo or protest rallies, it may be desirable to focus

on text at the diegetic level by appropriately weighing query terms. Isolating events at the

diegetic level would also be desirable in automatic induction of schemas and acquisition of

commonsense knowledge from narratives. On the other hand, when the information need

targets the intellectual or emotional impact of an experience, without specific constraints on

the activity described, focus should be on subjective statements and on passages referring to

the extradiegetic level.

We present a data-driven modeling approach for identification of subjective language

in each of these two narrative levels, showing how text classification techniques, combined

with human annotation, can learn to classify subjectivity in personal narratives. Much of

motivation in our work is shared by the line of research on computational approaches to

subjectivity in narrative due to Wiebe [38], while our view of subjectivity is that defined

by later work by Wiebe and colleagues (e.g., [37]). Unlike Wiebe’s original investigation of

subjectivity in third person narratives, we deal here with first person narratives, a genre

that we describe in more detail in section 2.1. Additionally, while Wiebe’s analysis focused

on characterization of subjectivity in terms of linguistic elements, our approach focuses

instead on the application of machine learning and text classification techniques to the task

of identification of subjectivity, following recent research that we discuss in section 2.2. We

conclude section 2 with a brief discussion about subjectivity and narrative levels. In section 3

we describe the narrative data used in our investigation, taken from personal Internet weblogs

and selected from topics where we expect to find examples of subjective language referring

to both the diegetic and extradiegetic levels. In sections 4 we present our computational

modeling approach and experiments, in two parts. The first part of our approach involved the

design of an annotation scheme for subjectivity and diegetic levels for first person narratives,

and manual annotation of 40 narratives (section 4.1). The second part involved learning

multiclass classification models from the annotated corpus (section 4.2). We present and

discuss our results in section 5, and finally we present our conclusions and briefly discuss

future work in section 6.
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2 Background

2.1 Personal Narratives

The genre of the personal narrative is broadly defined as the non-fiction stories that people

share with each other about their own life experiences. This genre of discourse includes the

stories told among family members while reviewing old photographs [4], the accounts shared

among coworkers in office environments [6], the testimonials of people in interviews [10], and

the reflections of daily experiences of people written to private diaries [35]. In this research

our focus is the written forms of personal narrative (text documents), which are more amiable

to automated analysis than other forms. Specifically, we develop and evaluate our methods

on personal narratives extracted from Internet weblogs.

The phenomenal rise of personal weblogs has afforded new opportunities to collect and

study electronic texts of personal narratives on a large scale. While blogging is popularly

associated with high-profile celebrities and political commentators, the typical weblog takes

the form of a personal journal, read by a small number of friends and family [25]. As with

the adoption of other forms of electronic communication, personal narratives in weblogs take

on several new characteristics in adapting to a social media environment that is increasingly

public and interconnected. Eisenlauer and Hoffman [7] argue that the on-going technological

development of weblog software has led to an increase of collaborative narration, moving

the form further toward Ochs and Capps [26] conception of the hypernarrative, where

discourse is best understood as a conversation among multiple participants. Langellier

and Peterson [18] characterize this collaborative narration as a form of public performance,

creating a productive paradox between the insincerity needed to craft a good story and the

sincerity of the blogger as a character in the narrated events.

This productive paradox seen in weblog storytelling helps distinguish personal narrative

from other narrative forms. As in all narrative, personal narrative consists of descriptions of

multiple events that are causally related, but requires further that the narrative perspective

is the author’s own. The expectation of the reader is that the narration reflects the truthful

interpretation of events actually experienced by the author, but the truth of the narration is

constrained by the demands of good storytelling.

2.2 Analysis of Subjective Language

Because personal narratives feature a storyteller who is also a character in the story, it

is common for the events of the story to be framed by the narrator in terms of opinions,

emotions, preferences, and other commentary that influences the reader’s interpretation

of the events. While it is possible for a narrator to be objective in recounting first-hand

participation in a story, our analysis is focused on personal narratives that are framed by

subjective language employed by the narrator, and more precisely on computational models

for identification of subjectivity in personal narratives.

Although there has been remarkable interest in analysis of sentiment and subjectivity in

text in the past decade, the bulk of the research has been focused on a few language genres,

with the most prominent example being reviews of movies, products, restaurants, etc. (e.g.,

[27, 3, 33]). Reviews are attractive as the target of sentiment analysis, as they are abundantly

available online, they restrict language processing tasks to well-defined domains, and they

necessarily express opinions that can often be binned into negative or positive categories

relatively easily. In analysis of reviews, it is common to frame the task as sentiment polarity

classification (“thumbs up” vs “thumbs down”), often aided by a preprocessing step that
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identifies subjective language, which Pang and Lee [28] define simply as opinion-oriented

language. Another language genre where subjectivity and sentiment analysis has been

studied extensively is news, where the identification of subjectivity is itself the target of

analysis, rather than binary classification of sentiment polarity. In their work on subjectivity

analysis, Wiebe et al. [37] take a broader view of subjective language, which they define

as the expression of private states [29], which includes emotions, opinions, evaluations and

speculations. A third major area of application of sentiment and subjectivity analysis, which

has been growing rapidly, is user-generated content, including Twitter, discussion boards,

political weblogs, and YouTube video reviews (e.g., [1, 23, 24]).

Although far from exhaustive, the list of language genres mentioned above serves to

illustrate how the goals of subjectivity analysis can vary widely when different types of

content are considered. For example, in reviews it is more important to determine whether

statements are positive or negative, while in news there is a greater focus on separating

opinion from fact. Even though goals and even definitions may vary, the most common types

of application are related to fulfilling information needs or estimating public interest and

opinion regarding specific issues, products, etc. In the case of narrative, however, analysis of

subjectivity and sentiment can play a different type of role. Correctly assessing the mental

and emotional state of the narrator is crucial for understanding the intent of a narrative

beyond the facts and events of the story; narratives are often crafted with the explicit goal

to have an emotional impact on the reader, sometimes more so than they are to convey a

specific sequence of events. In contrast to the main role of subjectivity in reviews or editorial

pieces, subjective language in narrative goes far beyond opinions. The expression of emotions,

thoughts, preferences and other mental and emotional states is of primary importance.

In our work, we adopt Wiebe et al.’s notion of subjective language as the linguistic

expression of private states (including opinions, evaluations, emotions, speculations and

other mental processes), which are experienced but are not open to external observation

or verification by others. Our main focus is on private states of the narrator, since we are

dealing with personal narratives, which express the narrator’s point of view. While it can be

tempting to define subjective language as the statement of opinions, in contrast to objective

statement of facts, this would be an imprecise definition. For example, while the text segment

I know her name may be considered a statement of fact by the narrator, it is a case of

subjective language. The key issue here is not whether a statement is true or made with

certainty or privileged knowledge, or even whether it can be considered a fact, and rather

whether it expresses a private state and not something that can be observed or measured

objectively and externally. For example, while I felt sick is a subjective statement, since it

cannot be observed externally, the statement I had a 102-degree fever is objective. Similarly,

it was hot yesterday is subjective (the narrator’s opinion), while it was 95 degrees yesterday

is objective. It is not important at this point to distinguish whether a statement such as

he was sad is subjective because it expresses a private state of a third person, or because

it expresses the narrator’s opinion or evaluation of a third person, since in either case the

statement is subjective. On the other hand, he said he was sad is an objective statement,

since it describes an event that can be observed externally (namely, the act of saying).

2.3 Private States and Narrative Levels

The genre of the personal narrative is particularly interesting from the point-of-view of

analysis of subjectivity in that the narrator experiences emotions and holds opinions both

within the story, as a character along with other story participants, and also outside of

story. Accordingly, the narrator may employ subjective language that applies to at least

CMN 2013
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two different narrative levels. Consider, for example, a narrative that recounts events that

include the narrator being afraid of a puppy and disliking dogs as a child, but also expresses

the now adult narrator’s current embarrassment of this long abandoned fear and current

fondness for dogs. The universe of the story, where the narrator is a child, is sometimes

referred to as the diegetic (or intradiegetic) level, and the act of narration is performed at

the extradiegetic level, where in this case the narrator is an adult addressing the reader.

This example includes expression of several private states experienced by the narrator: as a

character in the story (i.e., at the diegetic level), the narrator experiences fear at a specific

moment, and holds a negative preference for dogs; in contrast, the narrator expresses the

private states of embarrassment and positive preference for dogs at the time of storytelling

(i.e., at the extradiegetic level).

Although in our discussion we adopt the terms proposed by Genette [9] to speak of

diegetic levels in narrative, we do so only to determine whether private states are either

internal or external to the universe of the story, leaving aside the more complex issues of

matching private states to more levels in embedded narratives. In other words, instead of

performing a complete analysis of diegetic levels, we make only a binary distinction between

the extradiegetic level and all other (intradiegetic) levels, with no distinction made in the

levels of embedded narratives. An alternative way to characterize what we refer to as private

states at the diegetic and extradiegetic levels is to use the notion of time points due to

Reichenbach [30]: the narrator might refer to private states at speech time (at the time of

narration), or at the event or reference time. However, our main concern is not necessarily

one of time; the distinction we make in the present work is between private states experienced

by the narrator as a character in the story, and private states experienced by the narrator

as the storyteller. This distinction reflects the narrator’s exclusive advantage in framing

the story to influence the audience’s interpretation and reaction. The impact of diegetic

and extradiegetic material can be understood intuitively by considering the soundtrack in

a movie. When watching a movie, we observe events taking place and a story unfolding,

which may evoke emotion. External to the universe where the story takes place, however, we

may also hear music (e.g., romantic music for a romantic scene, or fast-paced music for a car

chase), which sets a specific mood and serves to evoke or amplify emotional reactions. This

music is at the extradiegetic level: it is audible to the audience only, and does not exist for

the characters in the story.

3 Data

In developing and evaluating a data-driven approach to our classification task, we required a

corpus of personal stories containing substantial amounts of subjective statements describing

private states belonging to either the diegetic or extradiegetic level, meaning that the narrator

experiences the private state either within the universe of the story, or outside, at the time of

the act of narration, respectively. Although weblog content is abundant and readily available,

selecting and annotating random weblog posts would be inefficient. Gordon and Swanson [13]

estimated that only 4.8% of randomly sampled non-spam English-language weblog posts

can be characterized as personal stories, defined by them as non-fiction narrative discourse

describing a specific series of events in the past, spanning minutes, hours, or days, where

the storyteller or close associate is a participant. Even within this small subset of posts, our

expectation is that the balance between description of private states held at the diegetic and

extradiegetic levels will vary widely. For example, the play-by-play narrative of a baseball

game might focus entirely on the diegetic universe, with descriptions of excitement, happiness
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or apprehension applying only to the diegetic level, while an account of cherished childhood

memories might move the narrator to describe an emotional state triggered by the events in

the diegetic universe but experienced during narration, at the extradiegetic level.

To curate a well-balanced corpus for analysis, we focused our efforts on finding weblog

posts about situations and activities that would lend themselves to a mix of these two

types of expression of subjectivity, or private states. We specifically targeted narratives

of socially-questionable behavior, e.g., stories of stealing, quitting a team, giving a child

up for adoption, or getting into a physical fight. We expected that bloggers who shared

personal narratives about socially-questionable behavior would feel the need to be descriptive

of the events that occurred, including opinions, thoughts and emotions held at the time, and

to provide some rationale or justification for their behavior, leading to expression of their

current feelings about the past events of the narrative. Collectively, we brainstormed a list

of such situations that could potentially be found in public weblogs (Figure 1).

To conduct these situation-specific searches, we used the technologies and methodologies

described by Gordon et al. [14], which were used by them to find hundreds of personal

narratives in weblogs related to health emergencies. The approach begins with the automatic

filtering of personal narratives from streams of weblog posts, applying supervised story

classifier to three years of non-spam English-language weblog posts provided by a weblog

aggregator (Spinn3r.com). The filtered story collection (over 20 million posts) was then

indexed using a text retrieval engine (Apache Lucene), which could be queried with a large

array of weighted terms. Initial queries were authored for each of the socially-questionable

behavior following Gordon and Swanson [12], where paragraph-sized fictional prototypes

were used to retrieve similar instances. Retrieved posts were then annotated as to their

relevance to the query, and this feedback was used to further refine the query and weight

query terms using the Rocchio relevance feedback algorithm [32]. We identified 460 posts

containing narratives of socially-questionable behavior using this approach, from which we

selected 40 posts that we judged to be most compelling as personal narratives. These 40

posts include 22 of the 26 topics in Figure 1, with no topic appearing in more than three

stories. Topics appearing in multiple posts include lying, divorce, protest rallies, breaking

the law, and quitting a team, abortion, disobeying a superior, murdering someone, getting

into a physical fight, killing an animal, prostitution and physically punishing a child. The

four topics that are not represented in our selection of posts are: stealing, taking an unfair

advantage, putting your own interests above others, and neglecting to care for children.

4 Approach

Following previous data-driven efforts on subjectivity and sentiment analysis, exemplified by

the work of Wiebe et al. [37] and Pang and Lee [27], we use a machine learning approach

typically associated with text classification. While Pang and Lee leverage “found-data” to

train a classifier for subjectivity detection in reviews without the need for manual annotation,

our approach has in common with Wiebe et al.’s that it involves the definition of an annotation

scheme, training of human annotators, and manual annotation of training data for subjectivity

classification. As an initial attempt to address subjectivity modeling in personal narratives,

we use a simple discriminative text classification approach, with a relatively small training

dataset consisting of 40 narratives. These narratives were found originally in personal

weblogs, and for reasons unrelated to the work described here were edited for length prior to

CMN 2013
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Participating in a protest rally

Quitting a job

Telling a lie

Getting into a physical fight

Converting from one religion to another

Having an abortion

Stealing something

Crossing a picket line

Changing one’s political party

Changing the country of your citizenship

Making a large personal sacrifice

Cheating in a romantic relationship

Getting a divorce

Quitting a team

Cheating on a test

Killing an animal

Prostitution

Taking an unfair advantage

Physically punishing a child

Violating a religious practice

Breaking the law

Murdering someone

Disobeying a superior

Putting a child up for adoption

Putting your own interest above others

Neglecting to care for children

Figure 1 List of topics involving socially questionable behavior for personal narrative selection.

annotation1. In most cases, editing consisted largely of removing sentences from the original

weblog post, with occasional addition of a few words to restore coherence to the edited text.

The edited narratives retained the vocabulary and much of the narrative structure of the

original posts, and contained 160 to 185 tokens (words and punctuation) each. The average

length for these narratives is 169 tokens.

4.1 Text Annotation

After selection of narratives from personal weblogs, the first step towards creation of the

dataset necessary for training a data-driven model and subsequent empirical validation of

our overall approach was the definition of an annotation scheme. The annotation scheme

described here and used in our experiments is the product of iterative refinement involving

a computational linguist and two annotators. The annotators, whose backgrounds are in

Linguistics and Psychology, first acquired familiarity with basic concepts in narratology and

computational analysis of narrative by reading the background chapter of Indejeet Mani’s

book Computational Modeling of Narrative [19]. They then annotated a practice set of about

30 narratives, individually but in frequent consultation. This process resulted in refinements

to the annotation scheme and guidelines for dealing with borderline cases, and was followed

by annotation of the 40 narratives in our dataset by each of the two annotators individually.

The annotation task consists of tagging segments in the narrative with one of six labels,

described below. Text segments were determined automatically and consist of one or more

clauses. The use of clauses as the granularity for annotation was motivated by concerns

both principled and practical in nature. Perhaps the easiest segmentation strategy for

identification of subjective passages in narrative is to consider each sentence as a target for

labeling. Sentences, however, are clearly too coarse grained, since a single sentence may

express an unbounded number of objective and subjective statements through coordination.

1 These narratives were used as stimuli in a separate series of experiments that examine the emotional
reactions of readers of personal narratives. These experiments required that human subjects read each
narrative in 36 seconds, and for this reason each of the 40 narratives was shortened from its original
weblog post version. In future work we plan to investigate the relationship between subjectivity in
narrative, as annotated in the work describe here, and emotional impact on readers.
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A more suitable strategy is to define segments in the spirit of the Elementary Discourse

Units (EDUs) in Rhetorical Structure Theory [20], as applied to entire texts by Marcu [22].

Instead of addressing the challenges of adapting full EDU segmentation to the needs of our

task, we opted to use a simplified segmentation scheme inspired by EDUs, taking clauses

as the target of annotation, with the application of rules and simple heuristics to prevent

segmentation of certain types of subordinate clauses that tend not to be relevant to our

annotation. For example, the non-finite subordinate clauses in he told her not to go and I

like going to the movies are not split into segments separate from their matrix clauses. Other

examples of subordinated language that results in multi-clause segments include going to

the movies is what I like to do on weekends (one segment with four clauses) and he said

he would return (one segment with two clauses). Our segmentation approach is based on

identification of syntactic patterns in parse trees produced automatically by the Stanford

parser [16], and largely follows the EDU segmentation approach described by Tofiloski et

al. [36], but without the full set of rules and lexical patterns necessary for complete EDU

segmentation according to the RST guidelines. Because our segments are sometimes too

fine-grained, and because narratives sometimes include passages that do not fall within one

of the categories defined by our scheme, the annotation scheme provides the option of tagging

specific clauses as Other/None (see below).

The tags in our annotation scheme are:

Story Event Denotes a clause that corresponds to an event in the story.

Story Private State Denotes a clause that corresponds to an expression of a private state

of the narrator that applies within the diegetic level.

Story Other Denotes other material that applies mainly to the story, such as descriptions,

direct quotes, etc.

Subjective Statement Denotes an expression of a private state at the time of narration (at

the extradiegetic level), rather than within the story.

Objective Statement Denotes an expression of fact that applies at the time of narration

(at the extradiegetic level), rather than within the story.

Other/None Used for tagging clauses that do not fall within one of the categories above.

The annotation scheme is intended to distinguish discourse segments along two dimensions:

(1) subjective vs. objective language; and (2) language that refers to the diegetic vs. the

extradiegetic level. Although the notions of emotion and sentiment are certainly important

aspects of narratives that are relevant to our overall goals, we focused our efforts on the

related notion of subjectivity as the expression of private states. This simplifies labeling of

cases such as reported speech and reported emotions. For example, in he said he was sad,

we do not treat he was sad as an independent segment, since it is subordinated language.

The single segment is labeled as a Story Event, reflecting the saying event, even though it

involves reporting of a private state. However, in I knew he was sad, there is a single segment

and it is labeled as a Story Private State, not because of the emotion reported, but because

knowing is a private state.

The manual annotation process was done with the aid of the Story Workbench [8], a

flexible environment for linguistic annotation, customized specifically for our annotation task.

Figure 2 shows a narrative being annotated using the Story Workbench. The top middle

section shows the text of the narrative, and the top right shows the segments to be annotated.

Segmentation is performed automatically using clause boundaries determined by the Stanford

parser [16] integrated in the Story Workbench. From the point-of-view of the annotators,

this segmentation and population of the top right area with segments happen automatically

CMN 2013
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Figure 2 The Story Workbench tool for linguistic annotation [8] customized for annotation of

private states in their narrative levels. The top three sections of the interface show a list of narratives

to annotate, the text of a narrative, and a list of segments to be labeled. The bottom area shows an

automatic syntactic analysis of the sentence being annotated.

and nearly instantly once text is loaded or entered in the text area. Annotators simply go

down the list of segments, choosing one of the six labels for each of the segments.

Raw pairwise agreement over 571 segments (40 stories, with 12 to 18 segments per story)

on the six-way labeling task was 84%. We measured chance-corrected agreement using

Krippendorf’s α and obtained a value of 73%. To produce the final annotations, cases where

the annotators disagreed were discussed and a final label was chosen. The most frequent

label is the first in the list above, Story Event, which accounts for 34% of the segments. Story

Private State, the second most frequent label, accounts for 29% of the segments. Table 1

shows several characteristics of the final annotated narrative corpus used in our experiment.

Appendix A shows an example of how a narrative is annotated according to our annotation

scheme2.

4.2 Classification of Subjective Language and Narrative Level

We now turn to automatic classification of narrative segments according to our annotation

scheme. As in the manual annotation process, segmentation is performed as a pre-processing

step using the clause boundaries produced by the Stanford parser. The next step is then

2 Because of issues regarding the expectation of privacy from bloggers [15] and the nature of the material
in our narratives, we do not use examples taken from our corpus.
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Table 1 Characteristics of the annotated corpus of narratives.

Corpus attribute Value

Number of narratives 40

Average number of tokens per narrative 169

Average number of segments per narrative 14

Frequency of Story Event label 194 (34%)

Frequency of Story Private State label 166 (29%)

Frequency of Story Other label 57 (10%)

Frequency of Subjective Statement label 85 (15%)

Frequency of Objective Statement label 63 (11%)

Frequency of None label 5 (1%)

to tag each resulting segment with one of the six categories in the annotation scheme. We

first approached this step as a straightforward text classification task at the segment level,

treating each segment as independent. We use multiclass classification with Maximum

Entropy models [2]3, and for each segment we extract features of the following types:

Bag of words (unigram features, or wi);

Part-of-speech tags for each word in the segment, as assigned by the Stanford parser (ti);

Word bigrams (wi, wi+1);

Part-of-speech tag bigrams (ti, ti+1);

Part-of-speech tag trigrams (ti, ti+1, ti+2);

Word/part-of-speech tag bigrams (wi, ti+1 ; ti, wi+1);

Word/part-of-speech tag trigrams (wi, ti+1, ti+2 ; ti, wi+1, ti+2 ; ti, ti+1, wi+2);

These features are intended to capture the bag-of-words representation widely used in

text classification, augmented with n-grams to provide some context, and backing off to

part-of-speech tags to reduce the sparsity of n-grams. Since our annotation scheme includes

two separate dimensions of the narrative segments, the classification task could be performed

in two steps (subjectivity detection, and narrative level classification), or a single step of

six-way classification. In both cases the same set of feature types is used. Missing entirely

from our classification approach is any notion that each segment is in fact not independent

from its context. A possible extension to our current model is to add dynamic features

for neighboring segments, making the overall model a conditional random field [17] that

optimizes the entire set of segment labels for the entire narrative jointly. This is left as future

work.

5 Results and Discussion

Because single-step six-way classification and the two-step classification approaches discussed

in the previous section produced very similar results, we focus our discussion on the simpler

approach of single-step classification. To perform an empirical evaluation of this approach,

we performed a “leave one narrative out” cross-validation using our annotated set of 40

3 Our classifier was implemented with Yoshimasa Tsuruoka’s Maximum Entropy library available at
http://www.logos.t.u-tokyo.ac.jp/~tsuruoka/maxent/
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Table 2 Precision and recall values for each of the categories in the annotation scheme, obtained

through cross-validation of our 40-narrative dataset containing 571 segments.

Label Precision Recall

Story Event 0.56 0.87

Story Private state 0.69 0.57

Story Other 0.44 0.27

Subjective Statement 0.49 0.42

Objective Statement 0.58 0.24

Other 1.0 0.2

narratives: to label each of the 40 narratives, we used the remaining 39 to train a classification

model. The overall accuracy using the six labels was 58%, a substantial improvement over a

simple majority baseline (34%). While far below the level of human annotation in this task,

our results are encouraging given our simple text classification approach. A more informative

evaluation is to consider the precision and recall of each category individually. Precision for

a category c is defined as the number of correct assignments of the c label divided by the

total number of times the classifier assigned the c label to a segment. Recall for a category c

is defined as the number of correct assignments of the c label, divided by the total number

of instances of the c label in our answer key, or manual annotation. Intuitively, precision

corresponds to how often the classifier is correct when it assigns a certain label, and recall

corresponds to what portion of the items with a certain label the classifier can find. By

labeling every segment as c, we would obtain perfect recall, but poor precision. Conversely,

by assigning the c label very conservatively and only in cases of very high confidence, we

could obtain high precision, at the cost of low recall. Table 2 show the precision and recall

values for each of the categories in our annotation scheme.

The imbalance of high recall and lower precision for Story Event reflects that our classifier

tends to prefer the assignment of the Story Event label over other labels. In particular, a

substantial number of segments that should be labeled Story Private State or Objective

Statement are labeled by the classifier as Story Event. In one case, the error appears to

be in the more general dimension of subjectivity, and in the other, the error is related to

distinguishing between narrative levels. This is also reflected in higher precision than recall

in identifying the Story Private State and Objective Statement categories. The confusion

between Story Event and Story Private State reflects that, even though the model often

correctly identifies that the segment is referring to the diegetic level (which is likely due to

part-of-speech features that reflect verb tense), it is less accurate in distinguishing between

events and private states. In those cases, the error is in subjectivity classification. The

confusion between Story Event and Objective Statement, conversely, shows that the classifier

sometimes distinguishes subjective segments correctly, but fails to assign them the correct

diegetic level. Not surprisingly the Story Private State category is also often confused with

the Subjective Statement category (segments corresponding to expressions of private states

of the narrator as the storyteller, outside of the story). This highlights the challenge of

classifying correctly along both dimensions in our annotation scheme, which is necessary

for analysis of subjectivity specifically at the extradiegetic and diegetic levels. Our results

for identification of subjective statements that apply to the extradiegetic level are more

balanced: we correctly identify almost half of the narrator’s expressions of private states,

with a relatively low rate of false alarm at about 50%. This is a particularly important

category, since it corresponds to the narrator’s reflections about the events in the story.
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Table 3 Accuracy results for our main classification task using our six-category scheme (Sec-

tion 4.1), and for two binary classification tasks, each focusing only on subjectivity or diegetic level.

Accuracy of a majority baseline classifier is also shown for comparison.

Classification task Majority baseline accuracy Accuracy

Six-way classification 34% 58%

Binary subjectivity classification 56% 78%

Binary diegetic level classification 69% 81%

When we consider each dimension separately, we observe substantially higher accuracy,

corresponding to easier classification tasks. On the binary task of identifying segments that

refer to the diegetic level vs. to the extradiegetic level, which we evaluate simply by grouping

the the first three labels of our scheme into one category (diegetic), and the remaining three

labels into another category (extradiegetic), we obtain 81% accuracy. For comparison, a

majority baseline for this task would assign the diegetic label to all segments and obtain 69%

accuracy, since segments that refer to the extradiegetic level are substantially outnumbered

by segments referring to the diegetic level. In the binary subjectivity classification task

(grouping the Story Private State and Subjective Statement categories into one subjective

category), where segments are simply classified as subjective or not, as is common in natural

language processing, our approach does well, with 78% accuracy, compared to 56% for a

majority baseline. These results, summarized in Table 3, highlight that the combined task

of finding subjective language within the appropriate narrative level is predictably more

challenging than either subjectivity classification or narrative level classification in isolation.

6 Conclusion and Future Work

We have described a methodology for analysis of subjective language in narrative that involves

manual annotation to produce training material that can be used to learn computational

models for automatic identification of subjectivity at the diegetic and extradiegetic levels.

Although our classification accuracy still needs improvement, it shows promise given the

small number of narratives in our training data, and it highlights some of the challenges in

this type of classification. Our next step is to annotate a larger set of personal narratives

to generate a larger training set and separate development and test sets using unedited

text from weblogs. We believe a larger training set will improve the accuracy of our simple

classification framework, and that further accuracy improvements may be obtained by going

beyond our current framework where each segment is classified independently. In future work,

we plan to abandon the assumption that segments are independent, and apply a structured

classification approach (e.g., conditional random fields [17]). Additional annotated data will

be important for exploring the use of features beyond unigrams and part-of-speech tags (e.g.,

features extracted from syntactic trees) using development data. In addition, although our

current set of 40 narratives similar in length allows us to see how well our classification

approach performs across a variety of topics, we plan to confirm that our models generalize

to personal narratives from weblogs in their original forms.

With our current text classification model, subjectivity classification accuracy (78%) is at

a level where automatic identification of subjective language in personal narratives could be

of practical use. For example, Riloff et al. [31] have shown that subjectivity classification at

this level of accuracy is useful for improving the precision of information extraction systems.

Similarly, our approach to the classification of the aggregated diegetic and extradiegetic
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categories performs well enough (81% accuracy) for potential use in a range of other natural

language processing technologies. In many cases it would be desirable to filter out passages

that refer to the diegetic or extradiegetic level in order to improve performance or precision.

For example, information retrieval system that support searches for narratives of specific

activities, such as protest rallies or automobile crashes, may garner improvements by indexing

only the diegetic material in the document collection. Where relevance feedback is used

to refine queries [14], diegetic material could be weighted more heavily when selecting and

weighting query terms. Gains should also be expected in language processing systems that aim

to generalize over events described in narratives, as in schema induction [5] and commonsense

knowledge extraction [21, 11]. Similarly, some systems may benefit by ignoring the events of

narratives, particularly where the emotional or intellectual impact of an experience defines

the retrieval criteria [34].
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A Narrative Annotation Example

The following example shows how a personal narrative is annotated following the scheme

described in Section 4.1. Segments are enclosed in square brackets subscripted with segment

indices. A label for each index is listed after the narrative.

[I consider myself a very honest person,]1 [and I’ve always thought that truth is

the best policy.]2 [I am a 42-year old mother of two,]3 [and my kids are the most

important thing in my life.]4 [A few years ago my son Tyler asked me if Santa Claus

really existed.]5 [He was four at the time.]6 [Oh boy!]7 [I just wasn’t ready for that

question.]8 [It was a nice day outside,]9 [and I told him to go out and play.]10 [He

came back only 15 minutes later]11 [and asked me again about Santa.]12 [I pointed to

his bike,]13 [and I asked him who gave it to him.]14 [He said Santa did.]15 [I nodded]16

[and said well then,]17 [and he gave me a huge smile.]18 [I felt a little guilty at the

time about lying to my child,]19 [but now I know that parenting is a balancing act.]20

[Of course the truth is important,]21 [but nothing trumps a mother’s instinct.]22

1. Subjective Statement

2. Subjective Statement

3. Objective Statement

4. Subjective Statement

5. Story Event

6. Story Other

7. None

8. Story Private State

9. Story Other

10. Story Event

11. Story Event

12. Story Event

13. Story Event

14. Story Event

15. Story Event

16. Story Event

17. Story Event

18. Story Event

19. Story Private State

20. Subjective Statement

21. Subjective Statement

22. Subjective Statement
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