
1

A Data-Driven Approach for Generating Synthetic

Load Patterns and Usage Habits
Samer El Kababji, Student member, IEEE, Pirathayini Srikantha, Member, IEEE

Abstract—Today’s electricity grid is rapidly evolving to be-
come highly connected and automated. These advancements
have been mainly attributed to the ubiquitous communica-
tion/computational capabilities in the grid and the internet of
things paradigm that is steadily permeating modern society.
Another trend is the recent resurgence of machine learning which
is especially timely for smart grid applications. However, a major
deterrent in effectively utilizing machine learning algorithms is
the lack of labelled training data. We overcome this issue in
the specific context of smart meter data by proposing a flexible
framework for generating synthetic labelled load (e.g. appliance)
patterns and usage habits via a non-intrusive novel data-driven
approach. We leverage on recent developments in generative
adversarial networks (GAN) and kernel density estimators (KDE)
to eliminate model-based assumptions that otherwise result in
biases. The ensuing synthetic datasets resemble real datasets
and lend to rich and diverse training/testing platforms for
developing effective machine learning algorithms pertaining to
consumer-side energy applications. Theoretical and practical
studies presented in this paper highlight the viability and superior
performance of the proposed framework.

Index Terms—Smart grids, Machine learning algorithms,
Demand-side management, Statistical learning

I. INTRODUCTION

The proliferation of advanced sensors, communication sys-

tems and automation processes in today’s grid is offering

tremendous opportunities for efficient, sustainable and resilient

system operations [1]. As such, in the consumer-side, three

main trends can be observed: 1) Widespread adoption of the

advanced metering infrastructure (AMI) by electric power

utility companies (EPUs) for billing and demand-response

purposes; 2) Increased deployment of home energy manage-

ment systems (HEMS) by consumers for automating local

demands; and 3) Internet of things (IoT) paradigm enabling

seamless connectivity among all types of day-to-day devices.

One outcome of this changing landscape is the continuous

generation of energy datasets. For example, an EPU managing

1 million consumers has an annual data intake rate of 1000

TB [2]. Although vast volumes of datasets are produced

continuously in the grid, in order to obtain any meaningful

insights, more granular and detailed information is necessary.

For instance, consider a smart meter which has the capabil-

ity to record cumulative power usage by the corresponding

household every one minute to one hour intervals. More

granular labelled information such as that indicating which

load was active at each recording period will enable HEMS

S. El Kababji is with the Department of Electrical and Computer Engi-
neering, Western University, London, ON, Canada and P. Srikantha is with
the Department of Electrical Engineering and Computer Science at York
University, Toronto, ON, email: selkaba@uwo.ca and psrikan@yorku.ca.

and EPUs to utilize advanced machine learning algorithms to

make passive/active recommendations that allow consumers

to modify local demands in a manner that is conducive for

reducing carbon footprint and costs. Additional sensors such

as circuit meters can be installed at each load to obtain these

labelled datasets. However, this is intrusive and not scalable

for a large number of households. Another option will be to

utilize load profiles made available in public datasets (e.g. [3],

[4]). Available public datasets are limited in terms of dataset

size, location, usage modes, season, and sampling frequencies.

In this paper, we focus on overcoming these limitations

by proposing a novel framework for generating labelled syn-

thetic datasets that capture power consumption patterns and

usage habits for individual loads (e.g. appliances). Datasets

provided in references [5] and [6] are used for training the

framework presented in this paper. Our framework will learn

the underlying distributions of load operations and ultimately

generate synthetic samples from these learned distributions.

Once trained, there will be no limit on the number of samples

that can be drawn from the trained framework. Every “type”

of load is associated with a label (or alternately referred to

as condition) which allows for differentiated training of loads

representative of various attributes (e.g. location, etc.).

Existing literature can be divided into two classes: model-

based and data-driven approaches. With the model-based

approach, the operational behaviour of a load is captured by a

set of mathematical equations that are derived from knowledge

of the physics of the load and its electrical attributes. For

instance, reference [7] models select loads using MATLAB to

generate their power demand profiles. This approach requires

extensive knowledge of each load’s physical characteristics

and this greatly limits the flexibility of modelling various

types of loads. Furthermore, the usage habits of these loads

are usually set by the user. Another approach is to model

loads using pre-set power demand curves and probability of

operation [8]. In reference [9], machine learning constructs

such as recurrent neural networks are utilized to learn the

power-voltage relationships of various loads. As such, ref-

erence [10] provides a comprehensive overview of various

approaches utilized to model loads in the literature. Biases

are inherent in these model-based approaches mainly due to

the assumptions made regarding the operation of loads.

With data-driven approaches, no prior assumptions are made

regarding the operational characteristics of loads which adds

inherent flexibility to the proposed frameworks. Generative

methods that include Gaussian Mixture and Markov Models

have been utilized in references [11] and [12]. Other work

that utilize machine learning techniques include references

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSG.2020.3007984

(c) 2020 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

[13] - [15]. More recently, reference [16] utilized Generative

Adversarial Networks (GAN) to generate synthetic power

profiles for renewable energy resources. On the demand side,

GAN has been leveraged in references [17] - [20]. However,

these proposals focus on either generating aggregate power

consumption patterns at the household level or higher (e.g.

neighbourhood, etc.) - not at individual load levels. These

datasets synthesize measurements typically recorded by smart

meters. While these models will be useful in load flow and

planning studies, they cannot be utilized for applications that

require operational characteristics of individual loads.

Hence, our work differs from prior work as we utilize GAN

and Kernel Density Estimator (KDE) for generating patterns

and habits for individual loads in a household. The synthetic

profiles generated by our proposed framework can be readily

applied to a wide range of consumer-based smart grid applica-

tions that include demand response, energy management and

non-intrusive load monitoring applications. Furthermore, our

proposal offers a bottom-up approach where low-level load

profiles can be aggregated over households, neighbourhoods

and so on to aid with studies that utilize aggregate datasets

(e.g. load flow/planning studies). As per our knowledge, this

is the first time the GAN construct is utilized to generate

synthetic profiles at the individual load level.

As such, the major contributions of this paper are four-fold:

1) We propose a flexible framework to generate synthetic load

patterns and usage habits for individual loads that can be tai-

lored to specific households with no model-based assumptions;

2) We automate pre-processing of training data using signal

processing techniques (e.g. matched filter); 3) We present

practical and theoretical studies of the performance of the pro-

posed synthetic data generation framework; and 4) We perform

comparative studies for generating usage habits. Specifically,

the two key constructs leveraged in the proposed framework

to enable the generation of realistic labelled datasets are: 1)

Generative adversarial network (GAN) and 2) Kernel density

estimator (KDE). We have optimized various components in

these constructs so that stability in the learning process can be

guaranteed. Furthermore, we have identified unique evaluation

metrics to gauge the “performance” or discernibility of the

synthetic datasets from real datasets.

The remainder of this paper is organized as follows. In

Sec. II, the general framework for producing labelled synthetic

patterns and usage habits for individual loads is introduced.

Then, in Sec. III, the automated pre-processing of datasets

for the training of the proposed framework is presented. Sec.

IV and V introduce the proposed load pattern and usage

habit synthesis systems respectively. Comparative, practical

and theoretical studies of these systems are also presented in

these sections. Finally, we conclude in Sec. VI.

II. PROPOSED FRAMEWORK

The proposed framework aims to address the lack of labelled

training data pertaining to the operational patterns and usage

habits of individual loads. As such, consider Fig. 1.

The left subfigure outlines the power consumption profile of

a clothes dryer (CDE) during a specific operation mode which

Fig. 1: Sample CDE pattern and usage habits.

we refer to be the load pattern for the CDE in this paper.

This has been manually extracted from the raw measurements

recorded by circuit meter readings of the same CDE over a

three-day period and this is illustrated in the right subfigure.

From this time-series data, it is also possible to discern all

time instances at which the CDE was activated. This will

provide insights into the usage habits of the load. These raw

datasets have been obtained from the publicly available The

Almanac of Minutely Power (AMP) dataset [5], [21] and The

Rainforest Automation Energy (RAE) dataset [6]. The AMP

dataset contains power consumption readings recorded by 12

circuit meters where each connects to one load (i.e. total of

12 loads) residing in a single household. These measurements

have been obtained over a sampling period of 1 minute across

2 years. As for RAE dataset, the sampling interval is 1 second.

Although there exist other datasets that report similar mea-

surements like the AMP and RAE datasets such as those

listed in reference [22], these are not suitable to train machine

learning algorithms. For instance, some of the datatsets lack

the time stamps while others record power measurements at

high sampling frequency for short duration. Due to privacy

issues and the intrusive nature of deploying circuit meters,

these datasets containing power consumption measurements

for individual loads are not widely available. We aim to expand

these datasets by synthetically producing load patterns (similar

to left subfigure in Fig. 1) and usage habits (similar to the

start times of cycles in the right subfigure of Fig. 1). As

we utilize machine learning techniques to enable this, the

proposed framework must be trained to enable the generation

of synthetic datasets that closely resemble real datasets. After

training, this framework must be flexible and easy-to-use.

A. Training of the Data Synthesis Process

Training of the synthesis process entails three main stages

as outlined in Fig. 2: 1) Pre-processing of training data;

2) Training of the load pattern and usage habit generation

modules; and 3) Evaluation of how realistic the synthesized

dataset is.

The training data will be obtained from two sources: real

measurement data (e.g. [5] and [6]) and input from stakehold-

ers (e.g. feedback from consumers, manufacturers, etc.). Real

measurement data is typically supplied in raw form for each

load and must be pre-processed for uniformity. Then, feature

engineering is applied to extract important attributes from this

training data for the realistic synthesis of labelled datasets

as discussed in detail in Sec. III. Inputs from stakeholders

(e.g. consumers, manufacturers, etc.) corresponding to load

patterns and usage habits also form training datasets. This

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSG.2020.3007984

(c) 2020 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

Fig. 2: Proposed framework training process.

information can be readily obtained from mobile applications

such as Trickl from London Hydro [23].

Next, in the training stage, these pre-processed datasets

are utilized to improve the weight parameters of the neural

networks which are used in load pattern and usage habits

synthesis modules. Appropriate loss functions will be selected

in the design of these modules so that these can be trained

in a stable manner to generate realistic datasets. As there

is no direct measure for gauging how realistic the synthetic

dataset is, we use two different metrics for this purpose in

the evaluation stage: 1) We utilize a distance measure that

computes similarities between synthetic and real datasets;

and 2) We design a neural network based system called

the Evaluation Net to mimic visual inspection by humans to

discern realistic from unrealistic data.

B. Input and Outputs of Trained Generator

As outlined in Fig. 3, once the synthesis framework is

trained, it is utilized to produce labelled datasets for specific

loads. The input into the framework is the name of the

Fig. 3: Engaging with the trained framework.

electrical load to be synthesized. Outputs from the modules

will produce labelled synthetic samples pertaining to the

corresponding load’s patterns and usage habits. These can then

be combined by an aggregator to generate cumulative load

profiles. Thus, the framework can flexibly produce synthetic

datasets both at individual load and aggregate levels.

III. PRE-PROCESSING TRAINING DATASETS

In this section, we focus on the automatic pre-processing

of inputs to extract pertinent features that will effectively train

the proposed synthesis modules. Manually extracting features

from training samples will be cumbersome and become in-

tractable when processing raw measurement inputs collected

over long time periods from numerous circuit meters (e.g.

AMP dataset). For data obtained via mobile applications like

Trickl, there exist application programming interfaces (APIs)

that allow for the necessary rendering of collected data. Thus,

we focus on pre-processing raw measurements collected from

circuit meter data in this section. In the following, we first

present pertinent features that we have selected for training

each one of the synthesis modules. Then, our approach for

automating the extraction of these features is detailed.

A. Features Selected

For the training of the load pattern synthesis module, raw

time-series datasets similar to the right sub-figure in Fig. 1

recorded for various loads must be processed in order to

obtain specific load patterns for different operational modes.

The left sub-figure in Fig. 1 is one example of such a pattern

extracted from the time-series data generated over a long time

interval for CDE. We use a construct called the matched filter

that automates the process of extracting load usage patterns

from individual circuit meter data obtained for loads under

study. The matched filter utilizes a template to extract load

usage patterns that are similar (not necessarily identical) to the

template. This template can be defined by the data engineer

where he or she selects power measurements corresponding to

one active period of load operation in the training dataset. This

approach allows for greater flexibility in comparison to rule-

based approaches that require extensive prior knowledge about

the operation of various types of loads and utilize assumptions

which can introduce implicit biases (e.g. Gaussian noise/error).

Algorithm 1 Computation of Tw and Tl

Input:

Unified granularity interval in seconds (Tg)

Dataset sampling interval in seconds (Ts)

Template array Arrl for loads l ∈ 1 . . . N
Output:

Master window (Tw)

Operation cycle for load l (Tl) ∀l = 1...N
1: for l=1 to N do

2: Ceiling(Tl ← length(Arrl) ∗ Ts/Tg)
3: end for

4: Tw ← max{T1, ..., Tl, ..., TN}

Our framework allows for training conditional GAN using

multiple datasets which may utilize different sampling fre-

quencies to record power data. We define a unified granularity

interval Tg in seconds to accommodate various sampling

frequencies present in these datasets. Typically, Tg is larger

than or equal to the largest sampling interval utilized in the

training datasets. Hence, datasets are down-sampled to Tg .

For illustrative purposes, consider the case where the training

dataset is composed of time-series power measurements for

N types of loads that are sampled every Ts seconds. Each

load l will be associated with a manually selected template

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSG.2020.3007984

(c) 2020 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

Fig. 4: Impact of reducing granularity (Tg) on training samples for cloth dryer.

Arrl. The template is an array of values representing one set

of power measurements when the load is in active operation.

These templates have time intervals that can differ from load

to load. We introduce Tl and Tw for loads l ∈ 1...N which

are computed according to Alg. 1. Tl and Tw are unit-less

integer values. Tl represents the number of samples in a

load’s template after the downsampling operation. Tl is used

in the construction of the matched filter as detailed in Sec.

III-B. Tw determines the input dimension of the GAN used to

generate patterns. When there are multiple datasets, the value

of Tw is set to be the maximum value computed across the

datasets. Similarly, Tl is also selected to be the maximum value

computed across the datasets.

If Tl < Tw, then zero padding is applied for the remaining

Tw − Tl samples. The template for load l can be selected

to be any one instance that occurs in the dataset via manual

inspection by the data engineer. In other words, Tg is the

only value that is defined for feature extraction from the

training datasets. Other parameters (e.g. Ts and Arrl) are

obtained from these datasets. When Tg takes a smaller value,

greater will be the number of samples in each template. This,

however, leads to higher dimensionality in the training dataset.

On the other hand, when Tg is larger, distinguishing features

pertaining to the load’s operation will be lost as illustrated in

Fig. 4. In this figure, it is clear that when Tg is increased from 3

minutes to 5 minutes, the second peak in the operational cycle

of the cloth dryer is lost. Thus, a balance must be struck in

the selection of the value Tg . For the datasets utilized in this

paper, Tg is empirically selected to be 180 seconds. Table I

lists the parameters Tg , Tl and Tw corresponding to the four

appliances considered in this paper.

As these patterns are extracted, the corresponding start-time

of operation is also captured as this provides insights into the

usage habits of that particular load. The inputs into the usage

habits synthesis module are: the week of year, day of week

and hour of day information extracted from the time stamp

corresponding to the beginning of each load pattern.

B. Automated Load Pattern Extraction

Circuit meters record the raw power consumption readings

for each load (similar to the right subfigure of Fig. 1) and

these are typically accompanied with measurement noise.

Furthermore, when the sensor is deployed over a long time

span (e.g. two years), there will be multiple instances at which

the load has been active. Thus, to automate the extraction

of these load patterns from noise-ridden time-series data,

we utilize the signal processing concept known as matched

filter. This filter maximizes the signal to noise ratio when

additive stochastic noise is present in measurement signals

[24]. Although matched filter is traditionally utilized in radar

applications, it efficiently performs pattern extraction as per-

taining to our application.

General characteristics of the power consumption patterns

associated with a load are similar for various modes of

operation. For each load l ∈ L, we define a down-sampled

”template” pattern sl[n] depicting one operational cycle of a

load where n is a time step. This can be manually extracted

from down-sampled datasets or constructed on our own. For

a load l with an operational cycle of Tl, the matched filter

hl[n] is defined to be a shifted and time-reversed version

of this template (i.e. hl[n] = sl[Tl − n]). This filter is then

convolved with the time-series down-sampled dataset pl[n] that

corresponds to the same load l to result in yl[n] as follows:

yl[n] =
∞
∑

k=−∞

pl[k]hl[n− k] (1)

As the filter moves through the time-series dataset from the

beginning to the end, it encounters load patterns that are

similar to the template. This is detected by examining the

output yl[n] of the convolution process (listed in Eq. 1) which

evaluates to a value larger than a pre-set threshold λl. When

this occurs, it can be inferred that a load pattern has been

encountered. This pattern will then be extracted along with

the corresponding timestamp marking the beginning of the

detected pattern. These form training inputs for the synthesis

modules that are collected from circuit meter readings.

The following is a set of guidelines that we have utilized for

selecting λl. Consider the discrete time series yl[n] resulting

from the convolution of the matched filter hl[n] with the

time series of physical power measurements pl[n]. We first

identify the largest value resulting from the convolution, i.e.

max{yl}. This occurs when the matched filter detects power

measurements that are similar to the load’s template. To allow

for the detection of patterns with greater variability for that

load, λl is set to be a fraction rl of the maximum value

identified earlier (i.e. λl = rl×max{yl}). When rl is higher,

the patterns detected will be very similar to the load template.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSG.2020.3007984

(c) 2020 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

On the other hand, when rl is smaller, random patterns that

do not correspond to the actual operation of the load will be

detected. Thus, a balance between these two tradeoffs must

be struck when selecting rl. Table I lists rl that have been

empirically selected for each load l.

Load Cloth Dryer Dishwasher Fridge Heat Pump

Tl 26 42 32 19

rth 0.4 0.6 0.4 0.75

Tg (sec) 180

Tw 42

TABLE I: Pre-processing parameters for various loads.

IV. LOAD PATTERNS SYNTHESIS

Equipped with labelled training data, in this section, we

present the design, training and evaluation processes associ-

ated with the proposed load pattern synthesis module. The

machine learning concept called conditional GAN is utilized

to construct the load pattern synthesis module. GAN was

originally proposed in reference [25] to generate synthetic

images. We differ considerably from the traditional GAN

application as our intent is to synthesize load patterns which

are one-dimensional time-series data over a fixed window Tw

instead of a two-dimensional image. Thus, the architecture

and training methods utilized for synthesizing images cannot

be directly transferred to our application. As such, we provide

an overview of GAN in the following, prior to delving into

the details of the module design.

A. GAN Overview

There are two main components in GAN: the generator and

the discriminator as illustrated in Fig. 5.

Fig. 5: Summary of a GAN system.

The generator and discriminator are two different neural

networks. In a typical GAN, the generator takes in as input

random noise z of nz dimensions (i.e. z ∈ R
nz) sampled from

the probability distribution pz(z). z is utilized by the generator

to trigger the generation of a synthetic pattern. The input x
into the discriminator is either the synthetic pattern produced

by the generator or a real pattern obtained from the training

data. x belongs to the nx dimensional real space (i.e. Rnx).

The task of the discriminator is to determine the probability

of input x being real (i.e. not synthetically produced by the

generator).

The generator and discriminator are both trained simultane-

ously. However, the objectives of these entities are opposite to

one another. The generator aims to minimize the probability of

the discriminator correctly identifying its output as synthetic.

Ultimately, the generator is trained to render its output indistin-

guishable from the real training samples. The discriminator, on

the other hand, aims to maximize the probability of correctly

identifying the source of the input samples (i.e. synthetic

or real). The penalties/costs imposed for deviating from the

goals set by each component are utilized to optimize the

internal neural network parameters until desired performance

is attained. These opposing goals lead to a min-max game and

this alludes to the “adversarial” component of GAN.

B. Cost Function and Module Training

In this paper, we consider the neural networks pertaining

to both the generator and discriminator to be multi-layer

perceptrons (MLPs). We do not utilize convolutional neural

networks which are primarily leveraged in the GAN literature

as we are not dealing with images. The cost function employed

to train the GAN plays an important role in the stable fine-

tuning of MLP parameters to synthesize realistic outputs. The

original cost function V (D,G) proposed in reference [25] is:

V (D,G) = E
x∼pd (x)[logD(x)] + E

z∼pz(z)[log(1−D(G(z)))] (2)

where E is the expectation with respect to the random variable

specified in the subscript, D is the output of the discriminator

(i.e. probability of whether the input is real), G is the output

of the generator (i.e. the synthetic pattern), pd(x) is the

probability distribution of the real data x, and z is the noise

drawn from the probability distribution pz(z). The generator

aims to minimize V (D,G) and the discriminator aims to

maximize V (D,G). It is well-known in the literature that

the GAN system is notoriously hard to train [26]–[29]. In

the specific case of our application, this cost function causes

the training process to diverge as the penalties imposed by

V (D,G) result in saturating the gradients that are used to

optimize the MLP parameters. To overcome this issue, we

define a new cost function L(D,G) that enables stable training

behaviour with desirable outputs.

L(D,G) = E
x∼pd (x)[log(1−D(x))] + E

z∼pz(z)[logD(G(z))] (3)

L(D,G) and V (D,G) are equivalent from the perspective

of the discriminator but not from the point of view of the

generator as the minimization and maximization takes place

over G and D respectively for both loss functions. We show in

Theorem 1 that this cost function allows the generator to learn

the probability distribution of the original dataset at optimality

with no assumptions made regarding the distributions of the

real or synthetic datasets. Proof for Theorem 1 is based on an

approach that is similar to that listed in reference [25].

Theorem 1: Performing min
G

max
D

operations on the proposed

value function L(D,G) results in a globally optimal solution

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSG.2020.3007984

(c) 2020 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

that requires the probability distributions of real data and

synthetic data to be identical.

Proof : The first observation leading to the afore-mentioned

theorem is that the optimal output of the discriminator is:

D∗(x) =
pg(x)

pg(x) + pd(x)
(4)

where pg(x) and pd(x) are the distributions of the synthetic

and real datasets respectively and x represents the random

variable resulting from sampling these distributions. To derive

this result, consider the value function L in its extended form:

L(D,G) =

∫

x

pd (x) log
(

1−D(x)
)

dx+

∫

z

pz(z) logD(G(z))dz (5)

Knowing that the distribution of data synthesized by the

generator is pg(x), the second integral in the above expression

can be replaced with
∫

x
pg(x) logD(x)dx. This results in the

following expression:

L(D,G) =

∫

x

[

pd (x) log
(

1−D(x)
)

+ pg (x) log
(

D(x)
)

]

dx (6)

Using the property that the value of y that maximizes the ex-

pression m log(y)+n log(1−y) for any (m,n) ∈ [R2\{0, 0}]
is m

m+n
, we identify that the maximum of L occurs at

D∗(x) =
pg(x)

pg(x)+pd(x)
. This expression is utilized to derive

the objective function pertaining to the generator:

P (G) = max
D

L(D,G) = L(D∗, G) (7)

=

∫

x

[

pd (x) log
(

1−
pg(x)

pg(x) + pd(x)

)

+ pg (x) log
(pg(x)

pg(x) + pd(x)

)

]

dx

(8)

=

∫

x

[

pd (x) log
(pd(x)

pg(x) + pd(x)

)

+ pg (x) log
(pg(x)

pg(x) + pd(x)

)

]

dx

(9)

With a GAN system, the main goal for the generator is to

learn the distribution of the real dataset at optimality. Hence,

let us assume that this is indeed the case (i.e. pg = pd) and

substitute this into D∗. This results in D∗ = 1
2 which then

implies that P (G) = − log(4) from the above expression.

Subtracting − log(4) from both sides of the above expression

results in:

P (G) = − log(4) +

∫

x

[

pd (x) log
(pd(x)

pg(x) + pd(x)/2

)

]

dx

+

∫

x

[

pg (x) log
(pg(x)

pg(x) + pd(x)/2

)

]

dx

(10)

Each integral term represents Kullback-Leibler divergence

which is defined as: DKL(P ||Q) =
∫

∞

−∞
p(x) log(p(x)

q(x))dx and

P (G) is expressed using this measure as follows:

P (G) = − log(4) +DKL(pd||
pd + pg

2
) +DKL(pg||

pd + pg

2
) (11)

The summation of the DKL terms results in the Jensen-

Shannon divergence which is defined as: JSD(P ||Q) =
1
2

(

DKL(P ||R) +DKL(Q||R)
)

where R = (P +Q)/2. This

is applied to P (G):

P (G) = − log(4) + JSD(pd||pg) (12)

The JSD term is non-negative and is 0 when both distributions

are identical. Hence, the minimum of P (G) is achieved when

both the synthetic and real distributions are identical. The

resulting optimal value of P (G) is − log(4).
While training the GAN using L(D,G), we noticed that

at the initial stages, the probability distributions of the real

and synthetic datasets are not close to one another. When this

occurs, the cost function saturates especially when the log
terms tend to −∞. In order to prevent this saturation, we

utilize the cost − log(1−D(G(z))) to train the generator in a

stable manner without any loss of generality. This change in

the generator cost has been applied in the original GAN paper

[25] as well to avert these saturation issues.

C. Evaluation Metrics

Once the GAN is trained, it is necessary to evaluate its

performance. However, the main challenge lies in how to

evaluate the “performance” of the synthetic patterns. In the

traditional GAN, the images generated are visually inspected

by humans to evaluate whether these look real or not. Results

of this assessment are then utilized to gauge the performance

of the system. This is an arduous task that is qualitative in

nature and therefore subject to bias. We consider two other

approaches for performance evaluation.

The first approach is to utilize the maximum mean discrep-

ancy (MMD) measure which identifies the “distance” between

two probability distributions. In our case, the two distributions

pertain to the synthetic load patterns and the real samples.

MMD is defined as follows:

MMD =
(1

m(m− 1)

m
∑

i=1

m
∑

j 6=i

k (xi, xj) +
1

n(n− 1)

n
∑

i=1

n
∑

j 6=i

k (yi, yj)

−
2

mn

m
∑

i=1

n
∑

j=1

k (xi, yj)
) 1

2

(13)

where xi is the ith real sample, yi is the ith synthetic

sample, and m and n are the total number of real and synthetic

samples respectively. k(.) is a Gaussian Radial Kernel defined

as:

k (x,y) = exp

(

−
‖x− y‖2

2σ2

)

(14)

where σ is a free parameter.

Our second approach is to mimic the visual inspection

process by humans and automate this by training a neural

network. We refer this classifier to be the Evaluator Net which

serves to identify which class (e.g. dishwasher, dryer, etc.)

the sampled synthesized load patterns fall under. Thus, if the

synthetic samples resemble realistic data, then the Evaluator

Net must correctly identify which load the input pattern

represents. The actual performance of our model based on the

afore-mentioned evaluation metrics is presented in Sec. IV-E.

D. Architecture

The architecture of the generator and discriminator com-

ponents of the GAN along with the Evaluator Net is pre-

sented next. In order to allow for flexibility in the training

and implementation processes, we combine the synthesis of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSG.2020.3007984

(c) 2020 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

(a) Evolution of L during training. (b) Synthetic patterns from proposed GAN. (c) MMD for the four loads.

Fig. 6: Training and synthesis of the GAN system.

patterns for all loads into a single GAN system. For training

or synthesizing the pattern of a specific load, labels that are

one-hot encoded are appended to the corresponding inputs as

discussed in Sec. II.

The set L represents various types of loads that are sup-

ported by the proposed framework. Since loads are typically

identified by labels (e.g. dishwasher, fridge, etc.) these should

be converted to numerical values in order to be processed

as conditions in the proposed modules. Assigning an integer

value for each load implies ordinal relationship amongst these.

In order to avoid this implicit bias, we utilize one-hot encoding

which is a unit vector representation of labels. For example,

for a set of four loads, one load is assigned the label of [0

0 0 1], the other load is assigned the label of [0 0 1 0]

and so on. Inputs into the pattern synthesis module will be

the extracted load pattern of length Tw concatenated with the

corresponding one-hot encoded label. In order to distinguish

patterns generated for loads based on other external factors

such as different locations and seasons, conditions assigned to

load patterns can be extended to reflect these attributes.

We utilize the notion of conditional GAN [30] where the

training of the system and synthesis of patterns are conditioned

upon the label appended to the input. This simplifies the

system as dedicated GAN will not be necessary for each load.

Thus, loads can be added as needed into the synthesizing

system in a flexible manner. Table II contains the specifications

we have utilized to construct the GAN system to synthesize

load patterns for four loads (clothes washer, dishwasher, fridge

and heat pump). This system is constructed and trained using

Google’s TensorFlow Python library.

The input dimensions for the generator is nz = 100 plus

the one-hot label of size 4 (to represent all four loads uniquely

using one-hot encoding) (i.e. nodes in layer 1 (L1) is 104).

Input dimensions of the discriminator is nx = Tw plus the

one-hot label which is also of size 4. Both neural networks

are composed of 5 layers including the input layers. The

number of nodes per layer (with the exception of the first

layer which is the input layer) and the activation functions

used at each layer are specified in Table II. These have been

selected via empirical experiments as typical in the machine

learning literature. Training samples are generated using the

preprocessing technique outlined in Sec. II. Training samples

Cost Function L(D,G)

Training Datasets From references [5], [6]

Unified Granularity Tg 180 seconds

Master Window Tw 42

Conditions (loads) 4 (One-hot Encoded)

Generator 5 Layers

Nodes/layer: L1: 104, L2: 100, L3: 150, L4: 100, L5: 42

Activation/layer Leaky ReLU, Leaky ReLU, Leaky ReLU, Tanh

Discriminator 5 Layers

Nodes/layer L1: 46, L2: 100, L3: 150, L4: 100, L5: 1

Activation/layer Leaky ReLU, Leaky ReLU, Leaky ReLU, Sigm

TABLE II: Load patterns GAN architecture.

and synthesized pattern are constructed over a period of 126

minutes (i.e. Tw × Tg).

Cost Function Categorical Cross Entropy

Training Datasets From references [5], [6]

Features 42

Classes 4 (One-Hot Encoded)

Layers 6

Nodes/layer L1: 42, L2: 8, L3: 10, L4: 10, L5: 10, L6: 4

Activation/layer ReLU, ReLU, ReLU, ReLU, Softmax

TABLE III: Evaluator Net architecture.

The architecture of the Evaluator Net is listed in Table

III. The loss function utilized to train the six-layer MLP is

referred to as categorical cross entropy [31]. The data points

are constructed from both references [5] and [6]. They are

split into three equal parts for: training, validation and testing

in order to avoid overfitting.

E. Performance

The performance of the proposed GAN system with respect

to the two evaluation metrics discussed in Sec. IV-C is

presented in the following. First, in Fig. 6a, we examine the

evolution of L(D,G) as the GAN system is trained for the

generator (i.e. GLoss) and discriminator (i.e. DLoss). It is clear

that the system trains without divergence and converges to a

steady equilibrium. In Fig. 6b, randomly selected samples of

synthetic load patterns generated by the proposed GAN system

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSG.2020.3007984

(c) 2020 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

(a) Random real patterns. (b) Collapsed synthetic patterns.

Fig. 7: Mode collapse in GAN for patterns (patterns shown for Cloth Dryer).

(a) Real Patterns (b) Synthetic Patterns (Proposed loss) (c) Synthetic Patterns (Wasserstein loss)

Fig. 8: Comparison of real versus synthetic patterns.

for all four loads are presented. The x-axis represents the

pattern window with 42 intervals and the y-axis is the power

consumption of the load in Watts. By visually inspecting these

load profiles, it is clear that these resemble actual patterns of

the corresponding loads.

Next, in Fig. 6c, the evolution of the MMD measure for

each one of the loads trained by the GAN is recorded during

the training period. For all four loads, the distance between

the probability distributions of the synthetic and real datasets

decrease during the training process.

In traditional supervised learning models, there exists the

notion of bias-variance tradeoff where it is shown that with

appropriate selection of the hypothesis set, increasing the

number of training samples will result in better generaliza-

tion and elimination of underfitting/overfitting. However, with

generative models like GAN, it is shown in recent work like

reference [32] that lower number of samples in the training

dataset will result in better performance than using a large

training dataset. This is the case with our proposed framework

where we are looking into expanding a small labelled training

dataset into a larger one. However, there exists a phenomenon

in generative models that is similar to the notion of overfitting

and this is referred to as mode collapse. When mode collapse

occurs, the generator replicates the same output every time it

is queried. We illustrate this in Fig. 7 for our model. In the

original paper on GAN (i.e. reference [25]), mode collapse was

prevented during the training process where the discriminator

was updated over k iterations every time the generator was

updated (k is a hyper-parameter that depends on the dataset

being synthesized). As our cost function is different from that

proposed in reference [25], we utilize a different approach

where the generator and discriminator are each updated once

after each other (i.e. k = 1). This resulted in successfully

eliminating the issue of mode collapse.

Cloth Dryer Dishwasher Heat Pump Fridge

V (D,G) - - - -

L(D,G) 0.06 0.14 0.18 0.23

R(D,G) 0.08 0.20 0.29 0.69

TABLE IV: MMD for various objective functions.

In Table IV, we assess the impact of the cost function

selected to train the GAN system. Specifically, we examine

three types of cost functions: the traditional cost function V
[25], cost function L proposed in this paper and the regularized

cost function R [33]. V and R are utilized widely in the

GAN literature and represent the existing literature in the

comparison of the proposed cost function L. As mentioned

earlier, V results in the divergence of the training process, it

is not possible to compute the MMD for this case. The MMD

for our cost function is lower than that obtained for R for all

four loads. Hence, it is clear that for this application, L results

in superior performance in terms of the distance between the

probability distributions pg and pd.

Finally, the performance of the GAN is assessed by applying

the Evaluator Net and the corresponding results are presented

in the confusion matrix listed in Fig. 9. The confusion matrix

provides a break-down of the proportion of correct and incor-

rect predictions. As such, if the synthetic data is indiscernible

from the real data, the classifier will predict the true class of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSG.2020.3007984

(c) 2020 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

the inputs (i.e. represented by the diagonal elements of the

confusion matrix). In our case, only 1% of the synthetic data

generated by our model for a cloth dryer were incorrectly

identified as belonging to a heat pump. The remaining three

loads were correctly identified with 100% accuracy. This

process mimics the visual inspection of the synthetic dataset.

As the testing data (i.e. synthetic patterns) is not used for the

training of the Evaluator Net, overfitting does not take place.

Fig. 9: Normalized confusion matrix for synthetic data.

To further verify the efficacy of the proposed cost function

in generating load patterns, the Wasserstein loss function

defined in reference [34] is utilized to synthesize load patterns.

Wasserstein loss allows for increased gap between synthetic

and real images during the training process. For this reason, the

patterns generated using the Wasserstein loss do not represent

load patterns. Fig. 8 presents randomly selected load patterns

generated by our proposed loss function, the Wasserstein loss

function and training samples for a cloth dryer. It is clear that

there are significant discrepancies in the patterns generated by

the Wasserstein method.

V. HABITS GENERATION

In this section, we present the design and evaluation of the

proposed load usage habits synthesis module. As discussed

in Sec. II, three features which are the week of year, day of

week and hour of day are extracted from the pre-processed

data samples to train this module. In order to produce realistic

outputs (i.e. when a load is utilized), the module will have

to effectively learn the probability density function associated

with the actual usage habits of the corresponding load without

making any prior assumptions. We study both conditional

GAN and KDE to generate synthetic habits. KDE is not

suitable for the load pattern module as it takes in high-

dimensional inputs [35]. We compare the performance of the

module implemented using KDE and GAN via two evaluation

metrics detailed later in this section.

A. KDE Overview

KDE is a non-parametric density estimation technique

which we leverage to generate usage habits for every load

considered in the proposed framework. The start time of

operation of various loads can differ from one another sig-

nificantly. For instance, a dishwasher is usually operated at

different times by human operators in comparison to an

HVAC which is regulated by environmental factors. KDE is

utilized to learn the probability densities of usage habits for

every type of load considered in the proposed framework. No

assumptions regarding the underlying distribution are made

in constructing the KDE for habit generation. Other density

estimation techniques such as Gaussian Mixture Models make

prior assumptions regarding the underlying distribution of

datasets. Next, a brief background of KDE is presented.

The density function can be estimated to be [36]:

pl(x) =
1

Nhd

N
∑

i=1

K

(

x− yi

h

)

(15)

where K is a kernel function that is typically a smooth func-

tion, h is the bandwidth parameter and the random variables x

and y belong to the d-dimensional real space (i.e. Rd). These

kernels are centred around every training point y1 . . .yN ,

summed and normalized to approximate the probability den-

sity function for load l that has generated these training points.

For our framework, d is 3 and N is the total number of samples

extracted from the pre-processing step detailed in Sec. III. We

consider 6 types of kernels (i.e. Gaussian, Exponential, Tophat,

Epanechnikov, Linear and Cosine). For a specific kernel K,

the unknown parameter computed during training is h. When

h is large, then the variance of the kernel is larger. This will

lead to over-smoothing the density function which will mask

the fluctuations in the density functions. When h is small,

then the variance of the kernel is smaller and this will capture

fluctuations too closely and lead to overfitting issues. Both the

kernel function K and bandwidth h are optimized using the

k-fold cross validation technique [31] outlined next.

B. Kernel and Bandwidth Selection

With the k-fold cross validation technique, the set of

available training samples are divided into k partitions (i.e.

folds) of equal sizes. The first fold is held-out for validation.

Given a specific kernel K, corresponding h is computed

using the remaining k − 1 folds. Then, the log-likelihood

score is computed on the validation set and recorded for the

resulting h for kernel K. The procedure is repeated k times

where a different partition is selected to be the validation set.

Then, the k log likelihood scores are averaged. For the habit

generation module, we have selected 10-fold cross validation

for estimating the KDE parameters. This is justified next.

k Optimal h Optimal K Mean Test Score

2 0.56 Exponential -4477

3 0.26 Exponential -2574

4 0.26 Exponential -1715

5 0.17 Exponential -1146

6 0.17 Exponential -871

7 0.17 Gaussian -713

8 0.17 Gaussian -594

9 0.17 Gaussian -569

10 0.17 Gaussian -447

TABLE V: Optimal parameters for cloth dryer for different k.

Table V lists the best bandwidth and kernel selected for

various folds k for the cloth dryer load. The associated mean

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSG.2020.3007984

(c) 2020 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

log likelihood scores are also recorded. It is clear that as

the number of folds increases, the mean test score increases.

However, the bandwidth computed for k > 4 remains the

same. We observe this phenomenon for the dishwasher, fridge,

and heat pump as well. With increased number of folds, the

computational overhead also increases [37]. Thus, to strike a

balance between this overhead and the mean test score, we

select k = 10 for all loads. Also, k = 10 is a common value

utilized in the literature for density estimation (e.g. [38]). Table

VI lists the optimal parameters obtained for each load using

10-fold cross-validation.

Load Cloth Dryer Dishwasher Fridge Heat Pump

K Gaussian Gaussian Exponential Gaussian

h 0.177827941 0.177827941 0.177827941 0.177827941

TABLE VI: Optimized parameters using 10-fold cross-validation.

C. GAN Architecture

To compare the performance of the KDE model with

another generative model, we estimate the distribution of the

underlying usage habits for each load using a conditional

GAN. We construct a 5-layer MLP for both the generator and

discriminator. The cost function utilized is the one proposed in

this paper (i.e. L(D,G)). Specifics of each layer are detailed

in Table VII.

Cost Function L(D,G)

Features 3

Conditions (loads) 4

Discriminator 5 Layers

Nodes/Layer 7, 100, 200, 2, 1

Activation/Layer Leaky ReLU, Leaky ReLU, Leaky ReLU, Sigm

Generator 5 Layers

Nodes/Layer 54, 120, 240, 120, 3

Activation/Layer Leaky ReLU, Leaky ReLU, Leaky ReLU, Tanh

TABLE VII: Load usage habits GAN architecture.

D. Evaluation Metrics

To evaluate the efficacy of utilizing KDE and GAN tech-

niques for synthesizing load usage habits, we leverage on

two techniques: one is to construct the histogram of data

points that are randomly sampled from the learned density

function for visualization purposes and the second is the MMD

metric which is utilized to assess the distance between the

learned probability and the true probability. With the histogram

technique, plots are rendered for each one of the features

considered (i.e. 3) as it is difficult to visualize the samples in

a d-dimensional space. Data points sampled from the learned

probability density function are binned over the appropriate

interval regions corresponding to the feature represented by

the histogram. The MMD metric introduced in Sec. IV-C is

utilized to provide a quantitative measure of the discrepancies

between the learned and true density functions.

E. Performance

Next, the performance of the load usage habits synthesis

module is examined for both the KDE and GAN based systems

using histogram renderings for all three loads and the MMD

measure. As such, Fig. 10 illustrates the histograms for all

three features. In Fig. 10a, real data points outside of the

training set have been organized into the three histograms. It is

important to note that the pre-processing of raw circuit meter

readings result in data being organized into 3-tuples and thus

these features are not originally decoupled from one another.

For the ease of visualization, we have separated these tuples

into three different histograms. From Fig. 10, it is clear that

there are discernible patterns in the frequencies at which the

real datapoints are binned together.

(a) Real (b) KDE (c) GAN

Fig. 10: Histograms for load usage habits.

In Fig. 10b, the three-dimensional samples drawn from p
learned via the KDE technique are rendered in three his-

tograms. Similarly, the usage habits synthesized by the GAN

are illustrated in the last set of histograms in Fig. 10c. It is

clear that the underlying trends visible in the real dataset have

been captured in both histograms produced using synthetic

load usage habits. The histogram plots for the synthetic data

will not be identical to the real data as these are drawn from

probability distributions. Moreover, as all three features have

been decoupled, it is not possible to gauge the correlations

amongst the features. Thus, we use the MMD measure to

quantify the distances between the learned probabilities and

the true probability of the training dataset. These are presented

in Table VIII.

Cloth Dryer Dishwasher Fridge Heat Pump

GAN 0.08 0.13 0.20 0.10

KDE 0.03 0.04 0.06 0.03

TABLE VIII: MMD comparison of usage habit synthesis.

It is clear that the distribution learned using KDE is as-

sociated with smaller MMD in comparison to the GAN for

all four loads under consideration. This is expected as KDE

is a non-parametric machine learning technique that works

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSG.2020.3007984

(c) 2020 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

well with lower-dimensional feature space. We observed that

with a smaller GAN implementation that consists of half the

number of nodes in the hidden layers as that of the GAN

listed in Table VII, the resulting MMD is very close to that

listed in Table VIII. The MMD obtained for dishwasher and

fridge is slightly smaller for the smaller GAN in comparison to

the larger GAN. For the other two loads, the MMD obtained

for smaller GAN is slightly larger than that obtained from

the larger GAN. As the KDE implementation results in much

smaller MMD in comparison to both GAN implementations,

this is more suitable for the synthesis of load usage habits.

Thus, we have designed the load usage habits module using

KDE and compared its performance with the GAN based

system. The data synthesized by the load pattern module

and the usage habits module can now be flexibly utilized

to produce labelled datasets for effectively training machine

learning algorithms for demand side applications.

VI. CONCLUSIONS

In this paper, we have proposed a novel data-driven frame-

work that flexibly synthesizes labelled appliance patterns and

usage habits datasets. This framework involves three dis-

tinction stages of development: pre-processing of raw circuit

meter measurements, design/training of the proposed synthesis

modules and evaluation of performance. We have made novel

contributions in each one of these stages in this paper. Our

approach does not require intrusive installation of sensor de-

vices such as circuit meters for each appliance. Consumers and

manufacturers are able to introduce datasets that customize the

data synthesis process and this can be easily accommodated by

the proposed framework. The resulting synthetic data samples

resemble realistic labelled datasets and facilitate the training of

complex machine learning algorithms that aid electric power

utilities and power consumers with using electricity in an

efficient and sustainable manner. As future work, we intend to

investigate how these synthetic labelled datasets can be utilized

to design intelligent algorithms for HEMS entities and demand

response programs.

REFERENCES

[1] X. Yu and Y. Xue, “Smart grids: A cyber–physical systems perspec-
tive.” Proceedings of the IEEE, vol. 104, no. 5, pp. 1058–1070, Mar.
2016.

[2] “Average data growth for utility with 1m clients.” EPRI, 2019.
[3] C. Klemenjak et al., “Datasets | NILM wiki,” Dec. 2017. [Online].

Available: http://wiki.nilm.eu/datasets.html
[4] O. Parson, G. Fisher, A. Hersey, N. Batra, J. Kelly, A. Singh,

W. Knottenbelt, and A. Rogers, “Dataport and nilmtk: A building
data set designed for non-intrusive load monitoring,” in 2015 IEEE

Global Conference on Signal and Information Processing (Global-

SIP), Orlando, FL, USA, 2015, pp. 210–214.
[5] S. Makonin, “AMPds2: The Almanac of Minutely

Power dataset (Version 2),” 2016. [Online]. Available:
https://doi.org/10.7910/DVN/FIE0S4

[6] ——, “RAE: The Rainforest Automation Energy Dataset,” 2017.
[Online]. Available: https://doi.org/10.7910/DVN/ZJW4LC

[7] J. M. G. López, E. Pouresmaeil, C. A. Cañizares, K. Bhattacharya,
A. Mosaddegh, and B. V. Solanki, “Smart residential load simulator
for energy management in smart grids,” IEEE Transactions on

Industrial Electronics, vol. 66, no. 2, pp. 1443–1452, Feb. 2019.
[8] R. Stamminger, G. Broil, C. Pakula, H. Jungbecker, M. Braun,

I. Rüdenauer, and C. Wendker, “Synergy potential of smart appli-
ances,” Report of the Smart-A project, pp. 1949–3053, Nov. 2008.

[9] A. Keyhani, W. Lu, and G. T. Heydt, “Composite neural network
load models for power system stability analysis,” in IEEE PES Power

Systems Conference and Exposition, 2004., Oct. 2004, pp. 1159–1163
vol.2.

[10] A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, and D. Zhao,
“Load modeling—a review,” IEEE Transactions on Smart Grid,
vol. 9, no. 6, pp. 5986–5999, Nov. 2018.

[11] G. Valverde, A. Saric, and V. Terzija, “Probabilistic load flow with
non-gaussian correlated random variables using gaussian mixture
models,” IET generation, transmission & distribution, vol. 6, no. 7,
pp. 701–709, Jul. 2012.

[12] W. Labeeuw and G. Deconinck, “Residential electrical load model
based on mixture model clustering and markov models,” IEEE

Transactions on Industrial Informatics, vol. 9, no. 3, pp. 1561–1569,
Jan. 2013.

[13] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative
classifiers: A comparison of logistic regression and naive bayes,” in
Advances in neural information processing systems, Apr. 2002, pp.
841–848.

[14] A. Al-Wakeel, J. Wu, and N. Jenkins, “K-means based load estimation
of domestic smart meter measurements,” Applied energy, vol. 194,
pp. 333–342, May 2017.

[15] K.-J. Park and S.-Y. Son, “A novel load image profile-based electricity
load clustering methodology,” IEEE Access, vol. 7, pp. 59 048–
59 058, May 2019.

[16] Y. Chen, Y. Wang, D. Kirschen, and B. Zhang, “Model-free renewable
scenario generation using generative adversarial networks,” IEEE

Transactions on Power Systems, vol. 33, no. 3, pp. 3265–3275, May
2018.

[17] C. Zhang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna,
“Generative adversarial network for synthetic time series data gen-
eration in smart grids,” in 2018 IEEE International Conference on

Communications, Control, and Computing Technologies for Smart

Grids (SmartGridComm), Oct. 2018, pp. 1–6.
[18] Y. Gu, Q. Chen, K. Liu, L. Xie, and C. Kang, “Gan-based model

for residential load generation considering typical consumption pat-
terns,” in 2019 IEEE Power Energy Society Innovative Smart Grid

Technologies Conference (ISGT), Feb. 2019, pp. 1–5.
[19] L. Zhang and B. Zhang, “Scenario forecasting of residential load pro-

files,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 1, pp. 84–95, Jan. 2020.

[20] M. N. Fekri, A. M. Ghosh, and K. Grolinger, “Generating Energy
Data for Machine Learning with Recurrent Generative Adversarial
Networks,” Energies, vol. 13, no. 1, p. 130, Jan. 2020.

[21] S. Makonin, F. Popowich, L. Bartram, B. Gill, and I. V. Bajić,
“Ampds: A public dataset for load disaggregation and eco-feedback
research,” in 2013 IEEE Electrical Power & Energy Conference,
Halifax, NS, Canada, Aug. , pp. 1–6.

[22] J. Gao, S. Giri, E. C. Kara, and M. Bergés, “Plaid: A public dataset
of high-resoultion electrical appliance measurements for load identi-
fication research: Demo abstract,” in Proceedings of the 1st ACM

Conference on Embedded Systems for Energy-Efficient Buildings,
New York, NY, USA, Nov. 2014, pp. 198–199.

[23] CFRL, “London hydro unveils trickl app,” Mar. 2018. [Online].
Available: https://www.cfrlradio.com/syn/202/71446/london-hydro-
unveils-trickl-app/

[24] D. Erdogmus, R. Agrawal, and J. C. Principe, “A mutual information
extension to the matched filter,” Signal Processing, vol. 85, no. 5, pp.
927–935, May 2005.

[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, Jun. 2014, pp.
2672–2680.

[26] Y. Qin, N. J. Mitra, and P. Wonka, “Do GAN loss functions really
matter?” CoRR, vol. abs/1811.09567, 2018. [Online]. Available:
http://arxiv.org/abs/1811.09567

[27] K. J. Liang, C. Li, G. Wang, and L. Carin, “Generative
adversarial network training is a continual learning problem,”
CoRR, vol. abs/1811.11083, 2018. [Online]. Available:
http://arxiv.org/abs/1811.11083

[28] M. Arjovsky and L. Bottou, “Towards principled methods for training
generative adversarial networks,” in 5th International Conference on

Learning Representations, ICLR 2017, Toulon, France, Conference

Track Proceedings, Apr. 2017.
[29] S. A. Barnett, “Convergence problems with generative adversarial

networks (gans),” CoRR, vol. abs/1806.11382, 2018. [Online].
Available: http://arxiv.org/abs/1806.11382

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSG.2020.3007984

(c) 2020 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

[30] M. Mirza and S. Osindero, “Conditional generative adversarial
nets,” CoRR, vol. abs/1411.1784, 2014. [Online]. Available:
http://arxiv.org/abs/1411.1784

[31] C. M. Bishop, Pattern recognition and machine learning, 5th ed.
Springer, 2007.

[32] F. U. Nuha and Afiahayati, “Training dataset reduction on generative
adversarial network,” in INNS Conference on Big Data and Deep

Learning 2018, Sanur, Bali, Indonesia, Apr. 2018, pp. 133–139.
[33] A. M. Oberman and J. Calder, “Lipschitz regularized deep neural

networks converge and generalize,” CoRR, vol. abs/1808.09540,
2018. [Online]. Available: http://arxiv.org/abs/1808.09540

[34] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville, “Improved training of wasserstein gans,” in Advances in

Neural Information Processing Systems 30: Annual Conference on

Neural Information Processing Systems 2017, Long Beach, CA, USA,
Dec. 2017, pp. 5767–5777.

[35] H. Liu, J. Lafferty, and L. Wasserman, “Sparse nonparametric density
estimation in high dimensions using the rodeo.” Journal of Machine

Learning Research - Proceedings Track, vol. 2, pp. 283–290, Jan.
2007.

[36] E. Alpaydin, Introduction to machine learning, 3rd ed. MIT press,
2014.

[37] S. Arlot and A. Celisse, “A survey of cross-validation procedures for
model selection,” Statistics Surveys, vol. 4, no. 0, pp. 40-79, Mar.
2010.

[38] L. Wasserman, “Density Estimation.” [Online]. Available:
https://www.stat.cmu.edu/∼larry/=sml/densityestimation.pdf.
[Accessed: 15-Apr-2020].

Samer El Kababji Samer El Kababji received his
B.Sc. Degree in Electrical Engineering and M.Sc.
degree in Industrial Engineering from the Univer-
sity of Jordan, Amman, Jordan in 1991 and 1995,
respectively. While leading companies in different
industries, he accumulated broad knowledge related
to smart devices and control of electrical systems.
Lately, he founded Smartegrators Ltd., London, ON,
a company specialized in offering IoT solutions
to the commercial sector. Mr. Kababji earned his
M.Eng. degree in Electrical and Computer Engineer-

ing from Western University, London, ON in 2018 and he is currently pursuing
his PhD degree in the same department. His research interest includes the
application of machine learning in Smart Grid. He is a recipient of Ontario
Graduate Scholarship for two consecutive years.

Pirathayini Srikantha is currently an Assistant
Professor in the Department of Electrical Engi-
neering and Computer Science at York University.
She received her B.A.Sc. degree in Systems Design
Engineering from the University of Waterloo in 2009
and her M.A.Sc. degree in Electrical and Computer
Engineering from the same institute in 2013. She
obtained her Ph.D. degree from The Edward S.
Rogers Sr. Department of Electrical and Computer
Engineering at the University of Toronto in 2017.
She is currently serving as an Associate Editor for

the IEEE Transactions on Smart Grid journal. She is a certified Professional
Engineer (P.Eng.) in Ontario. Her main research interests are in the areas
of large-scale optimization and distributed control for enabling adaptive,
sustainable and resilient power grid operations. Her work has been published
in premier smart grid journal and conference venues. Her research efforts
have received recognitions that include the best paper award (IEEE Smart
Grid Communications) and runner-up best poster award (ACM Women in
Computing).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSG.2020.3007984

(c) 2020 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

