
J Geod (2008) 82:457–471

DOI 10.1007/s00190-007-0196-3

ORIGINAL ARTICLE

A data-driven approach to local gravity field modelling

using spherical radial basis functions

R. Klees · R. Tenzer · I. Prutkin · T. Wittwer

Received: 18 April 2007 / Accepted: 1 November 2007 / Published online: 2 February 2008

© The Author(s) 2008

Abstract We propose a methodology for local gravity field

modelling from gravity data using spherical radial basis func-

tions. The methodology comprises two steps: in step 1, grav-

ity data (gravity anomalies and/or gravity disturbances) are

used to estimate the disturbing potential using least-squares

techniques. The latter is represented as a linear combination

of spherical radial basis functions (SRBFs). A data-adaptive

strategy is used to select the optimal number, location, and

depths of the SRBFs using generalized cross validation.

Variance component estimation is used to determine the opti-

mal regularization parameter and to properly weight the dif-

ferent data sets. In the second step, the gravimetric height

anomalies are combined with observed differences between

global positioning system (GPS) ellipsoidal heights and nor-

mal heights. The data combination is written as the solution of

a Cauchy boundary-value problem for the Laplace equation.

This allows removal of the non-uniqueness of the problem of

local gravity field modelling from terrestrial gravity data. At

the same time, existing systematic distortions in the gravi-

metric and geometric height anomalies are also absorbed into

the combination. The approach is used to compute a height

reference surface for the Netherlands. The solution is com-

pared with NLGEO2004, the official Dutch height reference

surface, which has been computed using the same data but a

Stokes-based approach with kernel modification and a geo-

metric six-parameter “corrector surface” to fit the gravimetric

solution to the GPS-levelling points. A direct comparison of

both height reference surfaces shows an RMS difference

of 0.6 cm; the maximum difference is 2.1 cm. A test at
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independent GPS-levelling control points, confirms that our

solution is in no way inferior to NLGEO2004.
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1 Introduction

Spherical radial basis functions (SRBFs) are being used

extensively in gravity field modelling. Examples are the

point-mass kernel (e.g. Heikkinen 1981; Barthelmes 1986,

1988; Vermeer 1982, 1983, 1984, 1995), the radial multipoles

(e.g. Marchenko 1998; Marchenko et al. 2001), the Black-

man functions of Blackman and Tukey (1958) (Schmidt et al.

2004, 2005a, 2007), and the Poisson wavelets of Holschnei-

der et al. (2003) (e.g. Chambodut et al. 2005; Panet et al.

2006; Klees and Wittwer 2007b), see also Holschneider and

Iglewska-Nowak (2007). Other examples include the Dirac

approach by Bjerhammar (1976), the scaling functions used

in Freeden et al. (1998), spherical spline functions (e.g. Free-

den and Reuter 1983; Freeden et al. 1997; Kusche et al.

1998), and the Kelvin-transformed reproducing kernels used

in least-squares collocation (LSC) (e.g. Lelgemann 1981;

Tscherning 1986; Lelgemann and Marchenko 2001).

To our opinion, the reason for the popularity of SRBFs

in gravity field modelling is due to the following properties:

(1) when located inside the masses, the harmonicity outside

the masses in guaranteed; (2) they lead to simple functional

models for all relevant gravity field functionals; (3) they are

suited for global and local gravity field modelling; (4) they

allow for local refinements of a spherical harmonic represen-

tation of the global field; and (5) they can be easily adapted

to the data distribution and the signal variation.
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458 R. Klees et al.

When using SRBFs in gravity field modelling, the user has

to make a number of choices: (1) the type of the SRBF; (2) the

axis or horizontal position of the SRBF; (3) the bandwidth

of the SRBF; and (4) the number of SRBFs. The quality of

the gravity field model and/or the numerical efficiency may

depend on these choices. For instance, too many selected

SRBFs may cause overfitting; a bandwidth, which is too

large for a given set SRBFs, causes instabilities as the signifi-

cant support of neighboured SRBFs overlap too much, which

leads to similar columns in the design matrix; a bandwidth,

which is too small for a given number of SRBFs may lead

to a nice fit of the data to the model, but the fit at a set of

independent control points may be worse.

Little is known about the influence of the type of SRBF on

the estimated gravity field. In a recent paper by Tenzer and

Klees (2007), the performance of different SRBFs in regional

gravity field modelling from gravity anomaly data was inves-

tigated. No significant differences were found provided that

the bandwidths of the SRBFs were chosen properly. Similar

experiences are reported by Wittwer (personal communica-

tion, 2007) for the processing of data from the Gravity Field

and Climate Experiment (GRACE) mission.

Among the approaches commonly used to fix the centres

of the SRBFs are hierarchical or non-hierarchical subdivision

schemes, e.g. based on a triangulation of an icosahedron

(e.g. Eicker et al. 2004), homogeneous point distributions,

derived from the theory of numerical integration of spher-

ical functions (e.g. Schmidt et al. 2004), or equal angular

grids (e.g. Klees and Wittwer 2007a). Alternatively, some

approaches identify the centres of the SRBFs with those of the

data points (e.g. Heikkinen 1981; Vermeer 1982, 1983, 1984)

or a subset of the data points (e.g. Marchenko et al. 2001).

More sophisticated approaches apply (non-linear) optimiza-

tion algorithms, to fix centres and bandwidths simultaneously

(e.g. Barthelmes 1986). Sometimes, data are first gridded

using some interpolation or approximation algorithm, and

the SRBFs are placed below the grid points. Then, fast (fre-

quency domain) methods are used to estimate the unknown

gravity field parameters (e.g. Bottoni and Barzaghi 1993;

Sanso and Tscherning 2003).

Many studies have been conducted to find the optimal

bandwidths of the SRBFs, which for the majority of SRBFs

used in gravity field modelling is equivalent with the choice

of the depths of the SRBFs below the Bjerhammar sphere.

Often, the bandwidth is selected by “trial-and-error” or based

on empirically found relations with the data spacing or the

gravity anomaly autocovariance function (e.g. Blaha et al.

1986; Hardy and Göpfert 1975; Heikkinen 1981; Sünkel

1981). More advanced strategies involve generalized

cross validation (GCV) techniques (e.g. Klees and Wittwer

2007a,b) or the adaptation of the shape of the SRBF to the

local signal covariance function (Marchenko et al. 2001).

Sometimes, SRBF grids with different spacing on

several layers at various depth are used (e.g. Reilly and

Herbrechtsmeier 1978; Heikkinen 1981; Vermeer 1982, 1983,

1984).

Some authors determine the centres and bandwidths of

SRBFs directly, based on information contained in the data.

For instance, Barthelmes (1986) designed a fairly stable algo-

rithm for the optimization of point masses with free positions,

which solves essentially a non-linear optimization problem

with four parameters per point mass (three parameters to

describe the position in 3D space and one parameter to fix

the magnitude of the point mass). Optimization of the 3D

positions of SRBFs may significantly reduce the number of

point masses needed to approximate the data, which is an

advantage for gravity field synthesis. Moreover, it prevents

instability of the estimation process. However, the computa-

tional complexity of the gravity field analysis is significant.

An alternative to the method of Barthelmes (1986) has

been developed by Marchenko (1998) (see also Marchenko

et al. 2001; Marchenko 2003). He uses higher-order radial

multipoles and locates them below the data points. An opti-

mization algorithm (called sequential multipole algorithm

SMA) reduces the number of radial multipoles by exploiting

the (residual) signal at the data points (i.e. a multipole is not

necessarily assigned to each data point) and, at the same time,

selects the order of the radial multipole and the depth below

the data point. The latter two parameters are fixed using the

gravity anomaly covariance function in the neighbourhood

of the data point. Depth and shape of the radial multipoles

may differ from point to point. In that way, the number of

radial multipoles can be reduced significantly. At the same

time, the condition number of the normal equations improves.

Marchenko et al. (2001) report comparable accuracies as pro-

vided by LSC, but with a number of basis functions that is

about 70% less than the number of data points.

Klees and Wittwer (2007a) developed a data-adaptive

strategy to select the centres and bandwidths of the SRBFs,

which has been designed for heterogeneous data distributions

(i.e. data sets with local concentration and gaps). Centres

and bandwidths are selected as function of the data distrib-

ution and the signal variation using GCV techniques. This

approach allows for a significant reduction of the number of

SRBFs for areas with small spatial signal variations.

The subject of this paper is the development and applica-

tion of a data-adaptive strategy for local gravity field mod-

elling using a SRBF representation of the residual disturbing

potential. The approach differs from what has been proposed

so far in literature with respect to a number of aspects:

1. the number and axes of the SRBFs are selected auto-

matically from the data using a two-step procedure to

improve the numerical efficiency;
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2. the bandwidths of the SRBFs are selected from the data

using GCV;

3. weight factors of individual observation groups and the

regularization parameter are determined using VCE tech-

niques;

4. various terrestrial data types such as gravity anomalies,

gravity disturbances, and height anomalies can be dealt

with;

5. the combination of gravimetric data with GPS-levelling

data is done according to the method of Prutkin and Klees

(2007);

6. a penalized least-squares (LS) techniques is applied to

estimate the gravity field parameters;

7. the algorithms are designed to allow processing of large

data sets.

The integration of these elements into one approach pro-

vides a numerically very efficient and accurate description

of the local gravity field and paves the way for an integrated

approach to regional gravity field modelling from a combi-

nation of terrestrial data with airborne gravimetry data and

satellite gravity data.

The paper is organized as follows: in Sect. 2, SRBFs are

defined. In Sect. 3, the mathematical model and the estima-

tion principle are specified. We prefer a penalized LS prin-

ciple to estimate the unknown gravity field parameters. A

sketch of the overall data processing strategy is given in

Sect. 4. In Sect. 5, we describe a two-step procedure to

select the centres of the SRBFs in a numerically efficient

way, comprising a coarse grid step and a local refinement

step. Section 6 is devoted to the selection of the optimal

bandwidth using generalized cross validation (GCV) tech-

niques. In Sect. 7, we address the problem of optimal data

weighting of individual observation groups and the optimal

choice of the regularization parameter. For both tasks, we

propose to use variance component estimation (VCE) tech-

niques. In Sect. 8, the combination of gravity data with GPS-

levelling data is addressed. We apply the methodology of

Prutkin and Klees (2007). In Sect. 9, the developed method

is applied to real data in the Netherlands. The results are

compared with the official Dutch height reference surface

NLGEO2004 (Crombaghs and de Bruijne 2004), which has

been computed using a Stokes’s approach with kernel modifi-

cation and a bi-quadratic “corrector surface” to model differ-

ences between geometric and gravimetric height anomalies.

Finally, in Sect. 10, we provide a summary of the research

and draw conclusions.

2 Spherical radial basis functions

We denote by σR the surface of the sphere of radius R,

which is located completely inside the topographic masses

(Bjerhammar sphere), σR = {(x1, x2, x3) : x2
1 + x2

2 + x2
3 =

R2}. We denote by Int σR the interior and by Ext σR the

exterior. We consider two points x, y ∈ R
3, y �= 0, with

x = (x1, x2, x3)
T and y = (y1, y2, y3)

T. We define the exte-

rior SRBF at pole position y evaluated at x through

�(x, y) =

∞
∑

l=0

ψl(y)
2l + 1

4π R2

(

R

|x |

)l+1

Pl(x̂T ŷ),

x ∈ Ext σR, y ∈ Int σR, (1)

where Pl is the Legendre polynomial of degree l and x̂ = x
|x |

and ŷ =
y

|y| are unit vectors in the direction x and y, respec-

tively. The exterior SRBF is a harmonic function in Ext σR . It

is a zonal function, that is, it is rotational symmetric around

the axis ŷ. The point y is called the centre (sometimes also the

pole or the nodal point) of the SRBF. Different choices of {ψl}

generate different types of SRBFs. Table 1 shows the Legen-

dre coefficients for a number of SRBFs used in gravity field

modelling and, if available, the analytical representation.

3 Mathematical model and estimation principle

We consider a residual gravity field, which is obtained after

the contributions of a global gravity field model complete to

degree L and of the topography computed from a digital ter-

rain model and a mean value of the crustal density or a digital

density model have been subtracted. The residual disturbing

potential, T , is expressed as a linear combination of N basis

functions {�n(x) : n = 1, . . . , N },

T (x) =

N
∑

n=1

βn �n(x), (2)

where the real numbers βn are the coefficients to be deter-

mined from data, and

�n(x) = �(x, yn), (3)

with �(x, y) from Eq. (1). We work in the framework of

the Runge–Krarup theorem (Krarup 1969). That is, T is con-

sidered as a member of the function space of regular har-

monic functions outside the Bjerhammar sphere with radius

R located inside the topographic masses, and it is taken as

an approximation of the true residual disturbing potential at

points on and outside the Earth’s surface. The summation in

Eq. (1) may start with an index lmin > 0. Often, lmin = L +1

is chosen, as one assumes that the residual disturbing poten-

tial does not contain enough signal below degree L + 1 or

that the disturbing potential is represented by a series expan-

sion into spherical harmonics up to degree L and a finite

number of SRBFs (e.g. Schmidt et al. 2005b). From numer-

ous numerical experiments with terrestrial gravity data, we
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Table 1 Legendre coefficients and analytical expressions for several SRBFs often used in gravity field modelling

Point mass kernel ψl = 4π R
2l+1

λl , λ =
|y|
R

�(x, y) = 1
|x−y|

Radial multipole of order m ψl =

{

(

l
m

)

λl−m

2l+1
l ≥ m

0 l < m
, λ =

|y|
R

�(x, y) = 1
m!

(

∂
∂|y|

)m
1

|x−y|

Poisson wavelet of order m ψl = lmλl , λ =
|y|
R

�(x, y) = 1
4π R2 (2 χm+1 + χm),

χm =
(

|y| ∂
∂|y|

)m
1

|x−y|

Dirac approach of Bjerhammar ψl =

{

4π R3

l−1
l ≥ 2

0 l = 0, 1

Poisson kernel ψl = λl �(x, y) = 1
4π R

|x |2−|y|2

|x−y|3

found that lmin = 0 works fine even if the latest Gravity

Field and Climate Experiment (GRACE)-based global grav-

ity field model has been subtracted. The reason is that in local

gravity field modelling, the depth of the SRBFs is shallow

(a few kilometres) so that the sum of the contribution of the

low-degree Legendre coefficients cancel, i.e. they have no

significant influence on the shape of the SRBF.

The objective of local gravity field modelling is to deter-

mine the coefficients {βn : n = 1, . . . , N } from functionals

{L i T : i = 1, . . . , I } of the residual disturbing potential T ,

which have been measured at the Earth’s surface. Examples

of linear functionals used in local gravity field modelling

are (residual) gravity anomalies 	g, (residual) gravity dis-

turbances δg, and (residual) height anomalies ζ . The latter

are usually computed as differences between global posi-

tioning system (GPS) ellipsoidal heights and normal heights.

We assume that, after linearization and spherical approxima-

tion, these functionals are related to the (residual) disturbing

potential as

	g(x) = −
2

|x |
T (x) −

∂T (x)

∂|x |
, (4)

δg(x) = −
∂T (x)

∂|x |
, (5)

ζ(x) =
T (x)

γ (x ′)
, (6)

where γ is normal gravity and x ′ is the point on the telluroid

associated with the surface point x by a telluroid mapping.

Depending on the data quality, the quantities on the left-

hand side of Eqs. (4), (5), and (6) may be corrected for e.g.

linearization and spherical approximation errors (e.g. Heck

and Seitz 1993, 2003).

Assuming that I linear functionals li = L i T have been

observed, we obtain the system of observation equations

li − εi =

N
∑

n=1

βn L i�(x, yn), I ≥ N . (7)

For the (residual) gravity anomaly, the (residual) gravity dis-

turbance, and the (residual) height-anomaly, at the point ξi ,

we have

L i T = 	g(ξi ) =

N
∑

n=1

βn D	g�(ξi , yn), (8)

L i T = δg(ξi ) =

N
∑

n=1

βn Dδg�(ξi , yn), (9)

L i T = ζ(ξi ) =

N
∑

n=1

βn Dζ �(ξi , yn), (10)

where D	g , Dδg and Dζ is the gravity anomaly operator, the

gravity disturbance operator, and the height-anomaly opera-

tor, respectively. In vector–matrix notation, Eq. (7) is rewrit-

ten as

l − e = A x, (11)

where A is the I × N design matrix with elements

Ai,n = L i�(x, yn), i = 1, . . . , I, n = 1, . . . , N ,

x is the N × 1 vector of unknown parameters with elements

xn = βn, n = 1, . . . , N ,

and e is the I ×1 vector of stochastic observation errors with

expectation E(e) = 0 and dispersion D(e) = C.

We assume that the observation vector l consists of P

disjunct groups lp. The corresponding vectors of stochastic

observation errors ep may be uncorrelated, but elements of a

particular vector ep may be correlated. Then,

C =

⎛

⎜

⎜

⎜

⎝

C1 0 0 . . . 0

0 C2 0 . . . 0
...

...
... . . .

...

0 0 0 . . . Cp

⎞

⎟

⎟

⎟

⎠

. (12)

For instance, all gravity anomalies may form one observation

group, all gravity disturbances may form another one, etc.

One may also split the gravity anomaly data set into several

observation groups, e.g. if one expects that the quality differs
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significantly. Then, Eq. (11) is written as
⎛

⎜

⎝

l1
...

lp

⎞

⎟

⎠
−

⎛

⎜

⎝

e1

...

ep

⎞

⎟

⎠
=

⎛

⎜

⎝

A1

...

Ap

⎞

⎟

⎠
x, (13)

where Ap is the design matrix of observation group p. The

chosen estimation principle is a penalized LS principle: for

some given α (the regularization parameter), we minimize

the quadratic functional

�(x) = ‖e‖2
C−1 + α J (T ), (14)

where

‖e‖2
C−1 =

P
∑

p=1

‖ep‖
2

C−1
p

, (15)

and

J (T ) = ‖x‖2
R. (16)

R is a positive definite (regularization) matrix. For a given

regularization parameter α and given variance factors {σ 2
p :

p = 1, . . . , P}, the minimum of the quadratic functional

�(x) is attained for

x̂ = N−1 h, (17)

with

N =

P
∑

p=1

Np + α R, Np = AT
p C−1

p Ap, (18)

and

h =

P
∑

p=1

hp, hp = AT
p C−1

p lp. (19)

How to determine α will be discussed in Sect. 7. Often, R =

IN , where IN is the N × N unit matrix.

4 Sketch of the data processing strategy

The data processing strategy consists of four steps; the first

three steps are devoted exclusively to the processing of grav-

ity data; the fourth step performs the combination of gravi-

metric height-anomalies (which is the result of steps 1–3)

with GPS-levelling data.

Step 1. A spherical grid is defined and the grid points are

used as the centres of the so-called coarse-grid SRBFs. A

penalized LS solution (the so-called coarse-grid solution)

is computed, and GCV is used to fix the bandwidth of the

coarse-grid SRBFs, which is the same for all coarse-grid

SRBFs.

Step 2. The LS residuals of step 1 are used to sequentially

add additional SRBFs, which are located below data points.

Whether a SRBF is located below a data point depends on

several criteria (Sect. 5). The optimal depth of each individ-

ual local-refinement SRBF is determined from the data in a

neighbourhood of the candidate SRBF using GCV. The result

of step 2 is a list of local refinement SRBFs with fixed centres

and bandwidths.

Step 3. The coarse-grid SRBFs and the local-refinement

SRBFs represent the complete parameterization of the dis-

turbing potential. The coefficients of the SRBFs are deter-

mined by penalized LS using all gravity data. The centres and

the bandwidths of the SRBFs are fixed to their values found

in step 1 and step 2, respectively. The regularization parame-

ter and the variance factors of individual observation groups

are estimated using VCE (Sect. 7). Depending on a statistical

analysis and a geographical plot of the LS residuals of step

3, a new local refinement iteration can be performed to add

additional SRBFs to the system. Then, the residuals of step

3 serve as input data. The solution obtained after finishing

step 3 is the gravity field solution based on residual gravity

anomaly and/or residual gravity disturbance data. We call this

solution the gravimetric quasi-geoid and the corresponding

height-anomalies, the gravimetric height-anomalies.

Step 4. From the estimated coefficients of step 3,

gravimetric height-anomalies at the GPS-levelling points are

predicted, and the differences between geometric height-

anomalies (differences between GPS-ellipsoidal heights and

normal heights) and gravimetric height-anomalies are

formed; they are called height-anomaly differences. The

height-anomaly differences are used to compute a function

T̃ , which is harmonic in the vicinity of the target area and

has almost zero gravity anomaly signal over the target area

(Prutkin and Klees 2007) (Sect. 8). From T̃ , we can compute

height-anomaly innovations ζ̃ at any point inside the target

area. The final height-anomaly is obtained as the sum of the

gravimetric height-anomaly (i.e. the result after step 3) and

the height-anomaly innovations.

5 Choice of SRBF centres

The coarse grid SRBFs represent a first-order parameteriza-

tion of the disturbing potential. The spherical grid can be any

homogeneous point distribution on the sphere, e.g. an equal-

angular grid or a grid generated by a subdivision scheme

based on a cube, an icosahedron, etc. The mesh size of the

grid, which has to be chosen by the user, must not be smaller

than the mean distance between the data points. Otherwise,

one takes the risk that too many SRBFs are used. Empir-

ically, we found that the mesh size can be chosen at least

50% larger than the mean distance between the data points.

Whether this is an appropriate choice, can be checked easily.

For instance, if no local-refinement SRBFs are selected, it

is an indication that the mesh size of the coarse grid is too
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fine. Then, one can select a coarser mesh size and repeat the

local-refinement procedure. Vice versa, too many selected

local-refinement SRBFs are an indication that the coarse-

grid mesh size was chosen too coarse. Notice that a potential

under-parameterization is automatically corrected for in step

2. Regularization [α �= 0 in Eq. (14)] is only applied if insta-

bilities are observed. The goal of the first step is to obtain

a coarse parameterization of the disturbing potential, which

is further refined in step 2. The main benefit of step 1 is an

improved numerical efficiency compared with a selection of

the complete parameterization solely using step 2.

The coarse-grid parameterization of the disturbing poten-

tial is refined by adding local-refinement SRBFs. A local-

refinement SRBF differs from a coarse-grid SRBF in two

respects: (1) it is always located below a data point, and (2)

each local refinement SRBF has its own bandwidth. Whether

or not a SRBF is located below a data point depends on the

following criteria:

1. The magnitude of the residual at the candidate SRBF

must be larger than some threshold τ1.

2. There must be at least q data points in the neighbour-

hood of the candidate SRBF, with sufficiently large resid-

uals. Sufficiently large means that the average absolute

residual taken over the q data points is larger than some

threshold τ2. The neighbourhood of a candidate SRBF

is defined as a spherical cap σc centered at the candidate

SRBF; the spherical radius of the cap is ψc.

3. The spherical distance between the candidate SRBF and

any already selected SRBF (coarse grid or local refine-

ment SRBF) must be larger than some minimum spher-

ical distance ψmin.

The parameters τ1, τ2, q, ψc, and ψmin are input parame-

ters to be chosen by the user.

These three criteria aim at avoiding over-parameterization

by adding too many SRBFs. For instance, criterion 2 should

avoid that a SRBF is placed below an isolated, large residual,

which is likely to be an artefact (e.g. a blunder) and not a

gravity field signal. Criterion 3 should avoid that there is a

local concentration of SRBFs, which do not model signal

but neutralize themselves. Of course, placing a SRBF makes

sense only if the magnitude of the residual is sufficiently

large. This is guaranteed by criterion 1 and 2. If more than

one local refinement is performed, the parameters τ1, τ2, q,

ψc, and ψmin could be changed from one iteration to the next

one.

The local refinement procedure is a four-step procedure

(with “observations” in the local refinement procedure, we

mean the residuals of the coarse-grid LS adjustment or the

residuals of the previous local-refinement iteration):

Step 1. The largest “observation” is looked for. Then, it is

checked whether criteria 1, 2, and 3 are fulfilled. If not, this

point is removed from the list of candidate SRBFs and the

second largest “observation” is selected.

Step 2. If the check has passed successfully, a local LS

adjustment is performed: only the “observations” within the

spherical cap σc are used. The weight matrix is the unity

matrix. The coefficient of the SRBF is the only unknown

parameter; regularization is not needed. The optimal depth

of the SRBF is determined using GCV.

Step 3. The residuals of the local LS adjustment are com-

puted. They are taken as “observations” for the choice of

the next candidate SRBF. Data outside the spherical cap σc

are not corrected for the contribution of the SRBF, i.e. they

are left unchanged. This is justified because data outside the

neighbourhood are almost unaffected by the selected SRBF.

To ensure this, the minimum spherical distance ψmin should

be a factor two to three larger than the correlation length of the

selected local-refinement SRBF. This is a consistency check

to be done by the user. On the other hand, deviations from

this rule are not critical for the success of the local-refinement

procedure.

Step 4. The corresponding data point is removed from the

list of candidate SRBF locations and the procedure contin-

ues with the largest “observations” among the points left in

the list of candidate SRBF locations. The local refinement

procedure stops if the list of candidate SRBFs is empty.

6 Choice of the SRBF bandwidths

The most critical factor in optimal SRBF network design

seems to be the proper choice of the bandwidth of the SRBFs.

We use GCV (Golub et al. 1979) to select the optimal band-

widths of the SRBFs. Suppose the bandwidth of a SRBF is

fixed by a single parameter p. For instance, the parameter p

is the depth of a SRBF below the Bjerhammar sphere for the

Poisson kernel and the point mass kernel.

The principle of cross-validation is based on the leave-out-

one idea. Doing the LS adjustment without observation lk ,

the corresponding leave-out-one solution vector x̂(k), which

of course depends on the bandwidth of the SRBFs, i.e. x̂(k) =

x̂(k)(p), can be used to predict the missing observation. It is

natural to expect that a good choice of the bandwidth para-

meter p results in a small difference (misfit) between the pre-

dicted value and the observed value. Doing this step-by-step

for all observations, a good choice of the bandwidth should

lead to a small misfit in average over all possible lk . This

so-called ordinary cross-validation parameter λcv is obtained

as

λcv = arg min

{

1

I

I
∑

i=1

wi (l̂i (p) − li )
2

}

, (20)
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in which the weights are given as

wi =
1

(1 − Qi i,p)2
. (21)

l̂i (p) is the adjusted i th observation, Qp is the so-called influ-

ence matrix defined by A x̂ = Qp l, Qi i,p is the i th diagonal

element of Qp , and I =
∑J

j=1 I j is the total number of obser-

vations. The generalized cross validation parameter pgcv is

obtained when the weights wi are replaced by their average

value 1
I

trace (I − Qp):

pgcv = arg min

{

1

I

I
∑

i=1

(l̂i (p) − li )
2

(

1
I
trace(I − Qp)

)2

}

= arg min

{

I
∑

i=1

I (l̂i (p) − li )
2

(trace(I − Qp))2

}

. (22)

For a non-unity noise variance–covariance matrix C =

σ 2 W−1, the GCV estimate of p reads

pgcv = arg min

{

I‖Ax̂(p) − l‖2
W

(trace(I − Qp))2

}

. (23)

7 Regularization and observation group weighting

We assume that every positive definite covariance matrix

Cp = σ 2
p W−1

p is only given up to an unknown variance

factor σ 2
p . The P variance factors are estimated using VCE.

This technique is also used to find the optimal regularization

parameter. To do this, we rewrite Eq. (14) as

�(x) =

P
∑

p=1

‖ep‖
2

C−1
p

+ ‖eP+1‖
2

C−1
P+1

,

with the (P + 1)th “observation group”

eP+1 = IN x, D(eP+1) = CP+1 =
1

α
R−1. (24)

Then, Eq. (17) is the classical (unconstrained) LS solution

for P + 1 observation groups with the (P + 1)th observation

vector lP+1 = 0. Therefore, the determination of the reg-

ularization parameter is interpreted as the determination of

the variance factor of an additional observation group. This

observation group can be interpreted as directly observed

unknown parameters with observation vector 0 and noise

variance–covariance matrix 1
α

R−1. The relation between the

regularization parameter and the variance factor σ 2
P+1 is α =

1

σ 2
P+1

.

We implemented the almost unbiased estimator (AUE) of

the variance factors (e.g. Förstner 1979),

σ̂ 2
p =

êT
pWp êp

rp

, p = 1, . . . , P + 1, (25)

where êp is the vector of residuals of observation group p.

The quantity

rp = Ip − trace(N−1 Np) (26)

is the group redundancy number. It is the difference of the

number of observations of this group, Ip, with the trace of

the observation group influence matrix N−1 Np. This trace

is a measure of the influence of the observations of group

p on the LS solution x̂. When this trace equals the number

of unknowns, the LS estimate of the unknowns, x̂, is solely

determined by this observation group. If the trace equals zero,

the observation group does not contribute at all to the determi-

nation of the unknowns, i.e. it could be also excluded from the

LS adjustment without changing the solution x̂. For instance,

rP+1 = IP+1 = N . The sum of all group redundancy num-

bers equals the total redundancy, i.e. the difference between

the number of observations and the number of unknown para-

meters.

The estimation of the variance factors is done iteratively,

starting with some a priori values
{

σ̂ 2
p,0 : p = 1, . . . , P

}

.

The LS solution x̂ is computed according to Eq. (17) using

these a priori variance factors. The residuals of the LS adjust-

ment are computed and improved values of the variance fac-

tors are obtained according to Eq. (25). In the next iteration,

they are used to define new noise variance-covariance matri-

ces Cp, to set up the normal equations, etc. The procedure is

repeated until convergence is achieved. We use

max
p=1,...,P+1

∣

∣

∣
σ̂ 2

p,i − σ̂ 2
p,i−1

∣

∣

∣

σ̂ 2
p,i

≤ τ, (27)

as a criterion for convergence, where τ is a threshold (e.g.

τ = 0.01), and σ̂ 2
p,i is the variance factor of observation

group p after iteration i . Notice that in the case of conver-

gence, the AUE is equal to the ML estimator. To accelerate

the computation of the group redundancy numbers, we imple-

mented the Monte Carlo VCE technique of Koch and Kusche

(2002), see also Kusche (2003).

8 Combination of gravimetric and GPS-levelling data

Height anomalies, derived from GPS-ellipsoidal heights and

normal heights, have become a standard data type for local

gravity field modelling. We call them geometric height

anomalies to distinguish them from the gravimetric height

anomalies, which are determined from terrestrial gravity

anomalies and/or gravity disturbances. In practice, one often

observes systematic differences between gravimetric and

geometric height anomalies. These differences are often

attributed to systematic errors in the data, e.g. systematic

deformations of the national height system, different tide
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systems, multipath effects in GPS ellipsoidal heights, and

long-wavelength errors in the gravimetric height anomalies.

In practice, one can parameterize these systematic differ-

ences between gravimetric and geometric height anomalies

using a low-degree algebraic or trigonometric polynomial in

latitude and longitude (or any other parameterization). Then,

the parameters are estimated from the differences between

both types of height anomalies using a standard LS tech-

nique. The parametric model may be extended by a stochas-

tic signal term with given auto-covariance structure, which

leads to a LSC problem with parameters. The final height

reference surface is then obtained by adding the parametric

surface (and the random signal part) to the gravimetrically

determined quasi-geoid. This height reference surface does

not need to represent the quasi-geoid anymore, but a surface

that can best be used to transform GPS-ellipsoidal heights

into normal heights.

There is, however, another contributor to the systematic

differences between gravimetric and geometric height anom-

alies. It is caused by a non-trivial kernel of the operator that

maps height anomalies within a local area (or, equivalently,

disturbing potentials) into gravity anomalies and gravity dis-

turbances, respectively (Prutkin and Klees 2007). In the fol-

lowing, we will discuss this problem in more detail, thereby

restricting ourselves to the non-trivial kernel of gravity anom-

alies; the extension to gravity disturbances is straightforward.

The mathematical foundation of gravity field determina-

tion from gravity anomalies and geopotential numbers is the

scalar Molodensky boundary-value problem (BVP). If global

data are available, this problem has a non-trivial null space,

which means that not all parameters of the Earth’s gravity

field can be uniquely determined from the given data. How-

ever, the non-uniqueness is only related to the terms of degree

one of the spherical harmonic expansion of the gravity field.

Taken over a local area, this non-uniqueness appears as a

bias and tilt in the computed quasi-geoid, which can easily

be parameterized using a low-degree polynomial. The situ-

ation changes if data are only available over a limited area

of the Earth’s surface, which is typical for local gravity field

modelling. Then, the null space is much larger, comprising

all non-zero harmonic functions that produce zero gravity

anomalies over the local area. Geometric height anomalies

do not suffer from any such non-uniqueness. Therefore, dif-

ferences between geometric and gravimetric height anom-

alies also contain the part of the gravity field that cannot be

modelled from terrestrial gravity data. In this context, it is

the role of geometric height anomalies to determine the part

of the disturbing potential (or the quasi-geoid) that cannot be

determined from terrestrial gravity anomalies.

Nowadays, the contribution of functions that belong to

the kernel of the gravity anomaly operator to the height

anomalies may be significantly larger than the contribution

from systematic errors in geometric and gravimetric height

anomalies, respectively. Therefore, the following approach to

combine geometric height anomalies with gravimetric height

anomalies is pursued:

The differences between geometric and gravimetric height

anomalies at the GPS-levelling points are used as input data

to construct a non-trivial harmonic function T̃ that is (1)

harmonic in the vicinity of the target area and (2) produces

an almost zero gravity anomaly signal over the target area.

Once this function has been determined, its contribution to

the height anomalies is added to the gravimetric height anom-

alies, to give the final solution of the gravity field in terms

of height anomalies. The remaining differences at the GPS-

levelling points should almost reflect the influence of noise.

Note that this approach not only models the contribution of

the non-trivial kernel to the height anomalies, but also most

systematic errors that may be present in the gravity data, GPS

data, and levelling data. For more details, we refer to Prutkin

and Klees (2007).

It is important to note that the algorithm of Prutkin and

Klees (2007) needs information about the expected mean

noise standard deviation of the differences between geomet-

ric and gravimetric height anomalies (“mean” means aver-

aged over the target area). In practice, the standard devia-

tion may vary over the target area, but this is not taken into

account here. A possibility to account for a spatially vary-

ing standard deviation would be to split up the target area

into smaller sub-areas and to apply the methodology to each

sub-area individually.

If the noise standard deviation is chosen too small, the

solution T̃ is too rough, i.e. it does not only model signal

(essentially the contribution of functions that belong to the

kernel of D	g and some other systematic errors present in

the data), but will also model part of the noise. If the noise

standard deviation is chosen too large, the solution is too

smooth and some signal will remain unmodelled.

9 A new height reference surface for the Netherlands

We applied our data processing strategy to compute a height

reference surface for the Netherlands. All data sets are

described in detail in de Min (1996) and Crombaghs and

de Bruijne (2004). The main data consist of terrestrial and

ship-borne point-wise free-air gravity anomalies. According

to available a priori information about the standard devia-

tion provided by Adviesdienst Geoinformatie en ICT van

Rijkswaterstaat (RWS-AGI), three observation groups are

formed: a group “NL” (σ = 0.3 mGal), which contains the

gravity data on land, and two groups, “NL-IJsselmeer 1”

(σ = 0.6 mGal) and “NL-IJsselmeer 2” ( σ = 1.1 mGal),

which comprise ship-borne gravity anomalies collected over

the Ijsselmeer by different parties. This main data set is com-

plemented by 14155 point-wise free-air gravity anomalies
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over Belgium, and gridded mean free-air gravity anomalies

on the North-Sea (2757), Germany (2933), and France (160).

They are mainly used to reduce edge effects along the border

of the Netherlands.

Geometric height anomalies have been provided by RWS-

AGI at 82 points covering the Netherlands (cf. Fig. 1). Grav-

ity anomalies and geometric height anomalies have been

reduced for the contribution of the EIGEN-CG03C model

(Förste et al. 2005). A digital terrain model has not been

used, which will slightly reduce the accuracy in the South-

ern part of the country, where hills rise up to 300 m alti-

tude. A correction for ellipsoidal effects has been applied to

the gravity anomalies (cf. de Min 1996). The residual grav-

ity anomalies, obtained from the free-air gravity anomalies

after the contribution of the EIGEN-CG03C model and the

ellipsoidal effects are removed, are shown in Fig. 2. They

form the input data for the SRBF analysis. The use of free-

air gravity anomalies is justified because the differences with

the respect to the surface gravity anomalies are below 5-µGal

for the Netherlands.

The Poisson kernel is used as SRBF. The mesh size of the

coarse-grid SRBF network is chosen equal to 0.06◦; the grid

covers an area of 50◦–54◦ latitude and 3◦–8◦ longitude. The

grid contains 5,628 coarse grid SRBFs, which is about 20% of

all data points. The optimal depths of the coarse grid SRBFs

have been found with GCV using a search interval between 2

and 40 km with a step size of 1 km. Figure 3 shows the GCV

functional as function of the depth. It attains the minimum at
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Fig. 1 Location of the 82 AGI-RWS GPS-levelling points used to com-

pute the Dutch height-reference surface

a depth of 13.5 km, although it is quite flat between 11 and

14 km depth. Test computation have shown that the gravity

field solution does not change much for this range of depths.

The correlation length of D	g �, where � is the Poisson

kernel at 13.5 km depth, is about 7 km.

The optimal depth obtained with GCV was verified by

searching for the minimum RMS at 253 independent con-

trol points with observed residual gravity anomalies homoge-

neously distributed over the Netherlands. The search interval

was left unchanged. This yielded the same depth of 13.5 km.

For the selection of the local refinement SRBFs, a threshold

value for the residual of the coarse grid SRBF solution of

τ1 = 2.0 mGal is used. To avoid local over-fitting, the mini-

mum spherical distance between two SRBFs is set equal to

ψmin = 0.01◦. To avoid the modelling of large isolated resid-

uals, a threshold of τ2 = 2.0 mGal for the average residual

of the coarse grid SRBF solution in the neighbourhood of

the candidate SRBF is used. The minimum number of obser-

vations within a neighbourhood of the candidate SRBF is

set equal to q = 30. GCV is used to determine the optimal

depth of each local refinement SRBF, with a search interval

between 0.1 and 13.5 km and a step size of 0.2 km. Based on

this choice for the local refinement step, 52 local refinement

SRBFs have been selected within the Netherlands. They are

located in the Southern part of the Netherlands close to the

border to Belgium; some of them are located in the IJsselmeer

region.

Figure 4 shows the residuals of the LS adjustment with

5,628 coarse grid SRBFs and 52 local refinement SRBFs.

The RMS of the residuals is 0.6 mGal for the NL data set,

0.48 mGal for the NL-IJsselmeer 1 data set and 1.93 mGal

for the NL-IJsselmeer 2 data set. The RMS of the residuals

indicates a good LS approximation of the gravity anomalies

on land. An exception is the area of Limburg in the South-

ern part of the Netherlands. Here, we observe larger positive

and negative residuals of up to 5.0 mGal. They are partly cor-

related with topography (see earlier on omission of terrain

corrections) and partly caused by the lack of gravity data

in Belgium close to the area of Limburg. Moreover, larger

systematic residuals are noticeable in the ship-borne gravity

anomalies of the NL-IJsselmeer 2 data set. The residuals of

this data set are significantly larger than the residuals of the

NL-IJsselmeer 1 data set. This is due to the lower quality of

the ship-borne gravity data NL-IJsselmeer 2 compared with

NL-IJsselmeer 1.

VCE has been used to estimate the standard deviation

for each data set: 0.60 mGal for the NL data set, 0.36 mGal

for the NL-IJsselmeer data set 1, and 1.48 mGal for the

NL-IJsselmeer data set 2. The VCE estimates differ signif-

icantly from the a priori values 0.3 mGal (NL), 0.6 mGal

(NL-IJsselmeer 1), and 1.1 mGal (NL-IJsselmeer 2). The

VCE-values have been used as a priori values in the final

LS adjustment. Then, the RMS difference between predicted

123



466 R. Klees et al.

51

52

53

54

L
a
ti
tu

d
e

3 4 5 6 7 8
Longitude

51

52

53

54

L
a
ti
tu

d
e

3 4 5 6 7 8
Longitude

-2
0

-2
0

-20

-10-1
0

-1
0

-10

-1
0

-10

-10
-10

0

0 0

0

0

00

0

0

0

00

0

10 10

1
0

10

10

10

10

10
20

2
0

20
30

30

40

40

50

50

-30 -15 0 15 30 45 60 75

mGal

Fig. 2 Residual gravity anomalies used to compute the Dutch height-reference surface. For the Netherlands, the residual gravity anomalies range

from −28.7 to 15.0 mGal; the mean value is −5.9 mGal, and the standard deviation is 7.4 mGal

and observed gravity anomalies at the control points are

0.6 mGal (NL), 0.46 mGal (NL-IJsselmeer 1) and 2.14 mGal

(NL-IJsselmeer 2). Hence, the estimated gravity field seems

to be well balanced in terms of fit to the data and smoothness.

Gravimetric height anomalies are predicted at the 82 RWS-

AGI GPS-levelling points. Figure 5 shows the differences

between the geometric height anomalies and the gravimetric

height anomalies. They range between 0.310 and 0.583 m.

According to Crombaghs and de Bruijne (2004), the qual-

ity of the geometric height anomalies at the 82 RWS-AGI

GPS-levelling points is about 0.010–0.015 m. Therefore, we

used a noise level of 0.01 m to compute the height-anomaly

innovations. The latter are shown in the right panel of Fig. 5;

the RMS fit to the observed height-anomaly differences is

0.7 cm.

The sum of the SRBF model and the innovation func-

tion represents the new height reference surface, which we

call “NLGEO2007”. This model is compared with the offi-

cial Dutch height reference surface, the NLGEO2004 (Crom-

baghs and de Bruijne 2004). NLGEO2004 is computed using

the Stokes formula with a Meissl–Wong–Gore kernel modi-

fication (Heck and Grüninger 1988), an integration radius of

 1.2e-10

 1.22e-10

 1.24e-10

 1.26e-10

 1.28e-10

 1.3e-10

 1.32e-10

 1.34e-10

8  10  12  14  16  18

depth [km]

Fig. 3 The GCV functional as function of the depth of the coarse-grid

SRBFs. The minimum is attained at a depth of approximately 13.5 km

5◦, and a six-parameter corrector surface fitted through the

82 RWS-AGI GPS-levelling points:

δζ = a + b(λ − 5◦) + c(ϕ − 52◦) + d(λ − 5◦)2

+e(ϕ − 52◦)2 + f (λ − 5◦)(ϕ − 52◦). (28)
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Fig. 4 Residuals of the SRBF LS adjustment using 5628 coarse grid

SRBFs and 52 local refinement SRBFs. Min = −4.8 mGal, max =

5.0 mGal, mean = 0.0 mGal, RMS = 0.53 mGal

Table 2 shows the statistics of the residuals of NLGEO2004

and NLGEO2007, respectively, at the 82 RWS-AGI GPS-

levelling points. Both models achieve about the same quality

of fit. The six-parameter corrector surface, Eq. (28), performs

as well as the innovation function. The reason is that the

difference between geometric and gravimetric height anom-

alies at the 82 RWS-AGI GPS-levelling points represent a

very smooth surface (see Fig. 5), and, therefore, can be easily

approximated by the six-parameter corrector surface,

Eq. (28).

Figure 6 shows the differences between the innovation

function and the six-parameter “corrector surface”. They

range between −4.3 and 4.0 cm; the RMS difference is

1.0 cm. Prutkin and Klees (2007) have shown that for

Germany, these differences vary more irregularly, which

makes it difficult to find a suitable parameterization of the

“corrector surface”; the approach by Prutkin and Klees (2007)

solves this problem automatically.

Next, we compare NLGEO2004 and NLGEO2007 on a

1′ × 1′ grid covering the Netherlands (Fig. 7). The RMS dif-

ference is 0.6 cm (min = −1.0 cm, max = 2.7ċm, mean =

0.0 cm). The differences are very small, which indicates that

our approach is able to produce a high-quality height refer-

ence surface, which is competitive with NLGEO2004.

It is difficult to assess the quality of the NLGEO2004 and

NLGEO2007 height reference surfaces due to the lack of
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Fig. 5 The location of the 82 RWS-AGI GPS-levelling points and the

height-anomaly innovations. The differences between geometric height

anomalies and gravimetric height anomalies at the GPS-levelling points

range from 0.310 to 0.583 m; the mean difference is 0.488 m, and the

standard deviation is 0.053 m. The RMS fit of the height-anomaly inno-

vations to the given differences is 0.7 cm

independent high-quality control data. We used 405 GPS-

levelling control points, which have been provided by the

Netherlands Kadaster. These data have not been used in the

NLGEO2004 and NLGEO2007 solutions, because they are

expected to be of lower quality. This is mainly due to the

fact that the Netherlands Kadaster performs GPS measure-

ments at these points over a time span of 2 × 90 min; if

the ellipsoidal height difference between the two solutions is

below 3 cm, the measurements are accepted and the average

value is added to the data base. In contrast, the GPS mea-

surements at the 82 RWS-AGI GPS-levelling points lasted

24 h. As Table 3 reveals, there are no significant differences

between NLGEO2004 and NLGEO2007 at the 405 GPS-

levelling control points. The RMS difference is 1.9 cm for

the two models.

10 Summary and conclusions

We have developed a methodology for local gravity field

modelling using SRBFs. The advantage of a SRBF represen-

tation is that (1) it can be used at the same time to repre-

sent the global and the local gravity field, (2) it allows local

refinements depending on signal variation and data density,
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Fig. 6 Differences between the six-parameter “corrector” surface,

Eq. (28), and the height-anomaly innovations. Min = −4.3 cm, max =

4.0 cm, mean = 0.0 cm, RMS = 1.0 cm

distribution, and quality, (3) it can be combined easily with

an existing representation of the global gravity field in terms

of spherical harmonics as every linear combination of SRBFs

can directly be transformed into a spherical harmonic expan-

sion:

T (x)=

I
∑

i=1

βi �(x, yi )=
∑

l,m

c̄l,m

(

R

r

)l+1

Ȳl,m(x̂) ⇒ c̄l,m

=ψl

1

4π R2

I
∑

i=1

Ȳl,m(ŷi ). (29)

Therefore, a global gravity field model can be directly

included in a combined LS adjustment with local gravity

data. This offers a numerically simpler alternative to the joint

processing of GRACE and/or GOCE level 1B data and ter-

restrial gravity data. Moreover, we prefer it to the traditional

remove-restore technique used in local gravity field mod-

elling, because the remove–restore technique does not make

use of available information about variances and covariances

of geopotential coefficients.

When working with SRBFs, the proper selection of the

number and bandwidths of the SRBFs is crucial to guar-

antee a high-quality gravity field solution. The developed

algorithms selects the number and the optimal bandwidths

automatically, depending on signal variation, data distribu-

tion, and data accuracy. This helps avoiding over- and
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Fig. 7 Differences between the official Dutch height-reference surface

NLGEO2004 and the NLGEO2007. Min = −1.0 cm, max = 2.7 cm,

mean = 0.0 cm, RMS = 0.6 cm

under-parameterization and guarantees a smooth gravity field

solution. The numerical efficiency of the selection procedure

is superior to alternative procedure proposed in the past (e.g.

Barthelmes 1986; Marchenko et al. 2001) due to the two-

step procedure of coarse grid solution and local refinement.

Whether this is really an advantage in practical applications

depends on the available computer hardware. The price to

be paid for the improved numerical efficiency is a slightly

higher number of SRBFs compared with the approach by

Marchenko et al. (2001) (see also Klees et al. 2005).

Our methodology foresees two different approaches of

using GPS-levelling data: (1) the direct approach, which

means that GPS-levelling data are added to the functional

model and processed together with the gravity data in a LS

adjustment (this approach has not been addressed in this

paper), and (2) an indirect approach (Prutkin and Klees 2007).

The latter interprets the differences between gravimetric

height anomalies and geometric height anomalies as the con-

tribution of the non-trivial kernel of the gravity-anomaly

operator, which leads to the solution of a Cauchy BVP. This

approach is numerically more complicated than the direct

approach, but takes into account the physical nature of the

differences between geometric and gravimetric height anom-

alies. Compared with the more traditional approach of using

a “corrector surface”, it has the additional advantage that the
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Table 2 Residual differences of NLGEO2004 and NLGEO2007, respectively, at the 82 RWS-AGI GPS-levelling points

Model GPS-levelling points RMS (cm) min (cm) max (cm) mean (cm)

NLGEO2004 82 RWS-AGI 0.7 −1.5 2.4 0.0

NLGEO2007 82 RWS-AGI 0.7 −1.3 1.1 0.0

Table 3 Differences between NLGEO2004 and NLGEO2007, respectively, and geometric height anomalies at 405 independent GPS-levelling

control points provided by the Dutch Kadaster

Model GPS-levelling points RMS (cm) min (cm) max (cm) mean (cm)

NLGEO2004 405 Kadaster 1.9 −8.2 11.0 0.2

NLGEO2007 405 Kadaster 1.9 −9.2 9.1 0.0

user does not have to make any decision regarding the proper

choice of the model.

Compared with LSC, which provides in fact a minimum-

norm SRBF solution, the proposed methodology for the

processing of the gravity data offers more flexibility. LSC

uses SRBFs with the same bandwidth, which is determined

by the correlation length of the gravity field, whereas our

approach permits SRBFs with different bandwidths, and

selects them automatically from the data. In combination

with the coarse grid and local refinement step, this reduces

the number of SRBFs and may provide a better adaptation to

the data in the presence of local non-isotropy.

We found empirically that the number of SRBFs is usu-

ally less than 25% of the number of data points. LSC uses

formally as many SRBFs as data points, although in practice

often a subset of the data points is used either to reduce the

numerical complexity or because the data contain redundant

information. However, in LSC the selection of the subset is up

to the user and no objective measures appear to be used to do

this. We also want to mention that LSC is the minimum-norm

solution in the reproducing kernel Hilbert space of SRBFs,

whereas our solution is a discrete LS solution, which lacks

convergence if the data density goes to infinity.

The methodology has been applied to compute a new

height-reference surface for the Netherlands. A comparison

with the official Dutch height-reference surface has shown

that our solution has at least the same quality as the official

one. A more detailed analysis of the quality of the two height-

reference surfaces requires high quality GPS-levelling data,

which are not available yet.

There is some scope for further improvements of the pro-

posed methodology. For instance, the combination of gravi-

metric quasi-geoid with GPS-levelling points according to

Prutkin and Klees (2007) requires information about the

accuracy of the gravimetric quasi-geoid and the GPS-

levelling data. So far, only a single variance factor for the

complete data set can be taken into account. If the accuracy

is spatially non-homogeneous, the application of a single

(‘average’) variance factor could lead to overfit in one sub-

area and to underfit in another sub-area. A partial solution to

this problem could be to subdivide the area into sub-areas of

“homogeneous” accuracy and to process each sub-are a sep-

arately. Said earlier, sometimes full variance-covariances are

available for individual data sets; this information cannot be

easily combined with the proposed data combination strat-

egy based on the formulation as a Cauchy boundary-value

problem. Then, a generalized LSC approach as proposed by

Kotsakis and Sideris (1999) and applied by Fotopoulos et al.

(2003) may be appropriate.
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