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Abstract

Background: As the most stable and experimentally accessible epigenetic mark, DNA methylation is of great interest

to the research community. The landscape of DNA methylation across tissues, through development and in disease

pathogenesis is not yet well characterized. Thus there is a need for rapid and cost effective methods for assessing

genome-wide levels of DNA methylation. The Illumina Infinium HumanMethylation450 (450K) BeadChip is a very

useful addition to the available methods for DNA methylation analysis but its complex design, incorporating two

different assay methods, requires careful consideration. Accordingly, several normalization schemes have been

published. We have taken advantage of known DNA methylation patterns associated with genomic imprinting and

X-chromosome inactivation (XCI), in addition to the performance of SNP genotyping assays present on the array, to

derive three independent metrics which we use to test alternative schemes of correction and normalization. These

metrics also have potential utility as quality scores for datasets.

Results: The standard index of DNA methylation at any specific CpG site is β = M/(M+ U+ 100) where M and U are

methylated and unmethylated signal intensities, respectively. Betas (βs) calculated from raw signal intensities (the

default GenomeStudio behavior) perform well, but using 11 methylomic datasets we demonstrate that quantile

normalization methods produce marked improvement, even in highly consistent data, by all three metrics. The

commonly used procedure of normalizing betas is inferior to the separate normalization of M and U, and it is also

advantageous to normalize Type I and Type II assays separately. More elaborate manipulation of quantiles proves to

be counterproductive.

Conclusions: Careful selection of preprocessing steps can minimize variance and thus improve statistical power,

especially for the detection of the small absolute DNA methylation changes likely associated with complex disease

phenotypes. For the convenience of the research community we have created a user-friendly R software package

called wateRmelon, downloadable from bioConductor, compatible with the existing methylumi, minfi and IMA

packages, that allows others to utilize the same normalization methods and data quality tests on 450K data.

Background
As the most stable and experimentally accessible epi-

genetic mark, DNA methylation is of great interest to

the epigenetics research community. The methylomic

landscape across tissues, through development, and in

disease pathogenesis is not yet well characterized, but a

fast-growing field is exploring this methylomic vari-

ation. Illumina has recently developed the Infinium

*Correspondence: leonard.schalkwyk@kcl.ac.uk
†Equal contributors
1Social, Genetic and Developmental Psychiatry,Institute of Psychiatry, King’s

College London, De Crespigny Park, London, UK

Full list of author information is available at the end of the article

HumanMethylation microarray assay, which offers a

cost-effective, high throughput method for quantitatively

assessing methylation across the genome. The initial

HumanMethylation27 (27K) BeadChip interrogated

27,578 CpG sites associated with 14,495 protein-coding

gene promoters [1]. The more recent HumanMethyla-

tion450 (450K) BeadChip assays DNA methylation at

482,421 CpG sites, including 90% of the sites on the

27K array [2,3]. Both platforms quantify DNA methy-

lation at single base resolution by genotyping sodium

bisulfite treated DNA. The bisulfite-converted DNA is

subjected to a whole-genome amplification step, fol-

lowed by fragmentation and hybridization to probes on
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the microarray. Following hybridization, allele-specific

single-base extension of the probes incorporates a fluo-

rescent label (ddNTP) for detection. For both BeadChips

the customary index of DNA methylation fraction at a

specific CpG site is calculated as β = M/(M + U + α)

where M and U are methylated and unmethylated sig-

nal intensities and α is an arbitrary offset (usually 100)

intended to stabilize β values where fluorescent intensi-

ties are low. An alternative index not bounded by 0 and

1 is M = log2((M + α)/(U + α)), which is essentially

equivalent to a logit transformation of β [4].

Infinium humanmethylation beadchip design

In the 27K BeadChip, each CpG site is targeted by two

50 bp probes: one designed to specifically hybridize to the

methylated CpG site (M); and the other to the unmethy-

lated CpG site (U). At each CpG site single-base extension

generates the same color signal for both the M and U

probe. The probe design relies on the assumption that any

CpG sites underlying the probe aremethylated to the same

extent as the target site.

The 450K BeadChip [2,3] achieves increased cover-

age by utilising two different probe types on each array:

Infinium I (n=135,501) and Infinium II (n=350,076)

probes. The Type I probes are the same design as the

probes used in the 27K BeadChip, described above. The

new Type II probes use just one probe per CpG locus, and

employ different dye colors (green and red) to differenti-

ate between M and U signals, respectively. The design of

the Type II probes also avoids the assumption that adja-

cent CpG sites underlying the probe are methylated to the

same extent as the target CpG site by including degener-

ate (R) bases at CpG sites. However the Type II probes can

only include amaximum of three R bases, so Type I probes

are used to assay regions of the DNA with a high density

of CpG sites (for example, promoter CpG islands).

Background

Our approach to analysis of microarray data is to try to

maximize sensitivity for detection of differences between

experimental groups, and accuracy of estimation of abso-

lute methylation fraction is, if anything, secondary. In this

view biases such as background are not in themselves a

problem and indeed attempts to correct them, for example

by subtraction of estimates derived from control probes,

are undesirable because they introduce another source

of variance.

The inclusion of two different types of chemical assay on

the same array poses potential problems for data prepro-

cessing and analysis: preprocessing methods may perform

differently for the two assays; and differing distributions

may make overall rankings of differentially methylated

probes inaccurate. Density plots of the raw β values

confirm that Type I and Type II probes have different

distributions (Figure 1). One of our objectives is therefore

to equalize this difference. Dedeurwaerder et al [5] found

that this reflected a difference in performance between

the two probe types and devised a custom transformation

of the Type II β values to accommodate it. In the density

plot of raw β values (Figure 1), the two peaks of the Type II

probes (representing methylated and unmethylated CpG

sites) are compressed toward β = 0.5. Our insight is that

a higher background in the Type II assays would explain

such a difference in distribution of β values, because it

inflates both M and U. This may be related to systematic

differences in probe design such as GC content or degen-

erate bases, or the fact that background signal results

from two colors in Type II probes and only one in Type I

probes. This is also an example of how manipulations of

the raw intensity can be much simpler than manipulations

of β orM, which have complex distributions.

A number of research groups have developed prepro-

cessing methods to accommodate the differences in signal

between the two probe types [5-7]. Here, we present addi-

tional preprocessing methods to address the difference

between probe types and compare our custom methods

with existing methods in the literature. Our methods all

operate on raw intensities and output β values, which can

be easily transformed toM if required.

Normalization

For the 450K Infinium HumanMethylation450 BeadChip

microarray the manufacturer’s GenomeStudio software

calculates βs from raw intensities and under default

settings performs no normalization, presumably on the

grounds that because the β readout has the total intensity

in the denominator it should be insensitive to system-

atic differences in fluorescent intensity between samples.

The β values are indeed fairly stable and the basic anal-

ysis method works well, particularly for the detection of

large differences, for example between tissues or tumor-

normal pairs [8]. However, for the investigation of sub-

tle differences, such as those seen in common complex

disorders such as schizophrenia [9,10] and diabetes [11],
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Figure 1 Example of density distribution of β values profiled

using Type I and Type II probes.
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there is a need to ensure maximum sensitivity to detect

differential DNA methylation.

A pragmatic approach to the limitations of simple ratio-

based methods to calculate DNA methylation values,

common in the literature [12], has been to quantile nor-

malize β scores. Quantile normalization (QN) is a well

established technique in gene expression analysis, where it

has been shown to perform well [13]. For microarray data

from multiple samples formatted as a matrix with one

column per sample and one row per feature, QN is a non-

linear transformation that replaces each intensity score

with the mean of the features with the same rank from

each array. It is guaranteed to produce identical array-

wide distributions from any data, but whether this can be

achieved without losing information depends on whether

the raw distributions are suitable. A potential weakness of

QN is that in parts of the distribution with few values (and

therefore relatively large interquantile differences), it may

introduce considerable changes. The danger is that these

large changes could increase the variance across samples

for individual features, rather than reducing it as desired.

Performance metrics

The suitability of QN for DNA methylation data has

been assumed based on experience in the analysis of

gene expression data, but there has been little system-

atic testing. Previous DNA methylation data analysis

methods have been assessed using the DNA methyla-

ton differences between experimental groups verified

using an independent method [5]. This has the potential

to be misleading as an unknown portion of the differ-

ences are artefacts. Although normalization operations

manipulate the distribution of values from each sample,

tests of distribution similarity between technical repli-

cates(for example the Kolmogorov-Smirnov test used by

Maksimovic et al [6]) are also potentially misleading

because samples can be identically distributed but uncor-

related. Profile correlations are also insensitive to the

potential problems of normalization because they are

dominated by the majority of probes which do not show

true differences, i.e. the majority of CpG sites assayed

are in a fully methylated or fully unmethylated state

and would change little after normalization, whilst the

minority of intermediate methylation values would be

susceptible to far greater changes after normalization but

would be overlooked by a correlation test [14]. Because

the desired result of normalization is to remove system-

atic errors between samples, the disappearance of batch

effects is a useful indicator [12], but not sufficient as a per-

formance indicator because it does not indicate whether

true differences can still be detected. Clearly there is a

need for methods that directly measure performance to

predict the ability to detect true DNA methylation differ-

ences between samples. Standard, specially constructed

control datasets produced by spiking samples have been

influential in the gene expression field [13], but would not

be as suitable for analysis of DNA methylation.

For DNA methylation we are fortunate in having nat-

ural controls: sites with a clear expectation of a defined

partial methylation level. The first of these is provided

by genomic imprinting. Imprinted genes are expressed

monoallelically depending on parental origin, marked

by allele-specific parent-of-origin dependent methylation

at discrete imprinted differentially methylated regions

(iDMRs). Stable iDMRs have been characterized for

25 human imprinting regions [15,16] and where array

features overlap these, we would expect monoallelic

(therefore 50% (β=0.5)) methylation.

The 450K BeadChip also features 65 control probes

which assay highly-polymorphic single nucleotide poly-

morphisms (SNPs) rather than DNA methylation. These

are included on the array to allow sample quality control

to check for relatedness between individuals and enable

the detection of potential sample mix-ups. The signal

from these probes is expected to cluster into three distinct

groups (representing the heterozygous and two homozy-

gous groups). Although these are not DNA methylation

signals, they could be used to provide an indication of the

degree of technical variance between samples.

Finally, the phenomenon of X-chromosome inactivation

(XCI) provides a second set of loci demonstrating pre-

dictable patterns of DNA methylation. In females, one

copy of the X-chromosome is predominantly inactivated

and largely methylated. Because the level of DNA methy-

lation across active X-chromosome sites varies, we do not

expect uniform X-chromosome hemi-methylation. We

do, however, expect male-female differences, with females

showing at least 50% methylation at CpG sites on the

X-chromosome that are influenced by XCI, and males

substantially less.

Armed with these potential performance metrics and

some ideas about appropriate preprocessing and normal-

ization approaches, we set out to optimize and test nor-

malization using 11 unpublished datasets (total n=696),

from our own ongoing research program (described in

detail in Additional file 1).

Results and discussion
In our ongoing work we have produced 11 450K datasets

comprising samples from whole blood and four brain

regions obtained from over 150 different individuals (total

n=696). In exploring the data we identified and excluded a

small number (less than 1%) of individual samples which

were clearly technical failures based on criteria including

atypical raw intensity distribution and poor correlation

of β with other samples. Conscious of the need to min-

imize technical variation within datasets while retaining

as much information as possible, we then explored three
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sets of probes which we expected to provide performance

metrics that could be used to evaluate processing and nor-

malization methods: probes in iDMRs, SNP probes, and

CpG sites on the X-chromosome.

Performance metrics

Imprinted differentiallymethylated regions

There are 237 probes on the array that lie within a con-

servative set of defined iDMRs [16], and have an expected

β value of 0.5 because they are uniparentally methy-

lated in most tissues. From each dataset we observe a

distribution of β for these probes with a single peak at

approximately 0.5, as expected. QN produces a slightly

narrower peak visible on a density plot (Figure 2a), indi-

cating that we can detect a reduction in inter-sample

variance. As a quantitative measure of this we derive a

value resembling a standard error by dividing the standard

deviation of the full set of DMR β values for the dataset by
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Figure 2 Density plots of the β values generated from the raw and dasen preprocessing methods for Type I and II probes. Plots represent

the loci investigated in each of the three performance tests: a DMRSE, b GCOSE, and c Seabird. Black line=raw, red line=dasen.
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the square root of the number of samples. This measure

was chosen because it is reasonably independent of the

size of the dataset and it should directly predict sensitivity

to detect true differences between groups. We will refer to

this metric as the ‘DMRSE’ (i.e. Differentially Methylated

Regions Standard Error).

SNP probes

There are 65 probes on the 450K BeadChip which assay

highly polymorphic SNPs rather than CpG sites. As

expected the β values for these sites cluster into three

groups, depending on whether the samples are heterozy-

gous, or homozygous at each SNP (see Figure 2b). We

used k-means clustering to partition the observations into

these three clusters and for each SNP returned the sum of

squares and number of samples per cluster. For each SNP

ideal performance (absence of technical variance) would

result in zero-width peaks (i.e. sum of squares = 0). To cap-

ture this across multiple probes, we summed the 65 sum

of squares and then summed the 65 number of samples

per cluster (AA, AB, BB). Next we divided the summed

sum of squares by the summed number of samples. In

order to give a standard-error like metric we then divided

these three mean-square values by the square root of the

total number of samples. Finally, to simplify interpreta-

tion we combined these three measures into a single value

by taking the mean, and refer to this metric as ‘GCOSE’

(Genotype Combined Standard Error).

X-Chromosome

The inactive X-chromosome in females is hypermethy-

lated, and the 11,232 X-chromosome features annotated

for the array show a distinctive β value distribution, once

again centred on approximately 0.5, compared to the

biphasic distribution of autosomal probes. In Cohort 1Ai

for example, a t-test of each probe for sex differences

gives 9,796 significant at the p=0.05 level (Bonferroni cor-

rected for 485,577 tests), of which 8,969 correspond to X-

chromosome loci. The sex difference test with this cut-off

thus recovers 80% of the X-chromosome probes. 91% of

the recovered differences are in X-chromosome loci. True,

autosomal sex-specifically methylated loci are very small

in number and potentially represent autosomal probes

mapping to sequences on the sex-chromosome [17]. We

can therefore conduct a Receiver Operating Characteristic

(ROC) analysis, using the t-test p-value for sex difference

as a predictor of X-chromosome location. The area under

the curve (AUC) provides an estimate of the performance

of the predictor that ranges from 0.5 for an equal chance

to 1 for a perfect predictor (see Figure 2c). In order to

have a metric that goes in the same direction as DMRSE

and GCOSE (i.e. smaller as performance improves), we

use 1−AUC as our metric, which we have named ‘Seabird’

(named after the auk and also the mythical bird roc).

Preprocessing and normalization method design

Given the vast number of potential normalization and pre-

processing methods, we limited our exploration to meth-

ods for which there is a rationale. The naming convention

used for the different preprocessing methods is explained

in full detail in Table 1. Several insights, derived from

data exploration and experience, underlie our selection

of methods to implement and test using the performance

metrics. The first is that the primary data is methylated

Table 1 Table summarising nomenclature of preprocessingmethods

Background adjustment Between-array normalization Dye bias correction

naten n t n

nanet n n t

nanes n n s

danes d n s

danet d n t

danen d n n

daten1 d t n

daten2 d t n

nasen n s n

dasen d s n

We have used a naming convention that encodes key aspects of each method. Vowels were added between the letters for ease of pronunciation.

The 1st letter (column 1) indicates whether background adjustment was performed (i.e. the offset between Type I and II probe intensities added to Type I intensities),

with ‘d’ indicating background adjustment and ‘n’ indicating no background adjustment. Note daten2 is identical to daten1 but with the addition of a linear model of

Sentrix position to obtain smooth background offsets.

The 3rd letter (column 2) specifies whether between-array normalization was performed (i.e. between-sample quantile normalization of M and U separately), with ‘s’

indicating between-array normalization applied to Type I and Type II probes separately, ‘t’ indicating between-array normalization applied to Type I and Type II probes

together and ‘n’ indicating no between-array normalization.

The 5th letter (column 3) specifies whether the dye-bias correction was performed (i.e. quantile normalization of M against U), with ‘s’ indicating dye bias correction

applied to Type I and Type II probes separately, ‘t’ indicating dye bias correction applied to Type I and Type II probes together and ‘n’ indicating no dye bias correction.
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and unmethylated fluorescent intensities (M and U) and

technical variation is likely to be more simply dealt with

by adjusting these, rather than the derived β value, where

effects may be complicated by their interaction. A fur-

ther consideration here is the known potential of QN

to impose large changes in those parts of a distribution

with few members, which in the biphasic β distribution

includes the potentially most interesting central part of

the distribution (β= 0.5). Therefore in addition to test-

ing the raw β values (raw) and QN of βs (betaqn), we

tested βs calculated from separately quantile normalized

M and U (naten) (this method was introduced by Sun et

al [12]). It could also be advantageous to separate Type I

and II probes for QN (compare nasen, dasen with naten,

daten1). M and U distributions differ, and so these should

only be forced to the same distribution with caution, but

quantile normalizing M and U against each other would

have the advantage of removing dye bias variation, which

is a potential problem with Type II assays, so this was

performed in four methods (nanet, nanes, danes, danet).

Type I and Type II probes perform differently. This is

not in itself a normalization issue, but it may be advan-

tageous to minimize the differences so that the rank-

ing of potential differentially methylated loci is more

accurate [5]. This is achieved most simply by adjust-

ing the background difference between Type I and II

probes for both M and U intensities (danes, danet, danen,

daten1, daten2, dasen). Both methylated and unmethy-

lated raw intensities display a characteristic peak close

to zero, which differs slightly between Type I and II

probes (Additional file 2). We use the position of this peak

to calculate the background difference (offset) between

Type I and Type II probes, and we add it to Type I

intensities. Note that we do not aim to eliminate the

background signal, we only seek to equalize the back-

ground signal between Type I and Type II probes.

Because we observed a gradient in background in some

datasets we implemented an optional linear model of

Sentrix position to obtain smooth background offsets.

Once again this procedure is not intended to remove

the background gradient from the raw intensities, this is

accomplished by subsequent QN. The objective is solely

to avoid introducing additional noise while equalizing

background.

Qualitative observations on preprocessing and

normalization

Metrics for each of the methods on one example dataset

calculated separately for Type I and Type II probes are

shown graphically in Figure 3. The first observation is

that according to the standard error measures DMRSE

and GCOSE, Type II probes perform better than Type

I probes across most methods and Type I probes are

more stable than Type II probes. Methods that do not

use any normalization (raw and Fuks [5]) clearly per-

form worse for both types than those that do. Nor-

malizing M and U is clearly better than normalizing β

(compare naten with betaqn). Background adjustment

does not introduce noticeable extra variance (compare

raw with danen). Furthermore, QN of Type I and Type

II intensities separately appear to reduce variance, par-

ticularly for the iDMR measures (compare daten1 and

dasen), but more complicated segmented QN schemes

seem to be counterproductive despite embodying valu-

able insights about the properties of the assay (compare

Tost [7] and SWAN [6] with dasen). Similar graphs of

the three metrics for all of the datasets are presented in

Additional files 3, 4 and 5.

Systematic ranking of methods based onmetrics

The test metrics were subsequently used to quantitatively

determine the best performing preprocessing method

(also see Additional files 3, 4, 5 and 6) using the ap-

proach detailed below and illustrated in Additional file 7.

For each dataset and for Type I and Type II probes sepa-

rately:

A. Calculate the metric scores (DMRSE, GCOSE_AA,

GCOSE_AB, GCOSE_BB, Seabird) for each of the 15

preprocessing methods (raw. . . swan)

B. For each preprocessing method take the mean of

three SNP scores calculated in [A] (i.e. GCOSE_AA,

GCOSE_AB, GCOSE_BB) to generate just one SNP

score (GCOSE)

C. For each of the three metrics [B] rank the

preprocessing methods

D. For each of the preprocessing methods calculate the

mean of the three ranked metrics [C]

E. For each preprocessing method calculate the mean of

mean ranks [D] across the datasets, for Type I and

Type II probes separately.

F. Rank the mean of metric values across all datasets [E]

to generate a final score representing the

performance of each of the 15 preprocessing

methods (Table 2).

Using this approach, our data indicates that dasen is

the best performing method across both probe types

(Table 2). This method involves background adjustment

of the methylated and unmethylated intensities. This is

followed by separate QN of methylated Type I, unmethy-

lated Type I, methylated Type II and unmethylated Type II

intensities.

It is evident from the quantitative ranking method

(Table 2) and figures for each individual dataset

(Additional files 3, 4 and 5) that the dasen method

performs consistently well for both the Type I and
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a b c

Figure 3 Results of the performance tests for Cohort 1C. All values range between 0 and 1. Lower values are indicative of a more sensitive

preprocessing method. :a) DMRSE (x10−3), b) GCOSE (x10−4) and c) Seabird (x10−2). Type I probes are denoted by circles and Type II probes by

triangles.

Type II probe data. Figure 2 displays the β values

for one dataset before and after preprocessing with

the dasen method, with the density distribution of

Type I and Type II probes plotted both together and

separately.

Figure 2a shows that the dasen method decreases

the standard error across CpG sites within iDMRs, as

expected (DMRSE test). Figure 2b displays the density

distribution of the signal from the SNP probes (GCOSE

test). While the difference in peak width is not read-

ily visible at this scale, the effect of background adjust-

ment on Type I probes is clearly visible. Figure 2c

shows the ROC curve of true positives and false posi-

tives for predicting X-chromosome location (Seabird test).

An increased area under the curve indicates improved

sensitivity to detect these differences. The data is much

improved for the Type II probes, which represent 72%

of the probes on the array. For Cohort 1Ai for exam-

ple, dasen gives us 296 (3%) additional sex differ-

ences at the Bonferroni-corrected p <.05 level, compared

to raw.

Limitations

We propose three metrics of data homogeneity that

evaluate different and substantial parts of the array.

For the datasets we use these give a clear picture about

the optimal quantile-based normalization procedure. The

possibility remains that these metrics miss some aspect of

performance. We have also used a large number of exper-

imental datasets across multiple tissues, but there may

be datasets with substantially different properties that

require different handling. In particular, we have only ana-

lyzed relatively homogeneous datasets derived from brain

or whole blood. There may be more drastic variation in

cultured cells or tumors, and we have also not extensively

addressed normalization of datasets containingmore than

one tissue type. We expect that beyond a certain level of

heterogeneity, QN procedures will be counterproductive.

Our approach would be useful in evaluating this. Finally

we have only tested methods based on QN. Although

there is a strong consensus in favour of this method, it is

possible that a different approach based, for example, on

scaling, could possibly work better.
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Table 2 Overall rank scores of each preprocessingmethod

TypeI TypeII Average

raw 6.5 11 8.75

betaqn 14 13 13.5

naten 12 9 10.5

nanet 11 3 7

nanes 9.5 7.5 8.5

danes 2.5 7.5 5

danet 1 6 3.5

danen 5 12 8.5

daten1 4 4 4

daten2 8 5 6.5

nasen 9.5 1.5 5.5

dasen 2.5 1.5 2

fuks 6.5 15 10.75

tost 13 14 13.5

swan 15 10 12.5

Ranks calculated from the three performance metrics applied to 11 datasets.

Ranks are shown for Type I and Type II probes separately as well as averaged

across both probe types. Dasen is shown to be the best preprocessing method

across both probe types.

Future directions

Rather than attempting to sample the entire universe of

experiments done with this array ourselves, we are dis-

tributing what we hope is a convenient software frame-

work to allow others to make similar tests. We do not

advocate selecting or creating a custom normalization for

each dataset, but it is important to find out if there are

cases where the apparent best method fails.

We have implemented our functions with a simple, con-

sistent interface that takes matrices of methylated and

unmethylated intensities or β or M values. The source

code and analysis scripts using them can be found in

Additional file 8. For the convenience of users we have

also created an object-oriented R software package called

wateRmelon, available to download from bioConductor.

In this package all of the functions mentioned above are

default methods for generic functions of the same name

that understand objects from the existing methylumi

[18], minfi [19], and IMA [20] packages. The output from

normalization methods is β values, but these can be

conveniently transformed to M values using the beta2m

function in the wateRmelon package.

While this work was under review, an alternative

method of equalizing type I and II assay performance

by applying a mixture modelling approach to β was

published [21]. We have made the method available in

the wateRmelon package. While computationally expen-

sive, this method could potentially improve on the peak

correction [5] or our background equalization method,

and this could be investigated further.

Conclusions

Currently the DNA methylation field resembles gene

expression studies of a decade ago: it is technology-

limited and characterized by small sample sizes, diverse

techniques and variable statistical standards [22].

Fortunately the field can benefit from the development

work invested over the last ten years in gene expres-

sion and genotyping technology, and we can quickly

develop and test sophisticated analysis methods. We have

used 11 datasets to investigate 15 different methods of

correction and normalization. We then evaluated

each method using features on the array that assay

known sites of differential methylation or genotype.

The results of our tests reveal that a combination

of background adjustment and between-array quan-

tile normalization is optimal for data processing, to

allow the detection of differential methylation between

samples.

Methods

Samples

11 datasets were used to evaluate our preprocess-

ing pipeline (Additional file 1). Seven of the datasets

were obtained from one cohort of post-mortem

brain samples from the MRC London Brain Bank for

Neurodegenerative Diseases (http://www.kcl.ac.uk/iop/

depts/cn/research/mrclondonbrainbank.aspx): cerebel-

lum (1Ai) (n=91), rescan of cerebellum data (1Aii)

(n=36), frontal cortex (1B) (n=89), entorhinal cortex

(1C) (n=93), superior temporal gyrus (1D) (n=94), whole

blood (1E) (n=95), frontal cortex and entorhinal cortex

(1BC) (n=46), cerebellum and superior temporal gyrus

(1AD) (n=47). Two of the datasets were obtained from

a separate cohort from the London Brain Bank for Neu-

rodegenerative Diseases: cerebellum (2A) (n=42), frontal

cortex (2B) (n=43). The final dataset was obtained from

DNA from the Autism Tissue Program (http://www.

autismtissueprogram.org/): cerebellum (3A) (n=18).

450Kmethylation beadchip analysis

500 ng of genomic DNA from each sample was

treated with sodium bisulfite in duplicate, using the

EZ96 DNA methylation kit (Zymo Research, CA,

USA) following the manufacturer’s standard protocol.

Genome-wide DNA methylation was assessed using

the Illumina Infinium HumanMethylation450 BeadChip

(Illumina Inc, CA, USA) according to manufacturer’s

instructions. Illumina GenomeStudio software was used

to extract the raw signal intensities of each probe

(without background correction or normalization).

http://www.kcl.ac.uk/iop/depts/cn/research/mrclondonbrainbank.aspx
http://www.kcl.ac.uk/iop/depts/cn/research/mrclondonbrainbank.aspx
http://www.autismtissueprogram.org/
http://www.autismtissueprogram.org/
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Statistical analysis

All computations and statistical analyses were per-

formed using R 2.15.0 [23] and Bioconductor 2.12 [24].

Signal intensities were imported into R using the methy-

lumi package [18] as a methylumi object. Initial qual-

ity control checks were performed using functions in

the methylumi package to assess concordance between

reported and genotyped gender. Non-CpG SNP probes on

the array were also used to confirm that multiple tissues

were sourced from the same individual where expected.

Comparative analysis was performed using R scripts pro-

vided in Additional file 8. For the convenience of users

we have also packaged the functions into an R pack-

age: wateRmelon, which is available from the bioCon-

ductor repository from version 2.12 (for R version 3.0

and higher). The functions in the package are all generic

and methods are provided for the objects produced by

the packages methylumi [18], minfi [19], and IMA [20],

as well as wrappers for the methods of Dedeurwaerder

et al [5] A number of packages from CRAN and

bioConductor were used: quantile normalization using

limma [25]; data handling using methylumi [18] and minfi

[19]; and performance assessment using ROCR [26]. All

of the data used in this publication has been deposited in

GEO (series accession GSE43414).

Ethical approval

Epigenomic profiling on post-mortem brain tissue was

approved by the UK National Health Service (NHS)

National Research Ethics Service (NRES) (reference num-

ber: 10/H0808/114). Tissue obtained from the Medical

Research Council (MRC) Brainbank for Neurodegerative

Diseases was consented fully prior to death and approved

by the NHS RES (reference number: 08/MRE09/38). The

Human Tissue Authority (HTA) license number for the

brain bank is 12293.

Additional files

Additional file 1: Summary of cohorts used in this study.

Additional file 2: Density plots of the methylated (M) and

unmethylated (U) raw signal intensities. Type I and II probes plotted

separately, with maximum signal peak heights represented by dotted lines.

Horizontal red line represents offset between the maximum peak height of

probe Types I and II. The offset is added to Type I assay intensities to

equalize background in the methods whose names begin with ‘d’.

Additional file 3 : Results of the DMRSE performance tests for all

remaining datasets (x10-3 scale is used on the y-axis). Lower values are

indicative of a more sensitive preprocessing method. Type I probes are

denoted by circles and Type II probes by triangles.

Additional file 4: Results of the GCOSE performance tests for all

remaining datasets (x10-4 scale is used on the y-axis). Lower values are

indicative of a more sensitive preprocessing method. Type I probes are

denoted by circles and Type II probes by triangles.

Additional file 5: Results of the Seabird performance tests for all

remaining datasets (x10-2 scale is used on the y-axis). Cohort 3A is

absent because all samples were male, making the Seabird test redundant.

Lower values are indicative of a more sensitive preprocessing method.

Type I probes are denoted by circles and Type II probes by triangles.

Additional file 6: Results of the GCOSE performance tests split by

genotype group for all datasets (x10-4 scale is used on the y-axis).

Lower values are indicative of a more sensitive preprocessing method.

Type I probes are denoted by circles and Type II probes by triangles. This

shows that the relative performance of our custom methods perform

consistently across the range of betas, and that the tost method performs

worst in the mid-range while swan does worst at the extremes.

Additional file 7: Illustration of method ranking procedure.

Additional file 8: Source code and analysis scripts used in this paper

and the wateRmelon R package.
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