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A Data-Driven Approach to Selecting Imperfect
Maintenance Models
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Abstract—Many imperfect maintenance models have been devel-
oped to mathematically characterize the efficiency of maintenance
activity from various points of view. However, the adequacy of an
imperfect maintenance model must be validated before it is used in
decision making. The most adequate imperfect maintenance model
among the candidates to facilitate decision making is also desired.

The contributions of this paper lie in three aspects:
1 it proposes an approach to conducting a goodness-of-fit test,
2 it introduces a Bayesian approach to selecting the most ade-

quate model among several competitive candidates, and
3 it develops a framework that incorporates the model selection

results into the preventive maintenance decision making.
The effectiveness of the proposed methods is demonstrated by

three designed numerical studies. The case studies show that the
proposed methods are able to identify the most adequate model
from the competitive candidates, and incorporating the model se-
lection results into the maintenance decision model achieves better
estimation for applications with limited data.

Index Terms—Bayesian model selection, bootstrap sampling,
goodness-of-fit, imperfect maintenance model, u-pooling method.
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MLE maximum likelihood estimation
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I. INTRODUCTION

M
AINTENANCE is an effective way to reduce the failure

frequency of repairable systems, restore system perfor-

mance, and prolong the systems’ remaining life. It has been

adopted in a multitude of systems, such as civil aircrafts, auto-

motive vehicles, and manufacturing systems. In general, main-

tenance activity can be classified into five categories based on

their impacts on the physical condition of maintained systems

[1]–[3]: better than new, perfect, imperfect, minimal, and worse.

Better than new maintenance brings the items’ condition to a

state with a smaller failure intensity than a brand-new identical

one. A perfect maintenance (e.g. a complete replacement) is able

to recover the repaired system back to a brand new (“as good

as new”) condition; whereas a minimal maintenance (e.g. cor-

recting a minor flaw) assumes a maintenance action can only

leave the system in the same condition as it was before failure

(“as bad as old”). Worse maintenance results in a negative im-

pact on the systems’ condition due to an ineffective mainte-

nance. Nevertheless, it is widely recognized that most mainte-

nance actions restore the system to a condition somewhere be-

tween “as good as new” and “as bad as old”, and this sort of

maintenance is called imperfect maintenance [2].

To quantify the efficiency of an imperfect maintenance ac-

tivity, a considerable amount of literature has been published.

The most recent survey of the imperfect maintenance models for

binary state systems can be found in [2]. The most relevant ef-

forts among the existing models are: the Brown-Proschan model

(See Brown and Proschan [4]), the Kijima Type I and II models

(see Kijima [5], [6]), the improvement factor method (see Malik

[7]), the hazard rate model (see Nakagawa [8]), the hybrid model
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(see Lin [9]), the geometric process (see Lam [10]), the quasi-re-

newal model (see Wang and Pham [11], [12]), and the super-

posed renewal process (see Kallen [13]). The statistical infer-

ence of the unknown parameters in the imperfect maintenance

models has also been studied [14]–[21]. Most recently, Wu and

Zuo [22] presented a comprehensive study to reveal the com-

monality and interrelationship among some models. Also, some

of the imperfect maintenance models, such as the model

(see Nakagawa [8] and Brown and Proschan [4]), the

model (see Block et al. [23]), and the

model (see Makis and Jardine [24]), can be only used for charac-

terizing the corrective maintenance rather than preventive main-

tenance [1]. In addition, several attempts have been made to in-

vestigate the imperfect maintenance models under the context of

multi-state systems [25]–[27]. Nevertheless, different imperfect

maintenance models are subject to different perspectives and as-

sumptions of underlying physics. For example, from the system

age view point, some imperfect maintenance models (e.g. Ki-

jima type I and II models [5], [6], and the age reduction model

[15]) assume that the effective age of the system is reduced after

maintenance. Some literature, from a perspective of failure in-

tensity, believes that the effect of maintenance leads to a direct

reduction of failure intensity (e.g. the intensity reduction model

[15]); or after maintenance activity, the age of the system be-

comes zero, but the system has a faster degradation trend in the

next maintenance cycle (e.g. the hazard rate model [8], the geo-

metric process [10], or the quasi-renewal model [11]).

Because every imperfect maintenance model characterizes

the stochastic behavior of maintained systems via its own

assumption of underlying physics, to better quantify the ef-

fect of maintenance actions, an imperfect maintenance model

should be selected based on the knowledge of actual underlying

physics. For example, for the system subject to wear, replacing

the worn out component with a better one can be regarded as

reducing the system effective age, and the age-based imper-

fect maintenance model is suitable in such a circumstance.

However, it is actually very hard, even impossible, to observe

and comprehensively understand the true physics and mech-

anisms, especially when a complicated system is maintained

by replacing and fixing multiple components subject to various

failure modes. When data from system operation and mainte-

nance are the only available information, industry practitioners

become concerned about whether or not the pre-assumed

imperfect maintenance model is adequate enough to describe

the effect of maintenance. To examine the adequacy of the

pre-assumed model, two methods can be used: graphical check,

and the goodness-of-fit (GOF) test [28]–[31]. The general idea

of a graphical check is to verify whether the cumulative number

of system failures from operation data has an identical trend

with that from the pre-assumed maintenance model. Although

the graphical check is straightforward and intuitive, it has two

major drawbacks. First, the visual judgment is qualitative, and

there is no unified criterion enabling analysts to verify whether

the examined model is adequate or not. Second, to derive the

expected cumulative number of failures requires Monte Carlo

simulation, which is a computationally expensive task [3]. The

GOF test is a mathematically rigorous method to examine the

model adequacy, and it has been applied in reliability engi-

neering extensively [28], [32]. Nonetheless, most GOF tests

for repairable systems concentrate on checking the adequacy

of a pre-assumed non-homogenous Poisson process (NHPP)

model, i.e. whether the repairable systems can be modeled by

a specified NHPP model (e.g. power law process, or log-linear

process) [28], [32]. Due to the intervention of maintenance ac-

tions, the stochastic behavior of imperfect maintained systems

becomes complicated. Thereby, the traditional GOF test for

simple homogenous and non-homogenous Poisson processes

cannot be tailored for such a situation. For the system under

imperfect corrective repair, methods concerning the GOF test

for the first time to failure distribution have been developed

[33]. However, the imperfect repair effects characterized by the

Block and Borges and Savits (BBS) model are assumed known

in advance. One of the focuses of this work is to examine the

adequacy of the pre-assumed imperfect maintenance model

rather than the first time to failure distribution. To the best of our

knowledge, the GOF test for the imperfect maintenance model

has seldom been investigated, and it is one of our interests in

this paper.

Beyond the issue of checking model adequacy, another

issue is how to determine the best model among multiple

adequate models. This issue is recognized as the model selec-

tion problem, which has been investigated to choose failure

models [34]. Because there is no available knowledge about

the underlying physics, the only approach is to select the model

which has the best fitness to the data, and it is, therefore, called

the data-driven model selection approach in this paper.

To address the two aforementioned issues, a novel GOF test

is first proposed to examine the adequacy of a pre-assumed im-

perfect maintenance model. By pooling all the failure data into

a u-space, the adequacy of the imperfect maintenance model

can be validated via statistically checking the uniformity of the

u-pooling data. Along with the GOF test, a Bayesian model se-

lection method is developed to choose the most adequate im-

perfect maintenance model among the competitive models. Be-

cause it is often impossible to get a sufficient amount of data to

estimate the unknown model parameters accurately, the uncer-

tainty associated with the parameter estimation is quantified via

the empirical distribution obtained from the bootstrap method.

The model selection results will be further incorporated into the

maintenance decision framework. To demonstrate the effective-

ness of the proposed methods, several sets of numerical studies

are designed, and how sensitive the methods are with respect to

the amount of data sets, as well as the impact from the imperfect

maintenance efficiency, is also examined with the designed test

problems.

The remainder of this paper is organized as follows. Section II

reviews four imperfect preventive maintenance models with dis-

tinct underlying physics. The associated likelihood functions

and parameter estimation are also formulated. The proposed

GOF test for imperfectly maintained systems is introduced in

Section III. The Bayesian approach for model selection is in-

troduced in Section IV, along with a bootstrap method which is

used to gain the distribution of the estimated model parameters.

A framework of incorporating the model selection results into

the preventive maintenance decision is proposed in Section V.

The designed numerical studies are presented in Section VI to
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illustrate and verify the effectiveness of the proposed methods,

followed by the brief conclusion and discussion in Section VII.

II. IMPERFECT MAINTENANCE MODELS AND

PARAMETER ESTIMATION

In this paper, the proposed method is only demonstrated by

the case where the scheduled preventive maintenance (PM) is

imperfect, and corrective maintenance (CM) is the minimal re-

pair. The PM is herein defined as the maintenance carried out

at pre-determined intervals, or according to prescribed criteria,

with the aim at reducing the probability of failure, or the degra-

dation of the functioning of an item [1].

A. Imperfect Preventive Maintenance Models

We introduce four imperfect preventive maintenance models

which have different underlying physics, and they will act as the

candidate models in the following designed test problems. Some

assumptions and notations are given below before presenting the

imperfect preventive maintenance models.

1 The PM is executed at time

where

is the time interval between the

th and the th PMs. can be either

identical, or non-identical, representing periodic PM, and

non-periodic PM respectively.

2 It is assumed that PMs are imperfect. The CMs which are

treated as minimal repairs are carried out upon failures be-

tween adjacent PMs.

3 denotes the failure intensity function in the th PM

cycle, and is reset to zero at the beginning of each PM

cycle. represents the initial failure intensity function

of a brand-new system, and it is a monotonic increasing

function.

4 Compared to system operation time, the time spent on

maintenance is negligible.

The four imperfect maintenance models concerned in this

paper are reviewed as follows.

Model I (Kijima Type I Model [5], [6]): The concept of vir-

tual age has been used in the Kijima imperfect maintenance

model. The general idea is that the system’s health condition

is related to the virtual age (called effective age), but not the ac-

tual working time. In the Kijima type I model, the virtual age of

the system is formulated as

(1)

where is the virtual age of the system immediately after the

th PM; , with the range of [0,1], indicates the efficiency of

the th PM action on the virtual age of the system. If , the

maintenance action is perfect, and will reduce the virtual aging

incurred in the th PM cycle; represents a minimal

maintenance, with no virtual age reduction after maintenance.

The corresponding failure intensity function of the th PM cycle

is written as

(2)

where is the working time only in the th PM cycle. The PMs

only reduce the age of the system since the last PM cycle.

Model II (Kijima Type II Model [5], [6]): Compared to the

Kijima type I model, the Kijima type II model assumes that PM

actions have a cumulative age-reduction effect, and will reduce

the entire virtual age of the system incurred just before the main-

tenance. The virtual age of the system after the th PM is defined

as

(3)

If , the maintenance is perfect; represents a

minimal maintenance, with no virtual age reduction after main-

tenance. The failure intensity function of the th PM cycle is

written as

(4)

Model III (Nakagawa [8]): In [8], after the PM, the age of

the system can be first brought to zero, but the failure inten-

sity function will have a faster increasing trend than that of the

previous maintenance cycle. This kind of imperfect preventive

maintenance model is called a linear PM model according to

the classification in Wu and Zuo [22] because the maintenance

activities proportionally change the failure intensity function in

a linear manner. The failure intensity function of the system in

the th PM cycle is given by

(5)

where , and indicates perfect maintenance.

Model IV (Nonlinear PM Model [22]): Based on the classi-

fication in Wu and Zuo [22], the nonlinear PM model supposes

that PMs only alter the aging process. In this paper, we consider

the simplest nonlinear PM model as a candidate model here. The

failure intensity function of the system in the th PM cycle can

be expressed as

(6)

where , and a larger indicates the PM has a greater

impact on the aging process. Again, represents perfect

maintenance.

B. Parameter Estimation

Maximum Likelihood Estimation (MLE) is widely used to

estimate the parameters of the imperfect maintenance models

[14]–[19]. Suppose the data are collected from identical re-

pairable systems. For the th system, failures happen during

the th PM cycle, and the corresponding failure time in this

PM cycle is denoted as , where

. Assume that the system will

be discarded or replaced by an identical new one at the end of
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Fig. 1. Illustrations of the u-pooling method. (a) Obtain the u values according to the conditional survival distribution. (b) Pool the u values into the u-space and
compare to the standard uniform distribution.

the th PM action, and failures between adjacent PMs are min-

imally repaired. The likelihood function under PM can be ex-

pressed as [3], [16], [28]

(7)

where the vector represents a set of parameters in the initial

failure intensity function, and it is assumed known in advance

in this paper. The estimators of the unknown parameters, de-

noted as , can be computed by maximizing the logarithm of

(7). With the estimates of the unknown parameters, the condi-

tional survival distribution of the th system after the th

failure of the th PM cycle can be written as

(8)

where represents the time elapsed since the last CM.

III. GOODNESS-OF-FIT TEST

Given a pre-assumed imperfect maintenance model, the un-

known parameters in the model can be estimated by the MLE

introduced in Section II-B. The adequacy of the maintenance

model, however, must be validated before using the model in

decision-making. In this paper, a u-pooling method is proposed

to deal with the GOF test for the imperfect maintenance model.

The basic idea of expressing the conformance of theory and data

on some universal scale is rooted in the practice of model vali-

dation [35]–[37]. Let represent the inter-arrival time be-

tween the th and the th failures of the th PM cycle for

the th repairable system. By transforming every time

according to the corresponding conditional survival distribution

derived by (8), one can obtain a value as

(9)

where the inter-arrival time , and

has a range of [0, 1]. An illustration with three failure

data are shown in Fig. 1(a). , , and are de-

rived based on the inter-arrival times , , ,

and their corresponding conditional survival distributions

, , respectively. The adequacy of

the imperfect maintenance model can be assessed by pooling

the various resulting u values into a u-space within a range of

[0, 1] [0, 1] as shown in Fig. 1(b). Under the assumption that

all the inter-arrival times are distributed according to

their respective conditional survival distributions , all

the constitute a standard uniform distribution. This fact

is well known as the probability integral transform theorem

in statistics [38]. The adequacy of the imperfect maintenance

model can be validated by checking whether or not the

are uniformly distributed.

To validate the uniformity of the u values, some well-es-

tablished GOF test methods, including Kolmogorov-Smirnov

(K-S), Anderson-Darling, and Cramér-von Mises, can be used

here to detect evidence of significant disagreement between the

distribution of u values and the standard uniform distribution.

The K-S test, which is applicable to all types of distributions, is

adopted in this paper, and its corresponding test statistic is de-

fined as the maximum distance between the empirical Cumula-

tive Density Function (CDF) of u values and a standard uniform

distribution

(10)

where is the total amount of u values. is the CDF of a

standard uniform distribution. The -value, defined as the prob-

ability of obtaining a test statistic at least as extreme as the one

that was actually observed, is expressed by

(11)

If is smaller than a critical value which can be found

in the standard table [39], the null hypothesis that the u values
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are consistent with the standard uniform distribution cannot

be rejected; otherwise, it is rejected with

confidence.

Instead of the K-S test, other GOF test methods, like the

Anderson-Darling test which is more sensitive to the tails of a

distribution, can be used to validate the uniformity of u values.

The results might be slightly different from that of the K-S test

because the test statistics of GOF test methods are different.

However, this paper focuses on using one of the existing GOF

test methods to check the uniformity of u values, and does not

intend to compare the GOF test methods in terms of validating

uniformity.

Through checking the uniformity of u values, the adequacy of

the pre-assumed imperfect maintenance model can be validated.

One of the most important merits of the u-pooling method is that

it allows for validating the model adequacy by pooling all the

failure data from multiple copies of the repairable system into

the u-space. Another merit worth mentioning is that, by only re-

placing the mathematical formulation of the conditional survival

distribution accordingly, the proposed GOF test can be applied

to check the adequacy for any kind of imperfect maintenance

model.

IV. BAYESIAN MODEL SELECTION

The proposed GOF test in the preceding section can only

answer the question of whether or not the pre-assumed imper-

fect maintenance model is adequate enough. However, there

might be several imperfect maintenance models available to

characterize the maintenance efficiency, and more than one

model might not be rejected by the proposed GOF test, because

they all are able to describe the observed failure data in an

adequate manner. It is, therefore, necessary to develop a model

selection method to help analysts choose the most adequate

imperfect maintenance model among the available competitive

candidates. On the other hand, the uncertainty due to the lack of

sufficient failure data is inevitable in practical applications, and

the conventional model selection based on asymptotic results

might yield an untrustworthy conclusion when ignoring the

potential uncertainty resulting from the parameters estimation

[34]. The -value computed from the K-S test, by itself, is

not a direct quantitative measure of the probability that the

null hypothesis is true, i.e. a small -value does not mean that

there is a small probability that the pre-assumed imperfect

maintenance model is the true model [40], [41]. In addition,

the uncertainty associated with parameter estimation cannot be

taken into account by the -value. Thereby, the -value is not

an appropriate measure for model selection. To overcome this

issue in imperfect maintenance model selection, the Bayesian

model selection method is tailored in the present paper to

identify the most adequate model among candidates under the

uncertainty of parameter estimation.

Suppose a finite set consists of all the candidate imper-

fect maintenance models, e.g. ( is

number of candidates), which are not rejected by the proposed

GOF test. The Bayesian model selection consists of defining

hypotheses as follows.

: The failure data are from the im-

perfect maintenance model.

Based on the basis of the Bayesian model selection method

[34], the corresponding posterior probability for the hypothesis

, given the failure data set, is defined as

(12)

where is the prior preference of each hypothesis. If

there is no prior information, one can assign ,

meaning every candidate has an equal chance to be favored.

is the likelihood function under the hypothesis

, given by

(13)

where is the likelihood function of the th

imperfect maintenance model with the estimated parameter ,

equal to (7) if the parameter of the initial failure intensity

function is exactly known. is the distribution of

estimated parameter of the th imperfect maintenance model,

and it is usually provided by analysts to quantify the uncertainty

of parameter estimation due to the limited data. In the case

where multiple copies of the identical repairable system exist,

the bootstrap method can be used to gain the distribution of the

estimator by using a re-sampling technique.

The bootstrap method was introduced by Efron [42] as a com-

putational method to estimate the distribution of the estimated

parameters, and its general idea is to create many sets of boot-

strapping samples through re-sampling with replacement from

the original data [43]. By gathering the estimators calculated

from each sample set, the empirical distribution of estimators

can be utilized to approximate the true distribution of estima-

tors. A very nice property of the bootstrap method is that the

distribution of the estimator can be objectively and straightfor-

wardly determined by the available data. The basic procedures

of applying the bootstrap method to derive are listed

as follows.

Step 1: Obtain initial sets of failure data from iden-

tical repairable systems.

Step 2: Randomly select sets of failure data through

re-sampling with replacement.

Step 3: Estimate the unknown parameter of the th imper-

fect maintenance model by the MLE method introduced in

Section II-B.

Step 4: Repeat Steps 2 and 3, times (typically 500 to

5000).

Step 5: Derive the empirical distribution of estimator

based on the sets of MLE results.

After knowing the distribution of the estimated parameter ,

the posterior probability of the hypothesis can be computed

using (12). The imperfect maintenance model which has the

highest posterior probability among the candidates is selected

as the most adequate model to describe the failure data.

In the case of one set of data from one copy of a repairable

system, deriving is not straightforward. Doyen [44]

developed the asymptotic confidence intervals for two imper-

fect repair models called the Arithmetic Reduction of Inten-

sity model (ARI), and the Arithmetic Reduction of Age model
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(ARA). Nevertheless, very limited work has been found to deal

with the confidence interval of the estimated parameters for

many other imperfect maintenance models [45], especially the

observations from only one repairable system. This is an impor-

tant topic to be explored in our future work.

V. IMPLEMENTATION IN MAINTENANCE DECISION

In this section, we form a periodic PM policy to demonstrate

how to incorporate the conclusion from imperfect maintenance

model selection into the maintenance decision framework con-

sidering the uncertainty due to the parameter estimation and

model selection. The basic assumptions are listed as follows.

1 The failure intensity function has a strictly increasing trend

if no PM intervention is involved.

2 PM activities are executed at fixed time interval .

3 The PM activities are imperfect, whereas the minimal re-

pairs are performed for the failures between adjacent PMs.

4 The system is replaced by a new, identical one at time

.

5 Compared to the operation time, the time for PM, minimal

repair, and replacement are negligible.

6 The planning horizon is infinite.

7 The objective is to minimize the expected average mainte-

nance cost per unit time.

Due to the limited data, the uncertainty associated

with the parameter estimation and model selection need

to be quantified in the maintenance decision model. Let

represent the imperfect maintenance

models that are not rejected by the proposed GOF test, and

denote the posterior probability

computed by (12). If ,

one of the models greatly dominates the others. The expected

average maintenance cost per unit time can be formulated as,

(14), shown at the bottom of the page, where repre-

sents the failure intensity function in the th PM cycle derived

from the th imperfect maintenance model. The uncertainty of

estimated parameters is quantified by from the pro-

posed bootstrap method. Hence, is a random

quantity. If doesn’t hold, which means that at

least two candidate models are competitive, it is necessary

to account for the uncertainty related to the model selection.

Thereby, the expected average maintenance cost per unit time

can be written as (15), shown at the bottom of the page, where

has uncertainty propagated from the uncer-

tainty of both estimated parameters, and model selection. In the

circumstance where is a random quantity, the

optimal PM policy could be chosen from various perspectives.

Three decision-making criterions, presented next, can be used.

1 The expectation criterion

(16)

Thereby, the PM policy with minimal expectation will be

chosen as the optimal policy.

2 The robustness criterion

(17)

, and correspond to the minimal values of the

mean, and the standard deviation of random quantity

respectively. , pre-determined by the

decision maker, is the relative weight between the mean

and the standard deviation. In this criterion, the decision

maker is seeking a compromise between the mean per-

formance and the robustness. The smaller , the more

important is the robustness.

3 The confidence criterion

(18)

where represents the one-sided

confidence bound of the random quantity .

For example, if , we are to seek the optimal solu-

tion whose 90% one-sided confidence bound is minimal.

The optimal solution can guarantee that 90% of the ex-

pected average maintenance cost is lower than the minimal

value when uncertainties are present in

both estimated parameters and model selection.

Note that, instead of the aforementioned three criterions,

other case-dependent criterions can be defined to identify the

most suitable policy considering the uncertainty of parameter

estimation and model selection.

(14)

(15)
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TABLE I
ARTIFICIALLY GENERATED DATA SETS FROM FIVE COPIES OF IDENTICAL REPAIRABLE SYSTEMS

VI. CASE STUDIES

Designed Test Problem I: We use a designed test problem

to demonstrate the effectiveness of the proposed GOF test, and

Bayesian model selection method. The initial failure intensity of

the repairable system is assumed to follow a log-linear process

where , and . The four imperfect preventive

maintenance models introduced in Section II-A are used here as

the candidate models. We assume that the failure data sets are

collected from five copies of identical repairable systems which

are governed by the imperfect maintenance Model I. For the

purpose of estimating the unknown parameters, and selecting

a model rather than optimizing the interval of periodic PM, the

failure data sets are artificially generated with the pre-specified

setting that the PM is periodically executed with time interval

equal to 70 hours. The system will be discarded at the end of the

third PM cycle. Each PM is imperfect, with identical parameter

value . The failures between any two consecutive PMs

are minimally repaired. An example of the artificially generated

failure data set is tabulated in Table I. Because the imperfect

PM activities are not involved in the first PM cycle, the failure

data in the first PM cycle do not have any contribution to the

parameter estimation of the imperfect PM model. Table I lists

52 failure data observed in the second and third PM cycles, and

these failure data will be used in the proposed method to esti-

mate the model parameter.

To apply the proposed GOF test to examine the adequacy of

the models, the unknown parameters of the pre-assumed imper-

fect maintenance models are first estimated via MLE method.

Based on the estimated imperfect maintenance model, all the

failure data are pooled into the u-space according to the corre-

sponding conditional survival density. Fig. 2 plots the empirical

distributions of u values under different pre-assumed imperfect

maintenance models (the stepwise line) versus the standard uni-

form distribution (the diagonal line). The empirical distributions

of u values from Model I, Model II, and Model III are closer to

the standard uniform distribution than that of Model IV, indi-

cating Model I, Model II, and Model III are more adequate than

Model IV. By applying the K-S test, we conclude that Model IV

cannot pass the test under a 95% confidence level setting. The

corresponding -values of the K-S test are also in Fig. 2.

The most adequate model among the possible candidates

(Model I, Model II, and Model III) can be further iden-

tified by the proposed Bayesian model selection method.

Without any knowledge, the prior preference

in (12) is set to 1/3 for all three potential models, i.e.

. The distributions

of the estimator of Model I, Model II, and Model III are

gained by using the proposed bootstrap method with

(See Fig. 3). The posterior probabilities computed using (12)

are 39.5%, 30.0%, and 30.5% for Model I, Model II, and

Model III, respectively. Hence, Model I is identified as the most

adequate model.

The results from model selection are further considered in

the periodic PM policy by (15). The estimated parameter in the

imperfect maintenance model is treated as a random quantity

with the distribution from the bootstrap method. Let ,

, and . The optimal periodic PM policies

under the three proposed criterions are listed in Table II.

As one observes from Table II, the optimal periodic PM po-

lices for criterions 1 and 2 are the same, but slightly different

from that of criterion 3. When one sets , the expected

average maintenance cost with respect to

different settings of the periodic PM interval are plotted

in Fig. 4. Because the true value of the parameter in the im-

perfect maintenance model where the failure data are generated

is known, the corresponding can be used

as a benchmark, and denoted by the black solid line as shown

in Fig. 4. Due to the uncertainty from parameter estimation,

under different assumptions of underlying

imperfect maintenance models is also represented by a random

quantity. The 90% confidence bounds (CB) are indicated by the

dashed lines, and means are denoted by the solid lines with dis-

tinct markers. As shown in Fig. 4, if one assumes the imper-

fect maintenance model is Model II or Model III, the corre-

sponding is far away from the true value,

and such discrepancy increases as the periodic PM interval

increases. The 90% confidence bounds of

from Model I contain the true values. However, compared to the

results computed by the proposed maintenance decision model

(15), the proposed model is slightly closer to the true values, but

also has narrower uncertainty bounds. Therefore, considering

the uncertainty of imperfect maintenance model selection in the

maintenance decision will reduce the potential risk of specifying

an imperfect maintenance model without model selection, es-
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Fig. 2. Empirical distribution of u values vs. the standard uniform distribution. (a) Model I (�� � ���� and � � ���	
 � ����). (b) Model II (�� � ��
� and
�� ���	
 � ����). (c) Model III (�� � ���� and �� ���	
 � ����). (d) Model IV (�� � ��
� and �� ���	
 � ����).

pecially in the case where the pre-determined imperfect main-

tenance model is not the true model.

Designed Test Problem II: To further demonstrate the benefit

of the proposed models in maintenance decisions when none of

the candidate models is the true model, we design test problem

II in which the failure data sets are artificially generated using

hybrid imperfect maintenance models [9]. The hybrid model

combines the concepts from both Model I and Model III, and

the failure intensity function of the th PM cycle is defined as

where , and . The PMs not only reduce

the system’s virtual age, but also change the slope of the failure

intensity function. The failure data sets are collected from ten

copies of identical, repairable systems with the parameters of

imperfect preventive maintenance equal to 0. 25, and 1. 3 for

, and , respectively; and the parameters of the initial failure

intensity, as well as the pre-specified interval of periodic PM,

are the same as those used in the designed test problem I.

By using the proposed GOF test, it has been found that Model

I, Model II, and Model III are adequate enough to characterize

the failure date sets. The posterior probability of these three

candidate models can be computed via the proposed Bayesian

model selection method, and the results are 1%, 20%, and 79%

for Model I, Model II, and Model III, respectively. Knowing

the true values of the parameters of the hybrid imperfect main-

tenance model, the optimal periodic PM policy can be solved,

and it is , . The corresponding expected

average maintenance cost per unit time is plotted in Fig. 5. Even

if one chooses a model among Model I, Model II, and Model III,

and considers the uncertainty associated with parameter estima-

tions, the corresponding values of the expected average mainte-

nance cost per unit time are quite different from the true values,

as observed from Fig. 5. Model III is very slightly closer to the

true values than Model II, but also has lower uncertainty bound.

Although the expected average maintenance cost per unit time
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Fig. 3. Empirical distributions of the estimator �� for candidate models. (a) ����� �� � (Model I). (b) ����� �� � (Model II). (c) ����� �� � (Model III).

TABLE II
OPTIMAL PERIODIC PM POLICIES UNDER THE PROPOSED CRITERIONS

of the proposed maintenance decision model (15) has some dis-

crepancy with the true values, it is the most accurate.

Because the failure data sets are not generated from the

four candidate imperfect maintenance models, it is impossible

to find one model that has exactly the same failure behavior

with the true model. However, based on the proposed model

selection method, Model III is identified as the most accurate

model among the others because it has the largest posterior

probability. Considering the uncertainty from model selection,

the proposed maintenance decision model can further provide

more accurate results than Model III because the error from

selecting an incorrect model can be reduced.

Designed Test Problem III: To study how sensitive the model

selection approach is with respect to the amount of data, the

Fig. 4. Expected average maintenance cost per unit time with respect to �
when � � �.

number of identical repairable systems is specified to 10, 20, 40,

and 60, respectively. The parameters of the initial failure inten-

sity, as well as the pre-specified interval of periodic PM, are the
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Fig. 5. Expected average maintenance cost per unit time with respect to �
in the case of the hybrid imperfect model and � � �.

TABLE III
VALUES OF THE PARAMETERS OF THE ORIGINAL

IMPERFECT MAINTENANCE MODELS

same as those used in the designed test problem I. The failure

data set of each individual system is randomly generated by as-

suming the system follows one of the imperfect maintenance

models (called the original model in the following context) with

pre-set values for the model parameter as listed in Table III. The

“low effect” row in Table III is the situation where the preventive

maintenance has a lower impact on the failure intensity function,

whereas the “high effect” row corresponds to the case having a

larger impact. Due to the randomness of the failure data, the

statistical performance of the proposed GOF test method and

Bayesian model selection method is examined by the sum of

-values computed from the proposed GOF test, and the sum

of the posterior probabilities of the candidate models over 100

trials of simulation. The proposed method should likely find

the original model from which the failure data are artificially

generated.

The sum of the -values computed from the proposed GOF

test is shown in Fig. 6, and a greater value indicates that the im-

perfect maintenance model has a lower chance to be rejected

in the proposed GOF test. The original imperfect maintenance

model where the failure data sets are artificially generated is in-

dicated by the square brackets. In our study, both Model I and

Model II are capable of representing the failure data generated

from the other models, and in a majority of cases the sum of

-values of these two models are greater than 50.0. Most of the

time, Model III and Model IV are rejected by the GOF test when

the failure data are from Model I and Model II, and the corre-

sponding -values are very small (less than 5.0), as shown in

Fig. 6. However, when the original model is Model III or Model

IV, all the candidate models have a large chance not to be re-

jected by the GOF test, and the sum of the -values from the four

Fig. 6. Sum of �-values of the proposal GOF test in the lower effect case.

Fig. 7. Sum of posterior probabilities of the candidate models in the lower ef-
fect case.

candidate models are very high (greater than 50.0). Thereby, it is

necessary to identify the most adequate model by the proposed

Bayesian model selection method.

The sum of the posterior probabilities of the candidate models

over 100 trials are shown in Fig. 7. Apparently, the original

model has the highest chance to be identified via the proposed

method. Only when the original model is Model III, Model I

will become a competitive model with Model III if the data are

very limited. However, by adding more failure data, the chance

of identifying Model I as the original model decreases.

The same testing is also performed on the scenario where the

impact from imperfect maintenance is large. Both Model I and

Model II have a large chance not to be rejected by the GOF test

even if the failure data come from the other models, indicating

Model I and Model II have a greater capability to fit failure data

than the other two models. However, by comparing Fig. 8 with

Fig. 6, we find that adding more failure data will reduce the sum

of -values of Model II when the failure date originated from

the other models. Again, if the failure data come from Model IV,

most of the time, the other three models are adequate to describe

the failure data. After applying the proposed Bayesian model

selection method, the most adequate model can be clearly iden-

tified even if limited data are available (only 10 sets of failure
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Fig. 8. Sum of �-values of the proposal GOF test in the higher effect case.

Fig. 9. Sum of posterior probabilities of the candidate models in the higher
effect case.

data), as shown in Fig. 9. By comparing Fig. 9 with Fig. 7, one

can also conclude that the posterior probabilities of Model III

and Model IV will be increased when the failure data are orig-

inally from Model III and Model IV with higher maintenance

efficiencies.

VII. CONCLUSION AND DISCUSSION

In this paper, a data-driven approach for imperfect mainte-

nance selection is proposed to address two important issues

in choosing the imperfect maintenance models, especially

when the knowledge of potential physics of failure, and the

mechanism of improvement from maintenance, are absent.

To examine whether the pre-assumed imperfect maintenance

model is adequate to characterize the stochastic failure be-

havior, a novel GOF test is proposed by pooling all the failure

data into a u-space via the conditional survival distribution.

The validity of the imperfect maintenance model is exam-

ined by checking the uniformity of the resulting u values.

One of the advantages of the u-pool method is that it allows

validating all the failure data sets from multiple copies of

identical repairable systems. In the case where more than one

candidate model is valid, a Bayesian model selection method is

proposed to identify the most adequate imperfect maintenance

model among the candidates. The associated uncertainty of

parameter estimation is quantified via the bootstrap method.

The periodic PM policy optimization problem is presented to

demonstrate how to apply the results from model selection to

the maintenance planning, and three decision-making criterions

are introduced to account for the uncertainty associated with

the parameter estimation and model selection. Three designed

test problems are presented to demonstrate the effectiveness

of the proposed methods. The correct model from which the

artificial failure data are generated has the largest chance to

be identified from the competitive candidates by the proposed

model selection approach even with limited data, and such

identification capability will become greater with the increase

of the amount of data. Meanwhile, the proposed method can

better identify the correct model if maintenance activities have

high effect on the system deterioration process. On the other

hand, by incorporating the uncertainty of model selection into

the maintenance decision model, we find that the accuracy of

computing the quantity of interest can be further improved due

to the reduction of the error of model selection.

Although we only applied the proposed method to the circum-

stance where PMs are imperfect, and the failed systems are min-

imally repaired, the proposed methods are applicable to the case

in which corrective and preventive maintenance are both imper-

fect. In addition, the candidate imperfect maintenance models

are not limited to just the four models illustrated in this paper.

However, in the case of no failure data, the proposed method is

not applicable because selecting imperfect maintenance purely

depends on the available failure data. It is therefore necessary

to incorporate information from experts’ judgment to facilitate

model selection. On the other hand, in the present paper, it is

assumed that all the imperfect maintenance models have only

one parameter to be estimated, and the efficiency of each PM

is equal. We will explore more complicated situations in our fu-

ture work, like the case where the imperfect maintenance model

has more than one parameter, or the improvement from mainte-

nance may vary within the lifecycle. In addition, the identifia-

bility issue might arise if both the parameters of the initial failure

intensity and the candidate imperfect maintenance models are

unknown. That is a challenging research issue worth exploring

in the future. Finally, this paper supposes that the data sets come

from multiple identical systems. It is also necessary to develop

methods to quantify the uncertainty associated with parameter

estimation when only one system is observed, but the time of

observation could be very long.
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