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Abstract: Autonomous sprayer UAVs are one of the most used aerial machines in modern agriculture.
During flight missions, some common narrow obstacles appear in the flying zone. These are non-
detectable from satellite images and one of the biggest challenges for autonomous sprayer UAVs in
farmland. This work introduces an obstacle avoidance architecture specifically for sprayer UAVs.
This architecture has generality in the spraying UAV problem, and it reduces the reliance on the
global mapping of farmland. This approach computes the avoiding path based on the onboard
sensor fusion system in real-time. Moreover, it autonomously determines the transition of several
maneuver states using the current spraying liquid data and the UAV dynamics data obtained by
offline system identification. This approach accurately tracks the avoidance path for the nonlinear
time-variant spraying UAV systems. To verify the performance of the approach, we performed
multiple simulations with different spraying missions, and the method demonstrated a high spraying
coverage of more than 98% while successfully avoiding all vertical obstacles. We also demonstrated
the adaptability of our control architecture; the safe distance between the UAV and obstacles can be
changed by specifying the value of a high-level parameter on the controller. The proposed method
adds value to precision agriculture, reduces mission time, and maximizes the spraying area coverage.

Keywords: obstacle avoidance; plant protection UAV; precision agriculture; data-driven dynamic
avoidance approach; spray coverage

1. Introduction

Recent trends for agricultural enhancement products are based on artificial intelligence,
information technology, global positioning, geographic information systems, automated
management systems, process control, robotics, and integrated precision [1]. As a part of
high-tech precision agriculture, Unmanned Aerial Vehicles (UAV) are applied for crop mon-
itoring and crop protection practices at a large scale, especially in advanced technological
countries aiming for higher smart agriculture [2]. Research studies are actively conducted
on Unmanned Aerial Vehicles’ (UAVs) development and adaption [3,4] for agricultural
practices with higher precision; they are mainly used for field mapping [5,6], plant stress de-
tection [7,8], biomass estimation [9,10], weed management [11,12], inventory counting [13],
chemical spraying [14–16], auxiliary pollination [17], etc. Of these, the most widely used
application is spraying pesticides by UAVs for plant protection. Spraying pesticides on
crops is a compulsory operation that is applied multiple times during crop lifetime. Starting
from the Japanese Yamaha R50 1985 [18], the development of automated and intelligent
agricultural pesticide sprayer UAVs is growing very fast. These automated sprayer UAVs
are gaining more attention than manual flying UAVs because of their operational and
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environmental complexity [19]. They are expected to achieve some key points, including:
(a) better spray deposition, (b) smarter obstacle avoidance, (c) more coverable spray path
plan, etc. Intelligent obstacle avoidance for agricultural sprayer UAVs is a vital feature that
increases the spray coverage, saves battery life, and avoids obstacles in a shorter time. A
proper obstacle avoidance method specifically for sprayer UAVs can save time, increase
pesticide deposition efficiency, and ensure UAV and human safety.

Previously, substantial research has been performed on obstacle avoidance for single
and multiple obstacles. Chakravarthy and Ghose [20] developed a collision cone technique
for single-obstacle avoidance. Another method called the velocity obstacle approach was
presented for both static and moving obstacles by Fiorini and Shiller [21]. Chakravarthy and
Ghose (2012) extended the collision cone method to detect obstacles in three-dimensional
space. A radar-assisted collision guidance strategy (RACAGS) for low-altitude flying un-
manned vehicles using the sliding circle algorithm was proposed by Kumar and Ghose [22].
The cross-entropy method has been used for obstacle detection and avoidance, also known
as ‘see and avoid’ by Olivares-Mendez et al. [23]. They used a fuzzy controller to command
the UAV and experimented with simulation. Another obstacle-avoidance control method
that consists of acquiring a distance between UAVs and a front object in a flying direc-
tion of the UAV and controlling the flying altitude of the UAV according to the distance
between the UAV and object was invented by Zou et al. [24]. In the same year, Zou [25]
also developed another method to control obstacle avoidance for an unmanned aerial
vehicle by obtaining the current craft body’s attitude and position information. The UAV
controls the detection apparatus direction to be in a preset direction according to the current
attitude information of the UAV. Besides, plenty of research on multiple object detection
and avoidance has been carried out previously. A Mixed-Integer Linear Program (MILP)
approach was applied by Richards and How [26], using linear constrain of an approximate
model of aircraft dynamics. A collision-free path using a visibility graph was planned by
Lozano-Pérez and Wesley [27], where the obstacles consider the robot’s dimensions. A
modified Grossberg Neural Network (GNN) was proposed by Wang et al. [28] for multiple
UAVs’ cooperative formation. For a quadrotor, Park and Baek [29] presented a stereo
vision-based obstacle collision avoidance method using an ellipsoidal bounding box and
hierarchical clustering. Another image processing technique was used by Ferrick et al. [30],
where a basic wall-following was combined with obstacle avoidance constructed from
laser rangefinder sensor data using image processing in OpenCV and simplified occupancy
grid maps. Naderhirn et al. [31] proposed a robust hybrid control for stationary obstacle
avoidance in the presence of uncertain measurements, such as for a radar cone. Shanmu-
gavel et al. [32] generated safe waypoints using Delaunay triangulation to isolate obstacles
from one another. Many studies have been performed on collision avoidance between
UAVs [33–37].

These different algorithms were formed concerning goal-point reaching and avoidance
with shorter times and paths, as illustrated in Figure 1a–d. However, for automated
agricultural sprayer UAVs, the objectives are particular [38,39] and different in obstacle
avoidance, as illustrated in Figure 1e. The goal is to fly from one waypoint to the next
waypoint to spray the maximum area in a shorter time. In between one waypoint and
another waypoint, the UAV flies straight. If the UAV faces any obstacles between two
waypoints, it needs to avoid that obstacle and return onto that straight path.

In an automatic operation, two categories of physical obstacles can appear in farmland.
The ground station application collects the farmland’s coordinates and larger obstacle
images from satellite images and positioning [41]. Combining those data and the spray
coverage width, the ground station makes a suitable spray mission, excluding those ob-
stacles [42,43]. Sometimes they can be avoided by manually configuring the obstacle’s
placement by manual GPS positioning [44]. However, some relatively smaller/narrow
size obstacles are undetectable from satellites, or precise position cannot be obtained from
satellite data. These obstacles need to be avoided by local onboard obstacle avoidance
systems. Examples of the second type of obstacle are electric poles, telegraph poles, grid
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line towers, scattered trees, windmills, pergolas, etc. Besides, another physical issue of
agricultural sprayer UAVs is that they carry a continuously decreasing liquid tank, which
changes the center of gravity of the tank [45]. Because of these phenomena, the UAV loses
a massive amount of its overall weight during operation. This changing weight changes
the flight controller’s flight control parameters such as maximum pitch and roll degree.
Figure 2 shows a basic sprayer UAV model, and the varying center of gravity has been
illustrated. So, real-time obstacle avoidance with smart technology is an important feature
that must include the flight technology of agricultural pesticide sprayer UAVs.
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Figure 2. Agricultural sprayer UAV (quadrotor).

Considering these issues: (a) an agricultural liquid-carrying sprayer UAV must have a
time saving effect, and the coverage must prioritize local or real-time obstacle avoidance
systems; (b) the sprayer UAVs generated avoidance path must be out of the danger zone
of the obstacle and should be as close as possible for maximum spray coverage; (c) the
avoidance approach should vary depending on the speed and weight; and (d) the local
obstacles need to be avoided by a local onboard sensing system, where a sensor fusion is
also needed to detect the obstacle’s front and side situation.

This study proposes a data-driven avoidance method targeting dynamic load-changing
agricultural sprayer UAVs. Using the proposed method, agricultural UAVs can avoid
obstacles in farmland with dynamic avoidance speed and fixed heading direction, saving
time with safety concerns and covering a maximum area. The contributions of this study are
summarized as follows. First, a new real-time obstacle avoidance method was developed
for plant protection sprayer UAVs to avoid different static farmland obstacles. Second, a
dynamic obstacle avoidance approach was created using the sprayer UAV’s liquid level
and the obstacle’s orientation. Third, a suitable new sensor architecture was used for the
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new approach. Fourth, an independent local avoidance system was created with the ability
to overdrive the pitch and roll control to let the mission controller keep the height and
yaw static.

2. Material and Methods
2.1. Model

We created a primary physical model of an agriculture quadrotor drone in MATLAB
Simulink to show the new algorithm’s concept. The total body of the architectural model
contained three essential parts: (a) the main body frame of the quadrotor; (b) the bottom-
attached tank with changeable rigid weight; and (c) the suitable sensor architecture. We
first made a quadcopter using 6-DOF (degrees of freedom) dynamic equations to make the
entire model, where the frame generated thrust using a BLDC (brushless DC) motor. Then,
we designed a PID-based velocity controller to control the flight maneuver. After that,
we attached a model tank below the quadrotor frame, where the liquid inside the tank is
simulated as a rigid body. That rigid body changes its mass and moment of inertia according
to the liquid level. Lastly, we used a new multiple sensor architecture with the body frame
to acquire obstacle knowledge from the environment. This overall control architecture is
shown in Figure 3, and the detailed model is shown in the following subsections.
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2.1.1. Quadrotor and Tank Liquid Level Formation

We used a traditional rigid body quadcopter, using 6-DOF (degrees of freedom)
dynamics governed by Newton’s law and the Euler angles shown in Figure 4a. Four motors
drive the quadcopter model at the four endpoints of each arm. The center of mass of the
UAV is CD and the length of the arm from the center to the outer end is LDA. Motors 1, 2,
3, and 4 generate thrust, u1, u2, u3, and u4, respectively, and create torque τ1, τ2, τ3 and τ4,
respectively. Equations (1) and (2) describe the 6-DOF dynamics of the quadcopter, where

the total force is
→
Fb and the total torque is

→
Mb.

→
Vb and

→
Wb are the velocity and angular rates

on the body frame.

→
Fb = M

d
→
Vb
dt

+
→

Wb ×
→
Vb

 (1)

→
Mb = I

d
→

Wb
dt

+
→

Wb ×
(

I
→

Wb

)
(2)
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For the tank part, we added a rectangular-shaped empty body which is shown in
Figure 4b, where CT is the center of the tank. dDT is the distance between the center of the
quadcopter and the center of the tank. The placement of the tank is under the quadcopter.
This study excluded the sloshing effect by constructing a lid that could be moved from
bottom to top inside the tank. This lid allowed us to model the liquid as a rigid body. A
range of 0 to 1 was set from bottom to top for the lid to define the liquid amount inside the
tank. Equation (3) shows the liquid level assumption, and Figure 4b illustrates the liquid
level assumption. It also shows the placement of the tank and quadrotor, where hT , wT ,
and lT are the tank’s height, width, and length. For simplification, we used lT = wT here.

In Equation (4), the mass of liquid ML depends on the level of the liquid, where
MLQmax is the maximum liquid mass and PLQ is a nondimensional parameter that defines
the amount of the liquid. The system’s total mass will be the quadrotor and liquid’s
combined mass, stated in Equation (5). Equations (6)–(8) show that the tank liquid’s
moment of inertia concerning its principal axes depends on the tank liquid level, where IxL,
IyL, and IzL are the moment of inertia of x, y, and z axes, M is the mass of the entire system,
and MD is the mass of the UAV.

PLQ = [0 ∼ 1] (3)

ML = MLQmaxPLQ (4)

M = MD + ML (5)

IxL =
1

12
ML

[(
hT PLQ

)2
+ wT

2
]

(6)

IyL =
1

12
ML

[(
hT PLQ

)2
+ lT

2
]

(7)
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IzL =
1

12
ML

[
lT

2 + wT
2
]

(8)

When the tank is attached to the quadrotor, the system’s center of mass and the
moment of inertia change. In Equation (9), the center of the mass of the tank’s liquid CML
is shown, and the center of mass of the whole system CMS is shown in Equation (10), where
CMD is the center of mass of the quadcopter. Both are illustrated in Figure 4c. Here, we
defined two distance parameters, dSD and dSL, in Equations (11) and (12), where dSD is the
distance between the system’s center of mass and the drone’s center of mass, and dSL is the
distance between the system’s center of mass and the tank liquid’s center of mass. These
two distances, dSD and dSL are illustrated in Figure 4c. The inertia of the total system is
stated in Equations (13)–(15), where Ix, Iy, and Iz are the moment of inertia of the x, y, and
z axes.

CML = −
[
dDT − 0.5hT + hT − 0.5hT PLQ

]
(9)

CMS =

(
MDCMD + MLCML

MD + ML

)
(10)

dSD = CMS − CMD (11)

dSL = CMS − CML (12)

Ix = IxD + MDd2
SD + IxL + MLd2

SL (13)

Iy = IxD + MDd2
SD + IxL + MLd2

SL (14)

Iz = IzD + IzL (15)

2.1.2. Sensor Model

This system used one long-range wide-angle sensor and four single-point detection
sensors facing different directions. This sensor architecture allowed the UAV to detect the
obstacle’s distance, width, and length, and avoid the obstacle using these parameters. A
long-range millimeter-wave radar sensor and four single-point laser ranging sensors were
used. In Figure 5, we show the sensors placements, where the long-range sensor S0 is set
up at the front middle, the single-point sensor S1 is set up at the front left arm facing the
front, the single-point sensor S2 is set up at the back left arm facing left, the single-point
sensor S3 is set up at front right arm facing front, and single-point sensor S4 is set up at the
back right arm facing right. Details will be described in “Obstacle information” section.
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2.2. Path Planning Algorithm

From the information of related research work, sprayer UAVs, and obstacle data in
farmland, we can assume that the obstacles in farmland are sparsely distributed. Here,
we assume a common obstacle as a vertical object and simply formed. Following our
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data-driven concept, the data processing level converts primary data into decision-making
datasets to perform final avoidance. This is the high-level path planning of the proposed
obstacle avoidance procedure illustrated in Figure 6a. Using this process, a complete
obstacle avoidance path shows the implementation of the path planning algorithm for a
single obstacle in Figure 6b.
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2.2.1. Distance Definition
Safe Distance around the Obstacle

Different sprayer UAV sizes create different safety concerns in farmland. For example,
a 20 L liquid-carrying UAV needs a more extensive, more substantial rotor span and body
than a 5 L liquid-carrying UAV [46]. The larger wingspread creates a higher maneuver-
reflex time. Concerning the issue, the safe distance should be dynamically related to the
arm length of the UAV. The relation between the UAV’s safe distance dS and arm length lDA
is shown in Equation (16). A user-defined multiplier x is used to decide the safe distance,
which is dependent on the size of the UAV. In our UAV model, we select x = 2, which
means the safe distance is double that of the UAV’s arm. This distance is flexible depending
on the user’s input.

dS = xlDA (16)

Slowdown Distance

Large agricultural UAVs often fly in 2 ∼ 6 ms−1 [47]. However, the velocity is
sometimes too high to avoid obstacles precisely and safely. If the UAV wants to go close
enough, it cannot go with high velocity for spray coverage. A sudden stop at any point
with high velocity and liquid load will create unexpected oscillation. The UAV needs to
slow down gradually from initial flying velocity to avoidance velocity to perform a stable
avoidance maneuver. This distance is named slowdown distance and illustrated in Figure 6.
Here, DP0 is the position at the very first moment that the UAV sees the obstacle and starts
calculating the avoidance velocity and the slowdown distance. Then, from the position
DP1, the UAV starts slowing down and it reaches the avoidance velocity at position DP2.
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This slowdown distance varies depending on the initial velocity vD and liquid level PLQ.
In our system, the slowdown distance is defined as dSD and estimated by assuming a
constant acceleration of motion, which is shown in Equation (17). From free body diagrams
of a UAV [48] where total thrust is uT , pitch angle is θ, uTmax is maximum thrust, g is the
gravitational acceleration, and θmax is maximum pitch angle:

uTmax cos θmax −Mg = 0

uTmax cos θmax = Mg

If the acceleration is a, from the free body diagram:

uTmax sin θmax = Ma

So,
tan θmax =

a
g

a = g tan θmax

From Newton’s law (the velocity of the drone is vD and the deceleration distance dDs):

uTmax sin θmax = Ma

dDs =
vd

2

2a

dSD =
vD

2

2g tan θmax
(17)

Because the trust has an upper bound, the UAV is limited to a certain tilt angle.
Otherwise, the thrust is not enough to balance the mass, which causes a flight crash.
Considering 3-degree force balance:

uTmax cos2 θmax = Mg

θmax = cos−1

√
Mg

uTmax

Here, we introduce a safety factor named c1 which is multiplied by the maximum tilt
angle. The value of the safety factor is equal to the subtract value of the mass of the UAV
and the mass of the UAV with the tank. Here MD is the mass of the UAV, M is the mass
of the whole system and Thrustmax is the maximum thrust of the system created by four
rotors. So, the maximum pitch angle for the system is:

θmax = c1 cos−1

√
Mg

uTmax

θmax =

(
MD
M

)
cos−1

√
Mg

uTmax
(18)

By combining Equations (17) and (18) (where the slowdown distance is only a function
of the initial velocity vD and the nondimensional liquid parameter PLQ):

dSD =
vD

2

2g tan θmax

dSD =
vD

2

2g tan
((

MD
M

)
cos−1 Mg

uT max

)
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dSD =
vD

2

2g tan
((

MD
MD+ML

)
cos−1

√
(MD+ML)g

uT max

)
dSD =

vD
2

2g tan

((
MD

MD+(MLQmax ·PLQ)

)
cos−1

√
(MD+(MLQmax PLQ))g

uT max

) (19)

Obstacle Information and Formation

Obstacle Information
From the view of the sprayer UAV, it defines the obstacle’s position from two time

segments. Firstly, when the obstacle appears in front of the drone, and secondly, when the
drone is avoiding the obstacle. We used a millimeter-wave radar sensor as the primary
obstacle detector, which is named S0, and a single-point laser distance sensor for border
detection, which is mentioned as S1, S2, S3, and S4. The basic advantage of a millimeter-
wave radar is the capacity of object detection from a very long distance. Besides, it has
an estimation capacity of the obstacle direction using its positive and negative angular
field of view [49]. On the other hand, the single laser distance sensor has a very precise
measurement capability which is suitable to detect the boundary of the obstacle [50]. In
Figure 7a, we show the obstacle’s positions at different moments in the perspective of the
UAV. At position OP0, the sensor S0 detects the distance of the obstacle and calculates the
distance d0. The sensor S0 can also detect whether the obstacle is on the right or left side of
the UAV for the corner case. The detail of the corner case will be described in “Possible
obstacle positions and first safe distance” section. Then, sensor S1, S2, S3, and S4 detect the
obstacle at positions OP1, OP2, OP3, and OP4, and calculate the distances d1, d2, d3, and d4.
These laser sensors collect two types of information for the system. One is the appearance
of the obstacle, and another is the distance of the obstacle.
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Obstacle Formation
Figure 7a illustrates the possible positions for an obstacle considering the safety of the

UAV, where outside of the green line is a safe zone. There are different shaped obstacles
on farmland that need to be ideally avoided during a planned mission. The proposed
algorithm’s sensor architecture can automatically normalize any shaped obstacles into an
absolute “U” shape using three detection marks. This transformation creates a simplified
avoidance path that can be realized by shifting the velocity command in the x and y
axes. Figure 7b,c show how the UAV’s sensor architecture detects obstacles from different
positions and extracts three major points.

First Safe Distance and Maneuver Direction

Possible Obstacle Positions and First Safe Distance
During the mission, the obstacle detection and avoidance procedure often face corner

detection cases. Figure 8 shows different detection and direction cases while the UAV
approaches the obstacle. Figure 8a describes the actual avoid region, the UAV’s different
approaching positions (p1, p2, p3, p4, p5), and the safe distance ds. It also shows a zone
named D zone, where the system can detect the obstacle either from S0, S1, and S3; or from
S0 and S1; or from S0 and S3. Corner cases occur when the UAV is approaching inside the
avoid region but outside the D zone. From the position p1 to p2, the UAV cannot detect the
obstacle’s edge via sensor S3. From position p4 to p5, the UAV cannot detect the edge of
the obstacle via sensor S1. Figure 8b,c show some other corner cases and the data received
from the sensor S0 in these situations.

Agronomy 2022, 12, x FOR PEER REVIEW 11 of 27 
 

 

not detect the obstacle’s edge via sensor 𝑆 . From position 𝑝  to 𝑝 , the UAV cannot de-
tect the edge of the obstacle via sensor 𝑆 . Figure 8b,c show some other corner cases and 
the data received from the sensor 𝑆  in these situations. 

 
Figure 8. UAV’s possible predicted positions and detection calculation. (a) possible UAV place-
ments, (b) Left side position, (c) Right side critical position. 

The relation of the data received from the center sensor 𝑆  is shown in Equations 
(20) and (21). The first safe distance 𝑑  is then defined as the trigger distance for the UAV 
to make correct avoidance in any possible approaching case, where the corner cases are 
the most crucial ones. This distance 𝑑 , should be determined appropriately. If 𝑑  is too 
large, the UAV will avoid too early and leave a large distance between the obstacle in any 
approaching case. However, if 𝑑  is too small in corner cases, the UAV will approach 
too close to the obstacle, lose the obstacle detection due to the angle limit of the center 
sensor 𝑆 , and eventually decide not to avoid. Considering the most extreme situation of 
the corner cases, which is illustrated in Figure 8b, the value of the first trigger distance 𝑑  
determined as a function of the maximum front sensor’s angle Ø  and the safe distance 𝑑  are shown in Equation (22). From Equation (22), a larger cone angle of the center sensor 
results in a smaller first safe distance for a specified safe distance, thus reducing the gap 
between the UAV and the obstacle. 𝑑 =  𝑑 sin Ø (20)𝑑 =  𝑑 cos Ø (21)

𝑑 =  𝑑tan Ø  (22)

Obstacle’s Direction Detection 
The UAV should choose the avoidance direction (left/right) according to the obsta-

cle’s position to create a safer and shorter path in the corner case. In Figure 8b,c, we show 
how it obtains the direction of the obstacle using Equation (20). If the value 𝑑 (+) is pos-
itive, the obstacle is on the left side, and the right way is safer to avoid. Besides, if the 
value is negative 𝑑 (−), the obstacle is on the right side, and the left is safer to avoid. 

Algorithm Formation with State Machine 

Figure 8. UAV’s possible predicted positions and detection calculation. (a) possible UAV placements,
(b) Left side position, (c) Right side critical position.

The relation of the data received from the center sensor S0 is shown in Equations (20)
and (21). The first safe distance ds1 is then defined as the trigger distance for the UAV
to make correct avoidance in any possible approaching case, where the corner cases are
the most crucial ones. This distance ds1, should be determined appropriately. If ds1 is too
large, the UAV will avoid too early and leave a large distance between the obstacle in any
approaching case. However, if ds1 is too small in corner cases, the UAV will approach
too close to the obstacle, lose the obstacle detection due to the angle limit of the center
sensor S0, and eventually decide not to avoid. Considering the most extreme situation of
the corner cases, which is illustrated in Figure 8b, the value of the first trigger distance ds1
determined as a function of the maximum front sensor’s angle Ømax and the safe distance
dS are shown in Equation (22). From Equation (22), a larger cone angle of the center sensor
results in a smaller first safe distance for a specified safe distance, thus reducing the gap
between the UAV and the obstacle.

db = d0 sin Ø (20)
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dc = d0 cos Ø (21)

dS1 =
ds

tan Ømax
(22)

Obstacle’s Direction Detection
The UAV should choose the avoidance direction (left/right) according to the obstacle’s

position to create a safer and shorter path in the corner case. In Figure 8b,c, we show how
it obtains the direction of the obstacle using Equation (20). If the value db(+) is positive,
the obstacle is on the left side, and the right way is safer to avoid. Besides, if the value is
negative db(−), the obstacle is on the right side, and the left is safer to avoid.

Algorithm Formation with State Machine

We form this algorithm for agricultural sprayer UAVs using the primary inputs and
processed data. The inputs are the length of an arm lDA, the mass of the UAV MD, initial
velocity vD, liquid level PLQ, front-middle sensor S0’s distance data d0 and angle Ø, front-
faced left-front sensor S1’s distance data d1, left-faced left-back sensor S2’s distance data d2,
front-faced right-front sensor S3’s distance d3, right-faced right-back sensor S2’s distance
d4 and drift distance dDR. Processed inputs are slowdown distance dSD, avoidance velocity
vA, trigger time tTR, safe distance dS, first safe distance dS1, corner object’s opposite length
db, corner object’s adjacent length dc and obstacle’s directional position db(Negative) and
db(Positive). We used DFA (Deterministic Finite Automata) or the state machine mechanism
to minimize the computational calculation and simplification of decisions. To use the
mechanism, we constructed some states for the algorithm in Table 1, where the algorithm’s
state is described.

Table 1. State table of the algorithm.

State Operation Binary
Condition Logical Condition Next State

q0 Follow reference path 1 d0 ≤ (dSD + dS1) q1

0 q0

q1 Avoidance Velocity Fly (x-vel = vA , y-vel = 0) 1 d0 ≤ dS1 q2

0 q1

q2 Decide Avoiding Direction 1 (d1 & d3 = max && db ≥ 0) || d3 ≥ d1 q3

0 (d1 & d3 = max && db < 0) || d3 < d1 q4

q3
Fly right

(x-vel = 0 , y-vel = vA)
count time +

1 S1 6= touched && db ≥ (lDA sin α)||S1 = touched && d1 = Max q5

0 q3

q4
Fly Left

(x-vel = 0, y-vel = −vA)
count time +

1 S3 6= touched && db ≥ (lDA sin α)||S3 = touched && d3 = Max q5

0 q4

q5 Continue y-vel, tTR time 1 f inished f lying tTR time && vA < 0 q6

0 f inished f lying tTR time && vA > 0 q7

q6
Fly forward

(x-vel = vA , y-vel = 0)
1 S2 = touched && d2 = Max q8

0 q6

q7
Fly forward

(x-vel = vA , y-vel = 0)
1 S4 = touched && d4 = Max q8

0 q7

q8 Continue x-vel, tTR time 1 f inished f lying tTR time && S2 < S4 q9

0 f inished f lying tTR time && S2 > S4 q10

q9
Fly left

(x-vel = 0, y-vel = −vA)
count time −

1 counted time = 0 q0

0 q9

q10
Fly right

(x-vel = 0, y-vel = vA)
count time −

1 counted time = 0 q0

0 q10

There are eleven states in this mechanism, which are q0, q1, q2, q3, q4, q5, q6, q7, q8,
q9, and q10. State q0 is the starting state of the process, which activates from the start of
the mission. The front sensor is activated continuously with the whole process from this
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state. While the reading of the sensor S0 is less or equal than the summation of slowdown
distance dSD and first safe distance dS1, it switches the state from q0 to q1, otherwise q0
remains active. The next state q1 works to decrease or decelerate the velocity from the
initial speed vD to avoidance velocity vA in the x-axis direction. While the distance d0 is
less or equal than the first safe distance dS1, it switches the state to q2.

In the state q2, If the values of d1 and d3 are maximum or over buffer value, and the
value of db is bigger or equal than 0, or the value d3 is bigger or equal than d1, it means the
obstacle is at the left or absolute front side of the UAV, according to “Obstacle’s direction
detection” Section. In this condition, it switches the state to state q3. On the other hand, if
the values of d1 and d3 are maximum or over buffer value, and the value of db is less than 0;
or if the value of d3 is less than d1, it means the obstacle is at the right side of the UAV, and
it switches to the state q4.

In the state q3, the UAV stops flying in the x-axis direction and starts flying in y-axis
direction positively using avoidance velocity vA, which means flying the UAV bank right.
Besides that, it begins counting the time of moving right. Here, while the drone is flying
right, it detects when to fly forward when either of the two conditions occurs. The first
condition is that the sensor S1 is not touched, and the value of db is bigger or equal than the
value of arm length lDA multiplied with sin α, where α = 45◦ is defined in Figure 8. This
corresponds to the situation where the drone has approached the obstacle in corner cases
during q1 state, shown in Figure 8b,c. The second condition is that the sensor S1 has already
touched the obstacle, and the S1 sensor detects nothing in the forward direction, which
means that it receives a maximum return value. This corresponds to the situation where
the drone has approached the obstacle in the D zone during q1 state, which is shown in
Figure 8a. If either of these conditions are checked, state q3 switches to state q5; otherwise,
it continues running state q3. Similarly, in state q4, the UAV stops flying in x-axis direction
and starts flying in the y-axis direction negatively using avoidance velocity vA, which
means flying the UAV bank left. Besides that, it begins counting the time of moving left.
In this state, if the sensor S3 is not touched, and the value of db is bigger or equal than the
value of arm length lDA multiplied with sin α, or if the sensor S3 has already touched the
obstacle, and the S3 sensor detects nothing in the forward direction, receiving a maximum
return value, state q4 switches to state q5. Otherwise, it continues running state q4. Now, q5
is a single work process step; it flies the UAV tTR time using the previous step’s velocity. If
it finishes flying tTR time and the velocity is positive, it switches to the state q6. Or, if the
velocity is negative, it switches to the state q7. In the state q6, when sensor S2 has touched
the obstacle from the right side, and the length d2 is equal to its maximum value, meaning
that there is nothing on the left side, it switches to the state q8. Similarly, in state q7, when
sensor S4 has touched the obstacle from the left side, and d4 is equal to its maximum value,
meaning that there is nothing on the right side, it switches to the state q8.

State q8 is also a single work process, similar to step q5. Here, the UAV flies tTR
time using the previous step’s velocity. If it finishes flying tTR time and the sensor S2 has
touched, which means the stored value is less than the value of S4, it switches to the state
q9. Or, if the sensor S4 has touched, which means the stored value is less than the value
of S2, it switches to the state q10. State q9 and q10 are both in a recovery state, and they
run with a countdown timer. State q9 flies the UAV in the left direction with avoidance
velocity and state q10 flies the UAV in the right direction with avoidance velocity. When the
countdown time is 0, which means the UAV has returned on the approximate straight line
where it started the avoiding process, both states return to the state q0.

Now, we describe the deterministic finite automaton M, which consists of a finite set of
states Q shown in Equation (23), a finite set of input Σ shown in Equation (24), a transition
function δ, an initial or start state q0 shown in Equation (25), and a set of accept states F
shown in Equation (26).

Q = {q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10} (23)

Σ = {1, 0} (24)
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q0 = {q0} (25)

F = {q0} (26)

2.3. Data-Driven Control

This section describes the algorithm’s data-driven control method and system identifi-
cation process. Generally, the avoidance system needs to identify some data by preflight
system identification tests [51]; we are going to use an example dataset here to show the
functionality of the system identification process. Later, all the simulation performances
are completed using the same dataset in the simulation performance section. There are
so many commercial liquid-carrying sprayer UAV models in operation in the market-
place, and many types of models are still under development [52]. We created a model in
MATLAB R2020a software and performed simulations to collect the system identification
data. This numerical simulation of the proposed method is performed by a quadrotor at-
tached to a square-shaped tank setup and a suitable sensor setup shown in Figures 7 and 9.
The constant parameters of the UAV, tank, one-millimeter-wave distance sensor [53], and
single-point laser distance sensors [54] are summarized in Table 2.
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Table 2. Parameters of the tank-carrying quadrotor UAV system.

Quadrotor Tank Millimeter-wave Sensor Laser Sensor

Mass MD 20 kg Mass MLmax 32 kg Frequency 10 Hz Frequency 10 Hz

Arm Length lDA 50 cm
Size

lT 0.4 m FoV Hor. 50◦ FoV Single point

Moment
of inertia

IxL 0.3933e−1 kgm2 wT 0.4 m FoV Ver. 20◦ Length 5 m

IyL 0.3933e−1 kgm2 hT 0.2 m Length 30 m

IzL 0.76e−1 kgm2 Liquid level PLQ 0 ∼ 1

Gravity g 9.8 ms−2

Max Trust uT 13.5 kg× 4

The distance between the center of the quadrotor and the center of the tan k dDT = 0.4 m

Constant drift distance dDR = 0.59

Safe distance ds = 1 m
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2.3.1. Drift Distance

Our path planning algorithm utilizes the velocity transition command to avoid obsta-
cles, and it becomes critical to perform a precise avoidance maneuver around an obstacle if
the drift distance cannot be well estimated. Drifting from the desired path is a common
phenomenon for UAVs. To minimize this problem, drift distance dDR is used as a primary
input. The drift distance varies for different UAV systems’ information such as vehicle
dynamics, size, mass, configuration, PID gains, max pitch-roll angle, tank size, shape,
placement, liquid amount, velocity, etc. The performance of drift distance can be analyzed
and identified from both simulation and practical tests in the real world. Because all values
for a specific UAV’s physical parameters are fixed, this drift distance becomes only the
function of the UAV’s velocity and liquid level. Since we know the drift distance is the
distance between the first time point of receiving stop command and the second time
point of actual stop, we calculated the drift distance by testing different liquid levels and
velocities in our simulation environment. The results are shown in Table 3. Here, drift
distance is a function of different liquid levels and velocities.

Table 3. System identification data table of drift distance.

Drift Distance
Liquid Level

0 0.5 0.75 0.9 1.0

Velocity

0.50 0.26 0.27 0.25 0.27 0.30

0.75 0.38 0.39 0.38 0.43 0.58

1.00 0.51 0.52 0.52 0.67 0.94

1.10 0.56 0.57 0.57 0.78 1.12

1.25 0.63 0.65 0.71 0.95 1.41

2.3.2. Avoidance Velocity

If we use a large constant avoidance velocity, the drone will have the problem of
drifting. On the other hand, if we use a small constant avoidance velocity to solve the
drift problem, the time to finish the avoiding process will be too long. Thus, we use a
dynamic avoiding velocity, which is related to the information of the sprayer UAV because
the sprayer UAV continuously changes its weight, center of mass, and moment of inertia,
as mentioned in Section 2.1.1. From this system identification result, we designed suitable
avoidance velocity vA for different liquid levels PLQ based on the following two rules.

Rule 1: The drift distance should not be longer than dDRmax, whose value is
[ds − (LDA × cos δ)]. This value is the limitation for extra skid caused by faster veloc-
ity. If the velocity creates a larger drift than this value it generates over drifting, even if we
execute a stop command on the UAV. The dDRMax range is illustrated in Figure 9.

Rule 2: Thus, we selected vA from the system identification test. The dDR becomes a
constant, and we can obtain a function that fits the relation of liquid level and avoidance
velocity. The relationship is shown in Equation (27):

vA = f
{

PLQ
}

(27)

Now, by applying the two rules on the result of system identification, we select
a constant drift distance dDR = 0.59 m and summarize the avoidance velocity for our
UAV model. For liquid levels 0, 0.10, 0.25, 0.50, 0.75, 0.90 and 1.0, the avoidance
velocities are 0.75 ms−1, 0.92 ms−1, 1.10 ms−1, 1.17 ms−1, 1.17 ms−1, 1.17 ms−1 and
1.17 ms−1, respectively.

We then used the MATLAB curve fitting tool to fit the data. An exponential fit function
shown in Equation (28) was used, and the four constants a, b, c, and d of this function
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were calculated. This formed the relational equation of avoidance velocity and liquid level
mentioned in Equation (27).

f {x} = aebx + cedx (28)

2.3.3. Triggering Time

In the algorithm, the avoidance process is performed by switching the avoidance
velocity command in the x and y-axis. After sensing the border of the obstacle by the sensor
S1 and S2, the algorithm calculates the time for shifting velocity command from one axis to
another. Because we used Equation (27) to obtain the avoidance velocity as a function of
water level, the drift distance is also constant for every water level. Therefore, trigger time
to activate the next maneuver is derived from time. This trigger time between sensing and
shifting command from x to y axes is named tTR, and trigger time is named as DTR, which
is illustrated in Figure 9. We used the data of safe distance dS, drift distance dDR, avoidance
velocity vA, and quadcopter configuration angle α to calculate the triggering time interval
tTR. Here, by assuming constant velocity motion:

tTR =
dTR
vA

tTR =
[(dS − lDA· cos α)− dDR]

vA
(29)

3. Numerical Simulation

To show the proposed data-driven dynamic obstacle avoidance algorithm, we per-
formed multiple numerical simulations with MATLAB R2020a. This section first lists the
specified constants in the numerical simulations and then presents and discusses the simu-
lation results. All the simulations were performed using parameters from a data-driven
control section (Section 2.3).

3.1. Performance Simulation and Results

To show the effectiveness and scalability of this method, we completed simulations in
some segments. We tested with a single obstacle from the absolute front, carrying different
loads to show how the avoidance results change in segment 1. Then, we tested a side case
to verify the safety of the algorithm in segment 2. Then, we performed a coverage mission
using random waypoints and random obstacles with lower density to simulate the practical
spraying operation in the real world. Lastly, we showed the scalability of the proposed
method by increasing the avoidance gap. The performance records are given below, and
simulations codes are available from the online repository [55].

3.1.1. Test Segment 1 (Single-Obstacle Avoidance Tests)

In segment 1, we show an ideal case between the UAV and the obstacle. In this
case, a circular parallelepiped centered at [0 0 3] with dimensions of 0.2 m× 0.2 m× 6 m
was considered an obstacle. Then, we set the starting position as the takeoff position at
[−20 0 0], the start going forward point at [−20− 0 3], and the goal point at [20 0 3]. Finally,
the velocity of the UAV was set as 3.5 ms−1, and the tank level was set as 0.1 or 10%.

The avoidance trajectory of the UAV using the proposed algorithm is shown in
Figure 10. Figure 10a is the top view of the trajectory, where the system has successfully
created an avoidance trajectory that looks rectangular, but the bank turn corners are round-
shaped from the top view. On the other hand, in Figure 10b, we can see the orthographic
view of the trajectory, where the trajectory has a fluctuation at the z-axis. The reason for the
corner curves and z-axis fluctuation is that we tried to use the aerodynamics of the bank
turn to have a quick movement. The black circle is an obstacle, such as a pole, inside the
flying path.

In Figure 10c, sensor response and the flight command are shown. The algorithm
reads the sensor data at every step and makes avoidance decisions as velocity commands
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in the x and y axes. The plots of dc and db are the reading values of the sensor S0. In dc,
the graph shows that the reading was 20 m from the beginning because the takeoff point
started at 20 m away from the obstacle. Besides, there were three fluctuations of reading
at the seconds 5, 5.9, and 9.1, and the reason for these fluctuations was the sudden Euler
angle change of the UAV that also changed the sensor detection angle. The plots of d1, d2,
d3 and d4 are readings of the single-point distance sensors S1, S2, S3, and S4, respectively.
In this case, the UAV avoided the obstacle from the right side and detected the change
in the values d1 and d2 of the left-sided sensors S1 and S2. Right-sided sensors S3 and S4
got no data because the right side was blank during the operation. From the plot of the
x-velocity command, the sprayer UAV received a fly forward command at point a (t = 5),
and the drone started flying towards the goal point. In the x-axis velocity and y-axis velocity
graph, at point b (t = 9.4), the UAV started deceleration, and at point c (t = 10.1), it started
maintaining avoidance velocity. From point c to d, it moved forward with avoidance
velocity vA, and from d (t = 11.4) it started moving right. At point e (t = 12.9), the sensor
S1 confirmed the crossing of the obstacle, and the UAV started moving forward again. At
point f (t = 15.4), the sensor S2 confirmed the obstacle as it passed, and it started moving
left. Lastly, at point g (t = 16.6), it reached the path line. The total flight time was 25.2 s.
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Figure 10. Trajectory of the UAV (a) from initial point to goal point with zoom, azimuth: −90◦,
elevation: 90◦; (b) orthographic view, azimuth: −67◦, elevation: 43◦; (c) flight command and sensor
readings. Sensor readings of db, dc, d1, d2, d3, d4, velocity command on x-axis and y-axis.

To test the effectiveness of the dynamic algorithm, we did multiple simulations by
changing the liquid level. We used liquid levels of 0.10, 0.25, 0.50, 0.75, 0.9 and 1.0 to
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compare the results. Figure 11 shows the detail of the flight data using six liquid levels. In
Figure 11a, the distance changes on the x-, y- and z-axes are shown, where we can observe
the position difference of the UAV. On the x-axis, every flight followed the same pattern
through different flight times. However, on the y-axis, the UAV moved slightly further
when it carried a lower liquid amount and moved slightly closer when it carried a higher
liquid amount. Similarly, on the z-axis, with a lower liquid amount, the altitude fell lower
than with a higher liquid amount. Figure 11b,c show the dynamic avoidance velocity and,
therefore, different Euler angle changes for different liquid levels. The higher value of
avoidance velocity and Euler angle for lower liquid load results in faster avoidance, leading
to larger altitude drop. Lastly, Figure 11d shows the flight time difference for different
liquid levels.
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Figure 11. Flight history using different liquid levels. (a) x, y, z distance; (b) x, y, z velocity; (c) roll,
pitch and yaw; (d) total flight times carrying different liquid level.

The summary of different flight data observations of six liquid levels is given in Table 4,
and the path difference is shown in Figure 12. In Table 4, the first result shows the total
time of flight for each liquid level, where we can see the lower liquid level took a shorter
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time than the higher liquid level. Then, the y-axis data show the displacement from the
y = 0 lines, and the largest distance was 128.6 cm. In these tests, the ideal y-axis avoidance
distance was calculated as 1.2 m or 120 cm, which was the sum of the radius of the obstacle,
0.2 m, and the safe distance, 1 m. After that, z-axis fall data showed the altitude fluctuation
during the flight, affecting spray deposition. Here, the maximum altitude fall happened
with a 25% liquid level. Lastly, we show the maximum and minimum roll angles for
different liquid levels; this demonstrates how the algorithm controls the drone to avoid
left and right. Figure 12 shows all the avoidance paths of the six liquid level tests. Despite
the changing dynamics of the sprayer UAV due to different liquid loads, the proposed
dynamic algorithm was verified for precision control since all the avoidance flight paths
were very close to the ideal avoidance flight paths specified by the first safe distance and
safe distance in Figure 8.

Table 4. Single-obstacle simulation result (ideal case).

Liquid Level Travel Time
y-Max Move

(cm)
z-Max Fall

(cm)

Roll Max (deg)

Positive Negative

0.10 25.8 127.1 13.5 10.8 10.8

0.25 25.5 126.8 17.5 11.7 11.9

0.50 27.9 125.2 15.6 12.2 12.6

0.75 36.5 128.6 9.3 11.1 11.4

0.90 39.1 121.1 5.0 8.2 8.2

1.00 43.3 117.4 2.5 4.7 4.7
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Figure 12. Different flight positions of UAVs carrying different liquid levels.

3.1.2. Test Segment 2 (Possible Obstacle Situations in the Farmland)

This section shows the dynamics of the algorithm where the other possible case can
happen during the spraying operation. The first possible case of a single-obstacle test is the
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corner case described in Figure 8b,c. We used a second single-obstacle simulation to show
the corner case avoidance maneuver.

In this test, the initial Y position of the drone was set in such a position so that it would
approach the obstacle as the corner case. We set up a rectangular parallelepiped obstacle
centered at [0 0 3] with dimensions of 1 m× 0.4 m× 6 m, and the tilt angle was −45◦. The
sprayer UAV carried a liquid level of 0.10 or 10%. The takeoff position was at [−20 1 0], the
start going forward point was at [−20 1 3], and the goal point was at [20 1 3]. In Figure 13,
we have shown the possible three approaches and the avoidance behavior, of where the
UAV would approach the obstacle from the left, middle and right side. According to the
algorithm’s decision-making system described in “Obstacle’s direction detection” section,
Figure 13a shows that the right-appearing obstacle was avoided from the left direction.
Figure 13b,c shows that the left-appearing obstacle was avoided in the right direction and
the straight-middle-appearing obstacle was avoided from the left direction. This decision
making confirms the shorter avoiding path, which is helpful for spray overlapping.
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3.1.3. Test Segment 3 (Spraying Mission Simulation and Performance)

The practical spraying mission was simulated by placing four different obstacles in the
test field. Obstacle one was a circular parallelepiped obstacle that was smaller than the UAV,
obstacle 2 was a square parallelepiped obstacle, obstacle 3 was a circular parallelepiped
obstacle, and obstacle 4 was a rectangular tilted obstacle. Details of the obstacles are given
in Table 5. We completed three mission sets with a different initial velocity and gap using
this obstacle setup. The initial velocity and path gap were determined following the spray
coverage parameters. For example, in the four-meter path gap mission set, the initial
velocity was 5 ms−1, the three-meter path gap mission set was performed using 3.5 ms−1

initial velocity, and the two-meter path gap mission set was performed using 2 ms−1 initial
velocity. Besides, every mission set completed full flight using five different liquid level
tests, 10%, 25%, 50%, 75%, and 100%, respectively. In the right section of Table 6, the
waypoint positions are listed. The first column comprises the waypoint direction numbers,
where the UAV follows from one to the next, respectively. The first waypoint was the
takeoff point [−20 0 0], and after 5 s, the main flight started. Including the takeoff point,
the four-meter path gap mission had nine waypoints, the three-meter path gap mission
had eleven waypoints, and the two-meter path gap mission had fifteen waypoints.
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Table 5. Obstacle and waypoint information in simulation.

Obstacle’s Information Mission Waypoint Coordinates (x, y, z)

Obstacle Type Size (m) Location (x, y,
z) Rotation/Tilt Direction

⇓ 4-m Path Gap 3-m Path Gap 2-m Path Gap

1 Circular 0.2× 0.2× 6 [0− 3 3] [0 0 0] 1 [−20 0 0] [−20 0 0] [−20 0 0]

2 Squire 2× 2× 6 [10− 3 3] [0 0 0] 2 [−20 0 3] [−20 0 3] [−20 0 3]

3 Circular 0.75× 0.75× 6 [−10− 9 3] [0 0 0] 3 [20 0 3] [20 0 3] [20 0 3]

4 Rectangular 1× 0.4× 6 [15− 9 3] [0 0− 45◦ ] 4 [20− 4 3] [20− 3 3] [20− 2 3]

5 [−20− 4 3] [−20− 3 3] [−20− 2 3]

6 [−20− 8 3] [−20− 6 3] [−20− 4 3]

7 [20− 8 3] [20− 6 3] [20− 4 3]

8 [20− 12 3] [20− 9 3] [20− 6 3]

9 [−20− 12 3] [−20− 9 3] [−20− 6 3]

10 [−20− 12 3] [−20− 8 3]

11 [20− 12 3] [20− 8 3]

12 [20− 10 3]

13 [−20− 10 3]

14 [−20− 12 3]

15 [20− 12 3]

Table 6. Five liquid level mission simulation results.

Configuration Liquid Level (%) Mission
Time (s)

Average z-Axis Fall
(cm) Actual Length (m) Increased Length

(m) Area Coverage (%)

Path gap 4 m,
Velocity 5 ms−1,

Path length 175 m,
Total area 704 m2

10 121.9 3.13 177.13 2.13 98.64

25 124.2 4.09 177.67 2.67 98.58

50 140.3 3.29 177.84 2.84 98.63

75 198.1 1.72 178.12 3.12 98.9

100 205.9 0.56 177.13 2.13 99.23

Path gap 3 m,
Velocity 3.5 ms−1,
Path length 215 m,
Total area 645 m2

10 164.1 1.74 224.63 9.63 98.26

25 165.2 2.30 225.03 10.03 98.22

50 184.7 2.07 225.19 10.19 98.30

75 254.6 1.18 225.00 10.00 98.55

100 294.8 0.34 224.55 9.55 98.98

Path gap 2 m,
Velocity 2.5 ms−1,
Path length 295 m,
Total area 588 m2

10 240.9 0.80 299.10 4.10 98.05

25 243.3 1.13 299.68 4.69 98.08

50 263.3 1.27 300.65 5.65 98.02

75 338.8 0.95 301.22 6.22 98.13

100 389.5 0.33 299.17 4.17 98.47

In total, 15 simulations were completed, and the results are combined and plotted
in Figure 14. These figures include all five liquid level test results for each mission set.
Figure 14a shows the flight paths of the four-meter path gap mission, Figure 14b shows
the flight paths of the three-meter path gap mission, and Figure 14c shows the flight paths
of the two-meter path gap mission. The yellow-colored blocks are the obstacles inside the
mission path, and the dotted black lines are the boundaries of each spraying mission. These
tests were completed following the mission operation of the plant protection UAV inside
the plant field [42].
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Figure 14. Different actions during different scenarios in farmland operation. (a) 4-m path gap,
(b) 3-m path gap, (c) 2-m path gap.

In order to characterize how well our algorithm worked, we needed to know the
spraying cover area after the UAV completed the mission. First, we calculated the spraying
cover area with no obstacles in the field. This value was called the ideal coverage area ACI ,
which can be calculated using Equation (30). For all the simulation tests, XM was a constant
40 m, YM was a constant 10 m, and LSP was the path gap of each mission set.

ACI = (XM + LSP)·(YM + LSP) (30)

Then, we estimated the actual spraying coverage area AC from the UAV’s X and Y
paths, which are shown in Figure 15. Finally, we characterized the performance of the
algorithm in terms of the area coverage by calculating the cover area percentage ACP. A
higher value of ACP means that the UAV can still cover the spraying area even though it
was required to complete several avoidance maneuvers during the spraying mission. The
cover area percentage is shown in Equation (31). Figure 15 illustrates the spraying coverage
area AC and the ideal coverage area ACI by the 2-m path gap mission with 10% liquid load.

ACP = 100%· AC
ACI

(31)Agronomy 2022, 12, x FOR PEER REVIEW 23 of 27 
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Actual Length 
(m) 

Increased 
Length (m) 

Area Coverage 
(%) 

Path gap 4 m,  
Velocity 5 ms−1,  

Path length 175 m,  
Total area 704 m2 

10 121.9  3.13 177.13 2.13 98.64 
25 124.2 4.09 177.67 2.67 98.58 
50 140.3 3.29 177.84 2.84 98.63 
75 198.1 1.72 178.12 3.12 98.9 

100 205.9 0.56 177.13 2.13 99.23 

Path gap 3 m,  
Velocity 3.5 ms−1,  

Path length 215 m,  
Total area 645 m2 

10 164.1 1.74 224.63 9.63 98.26 
25 165.2 2.30 225.03 10.03 98.22 
50 184.7 2.07 225.19 10.19 98.30 
75 254.6 1.18 225.00 10.00 98.55 

100 294.8 0.34 224.55 9.55 98.98 
Path gap 2 m,  

Velocity 2.5 ms−1,  
10 240.9 0.80 299.10 4.10 98.05 
25 243.3 1.13 299.68 4.69 98.08 

Figure 15. Spray coverage in 2-m path gap mission with 10% liquid load.
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We also calculated the actual length of the path and the ideal length of the path to
observe the extra distance travelled by the UAV. The ideal length of the four-meter path
gap mission was 175 m, the ideal length of the three-meter path gap mission was 215 m,
and the ideal length of the two-meter path gap mission was 295 m.

The summary of the simulation results using three sets of mission parameters is
shown in Table 6. For each test, total mission time, average z-axis fall, which represents
the altitude error during the mission, actual length, increased length from the ideal length,
and lastly, the coverage area percentages are included. According to the simulation results,
the algorithm can reduce flight time significantly while the liquid level is lower. We used
the same PID controller for the altitude control for every mission flight. According to
the average altitude decrease data during the mission, this PID is suitable for an initial
fly velocity ranging from 2 ms−1 to 5 ms−1. For a mission that requires higher initial
velocity, the altitude error can be further reduced by fine-tuning the altitude PID controller.
The flight length increases during medium-level liquid, and extended length depends
on the obstacle and the UAV’s positions during the mission. Due to the faster approach,
while carrying lower liquid, the coverage area percentage is lower for low liquid levels,
and the cover area percentage is higher when the fluid level is high. However, the cover
area percentages of all the simulation tests have values ranging from 96.34% to 99.23%,
demonstrating that this dynamic algorithm can reduce the impact of varying liquid load
on the spraying coverage area.

3.1.4. Test Segment 4 (Scalability)

In this testing section, we will show the scalability and behavior changes depending
on data. Previous test segments used a safety distance of one meter for all experiments.
However, the farmland’s environment may be affected by heavy wind, and in such cases
we must increase the UAV’s safety area. Here, we set the safety distance ds = 2 m, and run
the simulation on a three-meter path gap mission. We performed the simulation with 10%,
50% and 100% load to show the variance while avoiding, as shown in Figure 16. The area
coverage was 95.41% for 10% load, 94.87% for 50% load, and 95.35% for 100% load, where
the velocity was 3.5 ms−1.
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The algorithm was experimented with and validated by substantial numerical simula-
tions to prove the concept. The liquid career quadcopter model was created using 6-DOF
(degrees of freedom) dynamics and a rigid weight under the UAV as a tank load. In a
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real tank, fluids react differently during transportation, which may cause slosh force and
influence flight data. Although we experimented with and developed a method to reduce
repetitive slosh force [45], the liquid slosh force and multiple spray nozzle force still need
to be considered when applying the proposed method.

4. Conclusions

A data-driven real-time obstacle avoidance algorithm and a sensor setup were pro-
posed for agricultural plant protector UAVs, including liquid tanks. The method demanded
system identification tests to acquire appropriate data for individual UAV models and the
tank. The sensor setup used millimeter-wave radar and four single-point laser sensors.
DFA, or the deterministic finite automata method, was used to form the algorithm. Since
the pitch and roll axes had faster responses than the yaw axes for a normal quadcopter, the
algorithm was designed to avoid obstacles by shifting the avoidance velocity command
in the x and y axes instead of changing the yaw angle. The algorithm can avoid obstacles
by shifting the avoidance velocity command in the x and y axes. The value of avoidance
velocity was dynamic according to liquid level during mission flight. A single-obstacle
simulation test was performed using a 20 kg UAV with a maximum 32 L tank capacity. The
performance showed that, with 10%, 25%, 50%, 75%, 90% and 100% tank load, flight time
took 25.8 s, 25.5 s, 27.9 s, 36.5 s, 39.1 s and 43.3 s, respectively. These results verified that the
proposed algorithm achieved time-saving and precise obstacle avoidance objectives using
real-time sensor data. The spraying mission simulation test showed that the proposed
algorithm avoided common obstacles in farmland while maintaining a high cover area
percentage. The 4-m, 3-m, and 2-m path gap missions covered a minimum of 98.58%,
98.22%, and 98.05, and a maximum of 99.23%, 98.98, and 98.47 farmland area, respectively.
Lastly, increased safe distance performance showed the scalability of the algorithm. In the
future, actual flight performance using an embedded system mounted on a quadcopter
with the liquid tank will be performed to validate the proposed algorithm. This method
will be implemented using multiple UAV models with different tank sizes to show the
effectiveness of this data-driven approach. The spraying performance will be performed to
show the spray coverage efficiency. This algorithm was created concerning spray coverage
area, not spray overlapped area; variable rate spray control technology will also be used
with this algorithm to optimize spray coverage. This method was developed to target
vertical static obstacles in farmland. The limitations of this algorithm include horizontal
hanging connection lines, flying objects, etc., which can be improved in the future.
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