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Searching for next-generation electrocatalyst materials for electrochemical energy

technologies is a time-consuming and expensive process, even if it is enabled by high-

throughput experimentation and extensive first-principle calculations. In particular, the

development of more active, selective and stable electrocatalysts for the CO2 reduction

reaction remains tedious and challenging. Here, we introduce a material recommendation

and screening framework, and demonstrate its capabilities for certain classes of

electrocatalyst materials for low or high-temperature CO2 reduction. The framework

utilizes high-level technical targets, advanced data extraction, and categorization paths,

and it recommends the most viable materials identified using data analytics and property-

matching algorithms. Results reveal relevant correlations that govern catalyst performance

under low and high-temperature conditions.
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INTRODUCTION

CO2 emissions are the main cause of human-made global warming (Al-Ghussain, 2019). To avert the
direst consequences of this global change, the Paris Agreement calls for a net 80–95% reduction of
CO2 emissions by 2050 (Rogelj et al., 2015). The rapid development of sustainable energy sources and
environmentally benign storage and conversion technologies is thus a foremost goal in scientific
research and technology development, pursued collectively in countries around the world.

CO2 can be used as a renewable feedstock for the production of synthetic fuels or fuel precursors
such as CO, CH3OH, and CH4, addressing the problem of the intermittency of renewably generated
energy from wind turbines and solar cells (Qiao et al., 2014; Lu and Jiao, 2016; Zhu et al., 2016; Liu
et al., 2017; Wang et al., 2017). This energy storage pathway renders the CO2 reduction reaction
(CO2RR) a crucial and extensively researched electrochemical process (Lin et al., 2020; Mandal,
2020).

CO2RR processes inside an electrochemical cell require stable, cost-effective and highly
performing electrocatalyst materials. The challenge of optimizing catalytic materials, electrodes
and devices for the CO2RR, calls for further investigation into factors that control their catalytic
activity and stability. The electrocatalytic media are usually heterogeneous composites that embed
the active material into a host medium with suitable transport properties for gaseous reactants, liquid
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products, dissolved ions, and electrons. These media can undergo
significant changes in structure and composition under operation
through various phenomena such as Ostwald ripening, particle
detachment or coagulation in nanoparticle-based catalyst layers;
surface reconstruction, oxidation or passivation by irreversible
adsorption; or electrolyte disintegration. Besides, inhibited mass
transport due to non-optimal wetting of the porous electrode
could cause additional voltage loss or limit the current density
(CD) that a cell could attain.

A recently performed cost-benefit analysis has shown that
electrochemical CO2 conversion processes need to be
economically viable at the system level, while the faradaic
efficiency (FE) and energy efficiency (EF) must be maximized
at the component and cell levels (Kibria et al., 2019; Lin et al.,
2020). The hydrogen evolution reaction (HER) is an unwanted
parallel process in CO2 reduction cells, which impacts the yield of
synthetic fuel or fuel precursor production (Goyal et al., 2020).
Minimization of hydrogen production requires electrocatalyst
materials that are highly selective in terms of the reaction
pathway to support.

The integration, testing and qualification of new catalyst
materials is a tedious and time-consuming process as there are
limitations even for the best catalysts due to specific
compatibilities that are required with other components in a
membrane electrode assembly (MEA), single cell or stack of the
electrochemical device. Challenges in this context involve
reactant and product transport as well as water and heat
balances. These phenomena are coupled across multiple
components and interfaces in a cell, and they determine 3D
distributions of local reaction conditions in active electrode
media. Assessing the impact of a new catalyst material on
performance at cell and stack levels is thus a complex
undertaking. An electrocatalyst material may show markedly
improved activity and selectivity in a well-defined lab set-up
under precisely controlled reaction conditions; but this
improvement may not transpire when the material is
incorporated into a real cell and tested under realistic conditions.

Complex electrocatalytic media cannot be studied solely with
computational studies based on density functional theory (DFT).
Usually, the complexity of materials, components and
physicochemical phenomena to be considered as well as the
interplay of solvation effects, charge transfer, and electric field
effects at the interface, warrant a well-devised hierarchical
framework in modeling and simulation. This framework should
interweave computational approaches, including DFT as well as
classical simulations, microkinetic modeling of reaction
mechanisms, interface and charge transfer theory, and continuum
modeling of transport processes at the electrode level, to rationalize
local reaction conditions, decipher reaction mechanisms and
calculate reaction rates. Considering all of these aspects, the
theory-driven approach towards the development of highly active,
selective, and stable electrocatalysts for the CO2RR remains a highly
challenging task (Elouarzaki et al., 2019; Ju et al., 2019).

The discovery and scale-up of integrated materials, i.e., those
materials that are integrated into a component, cell, and device to
fulfill certain functionalities at the device level, require significant
capacities for characterization, testing, and optimization at all

structural levels. The discovery-to-demonstration pipeline of new
electrocatalyst materials, including fabrication scale-up and
integration with other cell components is thus more complex
to follow through than it is for simpler, so-called “molecular
materials,” where minimal integration and optimization is
required beyond materials properties (Elouarzaki et al., 2019;
Ju et al., 2019). Apart from performance metrics related to
activity, yield and selectivity, the degradation of cell
components, overall system durability and overall cell lifetime
present essential issues to be addressed, which are related to the
stability of a catalyst material for relevant environmental
conditions and operating regimes.

The key attributes of successful design of CO2 reduction cells
include high mass activity of electrocatalysts to perform well at
low overpotential and reasonable materials cost, catalyst layer
microstructure to facilitate charge and mass transfer, well-
attuned wettabilities of porous transport media to optimize the
water distribution across the cell, and mechanical and chemical
durability. New approaches in materials design and integration
are needed to realize the selective transformation of CO2 into
desired products in scale-up pilot or industrial setups.

Numerous investigations have recently been made to design,
synthesize and develop new CO2RR electrocatalysts (Lu and
Jiao, 2016; Liu et al., 2019). Machine learning (ML) and data-
driven methods provide a powerful set of methods and tools to
accelerate materials discovery (De Luna et al., 2017; Cao et al.,
2018). Fundamentally, ML is the practice of using statistical
algorithms to parse data, learn from a set of indicators
(performance metrics) and then make a fast determination
or a prediction of target performance properties of any new
data sets. ML in materials science is mostly concerned with
supervised learning. One must realize that the selection of
high-quality (accurate) datasets in addition to an appropriate
set of descriptors is more important than the selection of the
ML algorithm itself. The former would be considered as the
first step for building any ML application. The suitable ML
model, denoted as classification, regression, or rank ordering
model, depends on the desired outcome (Elouarzaki et al.,
2019).

Describing all the complexities of the electrochemical interface
within a DFT model, considering the number and type of
components (catalyst, solvent molecules, ions, etc.), as well as
the fundamental physics involved (electric fields, solvation free
energy, charge transfer kinetics etc.), is challenging due to
computational limitations.

Classification models are designed to allocate a substance to a
given number of categories such as active and inactive catalysts;
they can be used to separate groups of molecules or materials
according to the presence or absence of a target property. For
instance, CO2RR electrocatalysts can be classified based on their
Faradaic efficiency or product selectivity. In this context, several
statistical tools, in particular, regression models attempt to
determine a function that can represent a continuous
hypersurface to relate indicator variance to observable
electrocatalytic properties. Regression models are used where
prediction and discovery of a missing physico-chemical
property such as performance or selectivity are needed
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(Varnek et al., 2007). Ranking models put out the order of
electrocatalysts for a specific property; they are highly useful
for electrocatalyst design and discovery, where the priority of one
property over another is more important than its exact value
(Goldsmith et al., 2018; Lamoureux et al., 2019; Schleder et al.,
2019).

Recent self-learning algorithms have greatly influenced
catalysis research due to the availability of ML analysis tools,
e.g., Python Scikit-learn, TensorFlow and workflow management
tools such as ASE (Larsen et al., 2017) or Atomate (Mathew et al.,
2017), and the proliferation of large public materials databases,
including Materials Project (Jain et al., 2013), Novel Materials
Discovery Laboratory (Draxl and Scheffler, 2019), Citrination
(Citrine Informatics, 2013), CatApp (Hummelshøj et al., 2012),
and AiiDA (Pizzi et al., 2016) and advancement of applied
statistical algorithms and models.

ML models have been utilized in a variety of energy material
applications to design and discover novel electrocatalyst materials
with superior performance (e.g., higher energy density and higher
energy conversion efficiency) (Meyer et al., 2018; Zahrt et al.,
2019). Such models can have a transformative impact on the
development of low cost CO2RR catalysts with high product
selectivity and maximal performance (Goldsmith et al., 2018;
Kitchin, 2018; Schlexer Lamoureux et al., 2019; Gusarov et al.,
2020; Smith et al., 2020). For instance, MLmodels have been used
to disentangle catalyst-adsorbate interactions for various
reactions, including CO2RR (Ma et al., 2015; Tran and Ulissi,
2018). A combination of advanced optimization tools based on
ML and other conventional approaches has been developed to
predict electrocatalyst performance for CO2 reduction and H2

evolution (Tran and Ulissi, 2018).
In this work, we demonstrate a data-driven framework for

materials screening, which is particularly applied to low and high
temperate catalysts for CO2 reduction (Garza et al., 2018; Kibria
et al., 2019; Malek et al., 2019; Chou et al., 2020). A viable
electrocatalyst for the CO2RR must satisfy performance metrics
related to current density, faradaic efficiency, energy efficiency,
overpotential, production rate, and chemical stability.
Correlations among these performance metrics at low or high
temperature remain largely unknown and require extensive data
analytics.

Our data-driven methodology is designed with the objective of
integrating domain-specific data sources in order to eliminate
difficulties in data collection and interpretation from multiple
sources and data types. The integration process consists of a
combination of “modular” sub-processes to build “standardized
energy materials data” in real-time with advanced filtering, scale-
up and cognitive insights, ML, and fundamental data analytics
functionalities, including visualization and big-data management
tools. The recommendation system and decision module utilize
high-level technical targets as input data, which can be displayed
in the form of radar (or spider) charts; advanced data extraction
and categorization using deep learning techniques; property-
matching algorithms to search for the best viable materials
that satisfy selected high-level technical targets; and finally a
multi-parameter optimization to recommend top choices in
connection with ML algorithms.

METHODOLOGY

Application-Driven Architecture
In order to offer scale-bridging capabilities to connect crucial steps
in materials design-to-device integration, an application-driven
architecture has been introduced and demonstrated (Malek
et al., 2019). The central part of this architecture is an
embedded master data lake, consisting of large-scale metadata
for electrocatalyst materials, which is assembled from various types
and sources of materials data. Key technical targets such as activity
(i.e., the faradaic efficiency), stability, and selectivity are usually
defined at cell and device level and may also correlate differently at
low or high temperatures with physicochemical properties of
electrocatalysts and the operating conditions at cell or device
levels (Chan and Li, 2014; Nitopi et al., 2019).

Figure 1 illustrates the functional layers of the ML-enabled
data analytics approach and its underlying workflow. The
workflow comprises various layers including user-defined or
default data sources and databases, analytics modules, and
self-driving algorithms, which are commonly used in materials
discovery approaches, regardless of the corresponding field of
application. The complexity with scale-up and discovery of
integrated materials also implies the need for ad hoc
communication among parallel or series of synthesis and
characterization steps or equipment, in-device component
integration, and device testing or validation. This all-
embracing workflow along the complete development pipeline
can enhance data communication and promote understanding of
correlations among structure, functional properties, and
performance indicators at all scales from materials discovery
to device performance and optimization.

Master Data Lakes
A vital prerequisite for any type ofML application is the provision
of a suitable dataset for a given domain. The search for new
electrocatalyst materials essentially needs a minimal and
sufficient set of performance indicators from the “chemical
domain” and the “property domain” of different electrocatalyst
materials (Flores-Leonar et al., 2020).

The master database is built from materials datasets collected
from a wide range of sources and user-types, namely 1)
unpublished records of academic researchers, 2) published
articles, and 3) other public records and industry reports. The
details of the data retrieval from images, tables and texts are
described in ref Malek et al. (2019). The resulting database is
stored in excel or CSV format with predefined and standardized
headers that include metadata preprocessing and cleaning.

In this article, the CO2RR experimental databases were
generated from literature sources on the basis of seven input
variables: electrocatalyst type, faradaic efficiency, applied
potential, current density, type of electrolyte, major product,
and temperature. Each experimental data point is
characterized by a set of performance indicators for catalyst
formulation and reaction conditions, either as continuous
values (such as current density) or as categorical values (such
as catalyst type). The ranges of the corresponding input variables
are summarized in Table 1.
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Machine Learning Algorithms
ML classification models could be used to identify and classify
materials or map them in terms of their properties (descriptors),
which is the first essential requirement prior to any ML-based
prediction. We use the Scikit-learn package in the ML modules
(Pedregosa et al., 2011).

The ML algorithms employed for classification of
electrocatalyst and product type include logistic regression
(LR), linear discriminant analysis (LDA), k-nearest neighbors
(KNN) classifier, and random forest (RF) classifier. In addition,
we tried to classify groups of products by putting all possible
products into two or three different larger groups of products. In
order to compare the predictability of different models for finding
missing data, four ensembles of ML algorithms were evaluated.
The regression algorithms include Bagging Regression (BR),
Gradient Boosting Regression (GBR), Random Forest
Regression (RFR), and Extra Trees Regression (ETR). BR is an
ensemble method that fits regressors on random subsets of the

original dataset and makes a final decision based on aggregated
prediction. The bagging method increases the robustness of the
original set of models by introducing randomness during the
training process and then ensembling their predictions. GBR
builds a model in a forward stage-wize style, which enables
optimization on any differentiable loss function. RF is
a typical ensemble learning model that operates by building a
set of decision trees and yielding average predictions of a separate
tree. Random decision forests are superior to decision trees due to
the ability to solve the over-fitting issue. Finally, extra trees
implement a meta-estimator that fits several random decision
trees on different sub-samples of the dataset and utilizes the mean
of trees to boost the predictive performance and reduce the
variance. ETR and RFR models have shown to be promising
in the modeling of chemical systems. Each algorithm was trained
on the training data for the CO2 reduction reaction. The
algorithms were then implemented to predict faradaic
efficiency, applied potential (AP), and current density for the
test dataset. We used the ML hyperparameter optimization
module to tune hyperparameters automatically.

The accuracy score (%) (i.e., the ratio of correct predictions to
the total number of predictions) is used as a performance metric
for the evaluation of each classification algorithm. The
performance of each ML algorithm for prediction was
evaluated by using several statistical indicators such as the
mean squared errors (MSE), the root mean squared error
(RMSE), and the coefficient of determination (R2),

MSE(y, ŷ) � 1

n
∑
n−1

i�0

(yi − ŷi)2 (1)

FIGURE 1 | The workflow of the cognitive material identification system.

TABLE 1 | Key performance indicators and their types or range of values as being

set in the data extraction process.

Descriptors Range or types Units

Catalyst Cu, Ag, Ni, Ti

Applied potential −1.45 to 5.3 V

Current density 0.00058–856 mA/cm2

Faradaic efficiency 0 to100 —

Type of electrolyte KOH, KCl KHCO3, CsHCO3, YSZ, Li2O-Li2CO3

Major products CO, H2, CH3COOH C2H5OH, C3H7OH

Temperature 25–900 °C
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RMSE(y, ŷ) �
������������
1

n
∑
n−1

i�0

(yi − ŷi)2
√√

(2)

R2 �

∑
n−1

i�0
(ŷi − yi)2

∑
n−1

i�0
(yi − yi)2

(3)

in which yi and ŷi are the true and predicted values, respectively,
yi is the mean of the true values, and n is the number of samples.

Modular Design
The complexity of the materials design-to-device integration calls
upon a modular approach, in which various data management
tasks and data analytics tools are built and tested in isolation, as
stand-alone-modules. The suitable modules are then called and
integrated into the main platform depending upon the
application area, required analysis tools, and type of meta-data
that the user needs for the analysis. In the following, we describe
the adaptation of each module and their inter-dependencies for
the analysis of electrocatalytic materials for the CO2RR.

Classification and Materials Data Extraction
This module utilizes a classification algorithm that categorizes
catalyst materials in the form of performance range (e.g.,
potential or current density) or selectivity or type of products.
The reference values for high-level technical targets are based on a
“performance matrix” that is provided as the default for a
particular field of application or as a user-entry table for the
target values. These initial values can be seen as the first set of
keywords for data mining and data discovery from the literature
for a givenmaterial application field or sub-classes therein such as
low-temperature catalysts or high-temperature catalysts. The
extracted data is then mapped on these key technical
parameters and other crucial measurement conditions for each
class of materials.

Materials Property Prediction
This module can predict a specific electrocatalytic property such as
the faradaic efficiency as a function of input or exploratory
variables using embedded ML models. The results of these ML
prediction models can refine the usefulness and relevance of the
user input variables. The module also helps fill missing data points
related to performance indicators or target properties in the
database and thus enriches the master database. In this context,
electrode type, current density, voltage, polarization resistance,
conductivity, electrolyte type and composition, temperature,
type of product, and (rarely) faradaic efficiency are among the
key factors that can influence CO2RR performance.

Recommendation System and Decision Models
The performance tuning algorithm is the first layer of the
recommendation module that uses the complete dataset to
find the best electrocatalyst material based on performance
and stability metrics’ target values. It displays the information
using standard visualization tools, for example, using a radar

chart. A radar chart is a typical visualization tool employed in
benchmarking electrocatalyst materials for the purpose of quality
and performance improvement of a system of materials or an
electrochemical device (Basu, 2004). The use of radar charts
makes two significant contributions: first, it provides a simple
2D visual representation of multiple performance indicators
without the need of using dimensionality reduction on
multivariate data; second, the enclosed area, formed by spikes
(or axes), can be considered as an intuitive electrocatalyst
performance indicator.

The ML-powered recommendation module uses the power of
regression modeling to predict values for the missing data as
accurately as possible. Supplementary Table S1 shows the
sample data statistics used to train the regression models for
predicting the missing data, specifically for applied potential,
current density, and faradaic efficiency. Datapoints for four types
of electrocatalyst material were selected, as there was not enough
data for predicting other variables in the CO2 experimental
database.

Data Matching and Validation
The ultimate criterion for ML-based predictive capabilities is
experimental validation, which demonstrates how computer
algorithms lead to real discoveries. After predicting the best
candidate electrocatalyst material, the prediction can be
validated by direct comparison to experimental data for the
same or almost the same set of conditions and materials
specifications (Malek et al., 2019).

In our predictive algorithm, CO2 electrocatalyst materials are
generally categorized into three main groups: metallic, non-
metallic, and molecular catalysts. Each category of
electrocatalyst materials exhibits distinct physicochemical and
electrocatalytic properties. Therefore, it is possible that the
performance of an electrocatalyst material is restricted and
limited to the group of catalyst materials it belongs to. Here,
we used ML classification models to sort different electrocatalyst
materials into different groups based on their performance. The
numerical data are normalized between 0 and 1, and we encoded
the categorical data using “OneHotEncoder” from the Scikit-learn
data preprocessing module (Pedregosa et al., 2011).

Most of the data in our Master database at low temperature are
for Cu electrocatalyst, with the key properties of AP, CD, and FE,
type of electrolyte, and type of product. Material properties
predictions thus focus on these attributes.

RESULTS AND DISCUSSION

Materials Recommendation
Figure 2 shows the workflow of material recognition. In order to
identify an electrocatalyst material for a given electrochemical
process, it is expected that the performance metrics of the
chosen electrocatalyst meet or exceed the target values set by
the user. For this purpose, one needs to consider the key
performance metrics, i.e., faradaic efficiency, current density,
applied potential, selectivity, and production rate, to select the
best electrocatalyst material.
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In practice, keeping track of all variables and establishing
correlations among optimization parameters in an
electrochemical reaction path is a difficult task; once a set of
properties is set to the optimum values, other properties of the
catalyst can have values which are below user requirements. We
attempt to address this challenge by introducing a penalty
function for any value less than the desired value for a target
application variable.

The recommendation process shown in Figure 2 initially takes
input from the user-specified target values. The recommendation
then selects the “best” electrocatalyst or recommends
electrocatalyst materials primarily based on the targets for the
set of performance metrics defined by the user. Global target values
are provided as default if no user-entry target values are available.

In order to minimize the optimization effort and for fast and better
identification criteria, the user is provided with one of the following
identification schemes: 1) find any electrocatalystmaterial for some
desired value of a metric, with any chemical product; 2) find any
electrocatalyst material for target value metrics for a specific set of
chemical products; 3) find some desired performance metrics,
within specific electrocatalyst material groups, with any product;
4) find some desired properties within specific electrocatalyst
material groups, for a certain set of chemical products. The user
is given target values for selected metrics, electrocatalyst type, and
chemical products, where a user is able to filter data based on
products and electrocatalyst material or simply select all the
possibilities. If the user provides target values for all metrics, the
recommendation algorithm selects an electrocatalyst material with

FIGURE 2 | Flowchart of material identification framework.
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properties equal (with less than 10% deviation) or better than the
user target. If the user provides target values for a few properties
and not all the properties, then the algorithm uses default global
target values for those target properties that are not provided by
the user.

Here, a simplified, yet straightforward method for selecting an
electrocatalyst material is employed by using a radar chart to
identify the material, which encloses the graph’s maximum area.
Although this heuristic method can be seen as practically useful, it
may lead to a biased selection with few performance indicators at
high values, while others remain at low values. It ignores the
ranking and importance of different variables.

Our optimization algorithm employs a special scoring factor
where it scores positive values for properties that are higher or
equal to the user target values and penalize properties that are less
than the user target values. The value of the penalty function
becomes more valuable for performance indicators that
significantly less than the actual target values. This sub-routine
recommends catalyst materials that exhibit high values in one or
multiple attributes from the performance matrix table.

The scoring factor is defined by,

Scorei � ∑
m�k

m�1

differenceim

i : is the number of row

(4)

where k is the number of target properties (P). If Pij ≥ PUser Targetj

differenceij � Pij − PUser Targetj

If Pij < PUser Targetj

differenceij � 5(Pij−PUser Targetj) − 1

Here Pij is the default target value of property j for row number i
and PUser Targetj is the user defined target value for property j.

The constraint for the penalty function is set at 5, representing
the maximum error tolerated. Once the scoring factors for each
row in the database are calculated, the algorithm recommends
electrocatalyst materials with high score values, as illustrated in
Supplementary Figure S1.

FIGURE 3 | Scatter plot matrix showing the data distribution for (A) both High-T and low-T (B) High-T, (C) Low-T of CO2RR according to three performance

metrics. The elements in the diagonal (upper left to lower right) represent the respected range of data points for each catalyst type.

Frontiers in Energy Research | www.frontiersin.org April 2021 | Volume 9 | Article 6090707

Malek et al. Data-Driven Framework for Electrocatalyst Discovery

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Low-Temperature Electrocatalyst Materials
Figure 3 shows the visualization of data, which is distributed
among applied potential, current density, and faradaic efficiency
for different types of electrocatalysts at low- or high-
temperature. The diagonal graphs represent the density plot
of each respective feature, providing useful information by
giving a density of plots in the form of bar charts. Among
the possible choices of electrocatalysts at low temperature,
mainly four types of Cu-based electrocatalysts are used for
the classification task. The dataset is divided into training
and test datasets. The dataset consists of 228 different Cu
electrocatalyst materials, among which training and test
datasets account for 183 and 45 data points, respectively.
Each data point consists of a set of properties for a given
material. The same material may appear in different data
points with different operating conditions. The materials
space is then scanned using a set of descriptors, such as
selectivity for a given product or performance indicators
against a reference target range. The latter is performed
using machine learning techniques. Model performance for

classification of the type of electrocatalyst and type of
products was evaluated through the calculation of an
accuracy score.

As illustrated in Table 2, the key indicators (AP, CD, FE,
Product selectivity) have high cross-validation scores, which can
vary according to the ML algorithms. The LR and LDA classifiers
are found to return the highest accuracy score of 81%,
determining the type of electrocatalyst. QDA classifier has an
accuracy score of 32%, which is remarkably lower than that for
other classifiers.

As shown in Table 3, the indicators of AP, CD, FE, and type of
electrocatalyst yield a higher accuracy for classification of a group
of two products (CH4, C2H5OH) in comparison with two other
groups, each consisting of three different products. RF and LDA
classifiers return value of 1 and 0.93, respectively, for the accuracy
score of all test cases. In general, RF classifier has the best
performance among other algorithms for the classification of
the type of products regardless of the number of products.

LR, LDA, QDA, and GNB algorithms were unable to
distinguish and single out one group of products, including

FIGURE 3 | (Continued).
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those with three different products. Additionally, GNB returns
an accuracy score of 26%, the lowest of all six algorithms. It is
obvious that better performance of ML algorithms can be
achieved for the group with two products than for the
groups with three different products. The latter can be
understood from the comparison of the values of accuracy
score for classification of the type of electrocatalyst or
products reported in Table 2 and Table 3. One would need
more indicators such as the reaction conditions (pH, mass

loading of catalyst, production rate, and concentration) for
each reaction in order to have a better performance with the
classification scheme.

Table 4 lists the performance of predictive analytics using
MSE for various experimental numerical values, i.e., AP, CD, and
FE. ETR is seen to have a better predictive capability with a
minimum error, which is considered more accurate than other
algorithms. In order to quantitively obtain a prediction model for
FE, AP and CD, we employed the BR, GBR, ETR, and RFR

FIGURE 3 | (Continued).

TABLE 2 | The results of cross-validation with six different classification algorithms against low-temperature catalyst types in four classes (Cu wire, Oxide-derived Cu 1,

Oxide-derived Cu 2, Cu nanoparticles).

Catalysts: Cu wire, oxide-derived Cu 1, oxide-derived Cu 2, Cu nanoparticles

ML algorithms Average score (%)

Logistic regression (LR) 0.81

Linear discriminant analysis (LDA) 0.81

Quadratic discriminant analysis (QDA) 0.32

k-nearest neighbors classifier (KNN) 0.68

Random forest classifier (RFC) 0.71

Gaussian NB (GNB) 0.61
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algorithms. Models were based on the training data (80% of the
full dataset), where 20% of is used to evaluate the test data.

The scatter plots of the outputs vs. the actual values for the
training, testing, and overall data sets using RFR and ETR
algorithms are presented in Figure 4. The coefficient of
determination (R2) indicates a strong correlation between
outputs for CD and AP and actual values. The AP, CD, and
FE results clearly show excellent agreement between the actual
values and RFR, GBR, and ETR predictions, with R2

> 0.90 and
MSE < 0.008 for all of the ensemble modeling cases. The R2 and
MSE of test data for faradaic efficiency with ETR and RFR have
better performance than that for other regressors.

Success with ML depends on the number of descriptors and
their correlations, as well as available large training data. The true
benefit of structure-property relationships revealed through ML
models lies in the multi-variant correlations and their
interpretation in terms of the fundamental materials properties.

The missing values in the primary database can nonetheless
be filled with values extrapolated from ML by building a model
that relates known indicators of materials to target properties.
Our ML model has successfully predicted different properties
like FE or CD, or classification of the type of electrocatalyst, or
major products related to specific type of catalyst. The latter
process has been carried out iteratively. After filling missing
values, the database is ready to screen the electrocatalyst
performance through means of analytical and
visualization tools.

Utilizing all available and supplemented databases, rapid
screening of electrocatalyst materials was carried out, while the

user would be able to specify target values for various properties.
The optimization algorithm proposed in this work uses a scoring
factor based on a rank-ordering approach. The best
electrocatalyst material for selected chemical products was
then estimated for a class of materials or products. Figure 5

shows the radar charts of the best electrocatalyst materials based
on the target attributes selected by users or directly from a global
target, which is set as a default. The figure indicates that Pt is the
catalyst of choice when no specific fuel products are considered.

High-Temperature Electrocatalyst
Materials
Despite recent advances in electrolytic systems for CO2

conversion at high temperature (>800°C), the overall
efficiency and performance of the system remain far from
being sufficiently understood for commercialization and
practical usage (Gorte et al., 2000). Among the technological
shortcomings are low conversion efficiency and high
degradation rates of materials and components, including
membrane and electrocatalysts. The latter is mainly due to
the fact that the high catalytic conversion will inherently
result in low electrochemical stability of catalyst materials at
higher temperatures. The fundamental understanding of the
elementary kinetic processes involved in CO2 electrochemical
conversion at high temperature is a subject of ongoing research
(Tran and Ulissi, 2018). Notably, the cost-effectiveness of
catalytic processes at high temperature primarily depends
upon the trade-off between the system efficiency and

TABLE 3 | The results of cross-validation with six different classification algorithms against the type of products in three classes [a group of (CH4, C2H4, C2H5OH) (CH4,

C2H5OH, C3H7OH), and (CH4, C2H5OH)].

Average score (%)

ML algorithms CH4, C2H4, C2H5OH CH4, C2H5OH, C3H7OH CH4, C2H5OH

Logistic regression (LR) 0.39 0.20 0.80

Linear discriminant analysis (LDA) 0.52 0.15 0.93

Quadratic discriminant analysis (QDA) 0.43 0.51 0.60

k-Nearest neighbors classifier (KNN) 0.48 0.65 0.73

Random forest classifier (RFC) 0.70 0.71 1

Gaussian NB (GNB) 0.52 0.45 0.26

TABLE 4 | Evaluation of predictive algorithms for applied potential, faradic efficiency and current density.

Statistical

technique

Bagging

regression (BR)

Random forest

regression (RFR)

Gradient boosting

regression (GBR)

Extra trees

regression (ETR)

Features n/a Training Test Training Test Training Test Training Test

Applied potential (V vs. RHE) MSE 1.17E-

03

6.15E-

03

5.30E-

04

3.18E-

03

8.14E-

04

2.96E-

03

6.31E-

06

2.66E-

03

R2 0.97 0.88 0.98 0.94 0.98 0.94 0.99 0.94

Current density (mA.cm−2) MSE 9.30E-

04

7.06E-

03

9.76E-

04

5.87E-

03

1.11E-

03

5.42E-

03

4.45E-

08

4.82E-

03

R2 0.98 0.88 0.98 0.90 0.98 0.91 0.99 0.91

Faradaic efficiency (%) MSE 2.44E-

03

7.30E-

03

1.86E-

03

6.22E-

03

7.17E-

03

8.35E-

03

2.56E-

31

5.38E-

03

Overall R2 0.98 0.95 0.98 0.96 0.95 0.94 1 0.96
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FIGURE 4 | The actual Faradaic efficiency, applied potential, and Current density values compared with the predicted values using Random Forest regression and

Extra Tree regression models. The coefficient of determination (R2) and mean squared error (MSE) are computed to estimate the prediction errors. The test and training

points are shown in blue and red, respectively. The perfect correlation line is included for reference as a green line.
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production cost of the fuel, while the operating condition of the
solid oxide electrolyzer cells (SOECs) remains very narrow due
to high heat requirements and the sensitivity to temperature
fluctuations (Ma et al., 2015). CO is the major product as all
other competing chemical reaction products are desorbed from

the surface to produce CO at high temperatures. Therefore,
additional down-stream processes need to be performed in
order to achieve other products such as methanol. For co-
electrolysis of CO2 and H2O, SOEC provides high flexibility
in the carbon to hydrogen ratio (C/H) and, thus, state-of-the-art

FIGURE 6 | Binary correlations among key attributes (A) FE-electrolyte, (B) FE-product, (C) FE-current density for sample extracted datasets of electrocatalyst

materials at low and high temperature.

FIGURE 5 | Screenshot of radar chart for CO2 reduction to fuels of Pt-based on different classification of electrocatalysts and selected target values by default

global (blue) or user-entry (brown) targets.
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technologies such as Fischer Tropsch (FT) synthesis can be
utilized downstream for achieving high product flexibility
(Zhang et al., 2017; Zheng et al., 2017).

Here, we present preliminary results and a discussion for a
data-driven analysis of selected electrocatalyst systems in SOECs
that address a few of the above technological challenges. In high-
temperature electrolysis of CO2, the co-electrolysis process in the
presence of steam is taking place at temperatures >600°C. High-
temperature CO2 electrochemical conversion using SOEC
generally has a better selectivity compared to that at low
temperatures. Correlations among AP, CD and FE at low or
high temperature are not known yet and require extensive data
analytics.

State-of-the-art high-temperature electrocatalyst materials
in SOECs contain Ni-YSZ. A key factor for the stability and
activity of these materials at high-temperatures is Ni% in the
range of 40–60%. This range is required to fulfill the catalytic
reforming and satisfies the matching requirement of the thermal
expansion coefficients of the catalyst layer and the YSZ
electrolyte (Gorte et al., 2000). Similar to solid oxide fuel cell
(SOFC) electrodes, electrocatalytic reactions in SOECs take
place at the triple phase boundary (TPB) where the Ni phase
provides electrons, and YSZ particles offer the required oxygen
ion vacancies for the reduction of adsorbed CO2 and the
removal of oxygen ions, respectively.

Recent progress suggests that the electrochemical reduction of
CO2 in solid oxide electrolysis cells takes place at high current
densities. Degradation rates are higher in electrolysis mode
compared to those in fuel cell mode based on enhanced effects
of metal particle migration and/or oxidation, carbon deposition,
grain coarsening, and contamination by impurities. This adds
complexity to the choice of electrocatalyst materials and, thus
drives significant research activity. In particular, electrochemical
reduction of CO2 in the temperature range of 573–873 K is worth
exploring in order to match the temperature levels of electrolysis
with required downstream FT-processes; however, there are no
proper material systems for electrodes and electrolytes in that
temperature regime at the current stage.

Here we consider a few conventional classes of electrode
materials and explore the impact of Ni or Ti addition in
various proportions on the overall catalytic activity via
extensive data analytics. Figure 3B provides scatter plots and
distributed values for applied potential, current density, and
faradaic efficiency for Ti and Ni-YSZ catalyst systems. Ti-based
electrocatalyst exhibits different dependencies for applied potential
and faradaic efficiency compared to that for the Ni-YSZ system,
while both catalystmaterials are relatively similar in view of current
densities. Overall, the Ti-based catalytic system shows high
correlations among FE and CD, in particular in the range of
data obtained at higher applied potentials (>2 V). Figures 3A,B
clearly reveal differences in the correlations among key attributes
such as FE and AP for catalysts at low and high temperatures. The
correlations are more pronounced among FE and AP for high-
temperature electrocatalysts, whereas CD and AP are the main
indicators at low temperature. Among all electrocatalyst materials
studied at high temperatures, Ni-YSZ shows the highest correlation
between FE and AP, although the correlation factors can vary

depending upon Ni ratios and type of electrolytes or products, as
illustrated in the binary correlations in Figure 6.

The dataset for high-temperature catalysts consists of 180 test
data points distributed among five different catalyst types. This
amount of data is insufficient for accurate prediction of missing
properties in the data set, and thus further predictions using ML
techniques and identification thereof are not feasible based on the
existing size of the dataset. Moreover, the atomic ratios of the
composite electrocatalysts are not taken into consideration in
these databases. The current results, however, will be expanded in
the future to generate further insights for the correlation of key
attributes at high-temperatures using larger and more diverse
training and test data sets.

Recommendation and Decision System
Here, we only focused on high-level correlations among selected
indicators. Supplementary Table S2 provides the complete test
data and other operational conditions that are assumed for each
data point. The type of electrolyte is another important factor to
be considered as it influences the extend of correlations among FE
and AP for various high-temperature electrolysis technologies
and the respective electrocatalysts. In particular, future work can
include the analysis for the following use cases and comparison
based on phase ratios and catalyst types such as Ag, Ni|YSZ or Ag|
YSZ and for at least one cell configuration such as Ag/GDC|YSZ|
YSZ/LSM|LSM [La 0.8 Sr 0.2 Cr 0.5 Mn 0.5 O 3 −δ(LSCM)].
Further analysis is still ongoing to improve the test and training
databases for high-temperature catalysts and provide a robust
recommendation framework for this system. Here, the analysis is
primarily built upon existing and extracted historical data. There
is an emerging need for employing sophisticated decision
algorithms and recommendation systems to “close-the-loop.”
Such algorithms will emerge from predictive models of key
materials properties under different experimental conditions or
modeling assumptions. They also identify weighting factors that
govern specifications and limitations imposed at the components
and device-level. Such algorithms are trained over time as more
historical data and use cases become available.

CONCLUSION

The discovery and optimization of electrocatalyst materials are
driven in large part by collecting and analyzing experimental data.
The ML-assisted development of electrocatalysts is still an
emerging field despite its success in molecular and material
science; it cannot yet lead directly to novel electrocatalyst
materials.

In this article, we proposed a recommendation framework for the
benchmarking of existing electrocatalyst materials. A multi-attribute
decision process was adopted, which was mapped on radar charts,
from which the analysis of best-performed electrocatalyst is carried
out based on user-entry or global technological targets. This
recommendation framework provides the choice of dimensions,
indicators, and appropriate correlations for benchmarking purposes
and materials screenings process, purely based on historical data.
With the availability of reliable process andmaterials economic data,
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the latter can lead to comprehensive techno-economic insights into
what performance levels are required for commercially viable
electrocatalyst materials for the use in electrochemical energy
conversion and storage devices.

We used ML to supplement missing data in CO2RR databases
prior to deploying ML algorithms to identify the best catalytic
system. The ML module is primarily built for the classification
and prediction of electrocatalyst materials. Different models for
classification of the type of electrocatalyst materials and chemical
products are used with reasonable accuracy within the limit of
available test and training data. Among different regression
algorithms, the Random Forest model showed a better
capability for the prediction of electrochemical attributes. The
proposed recommendation system provides interactive visual
analysis of different indicators for the exploration of uploaded
electrocatalyst data. High-level correlation analytics was also
provided for catalyst materials at high temperatures, and the
intensity of correlations was compared to that for catalyst
materials at low temperature.

Finally, rapid screening and benchmarking studies of
electrocatalysts material via data-driven visualization can
significantly reduce the discovery time for the best materials and
to understand or compare vital performance trends and correlations
for given classes of materials, from initial discovery to component or
device integration and for full-scale component or device
production. The major limitations of the framework presented
here are the incompleteness of datapoints, un-clarity or lack of
consistency around key numerical or categorical attributes, and
missing values for the attributes that are collected from the
literature. The framework, however, can be applied to other
sustainable electrochemical processes such as electrochemical
NH3 synthesis through N2 and H2O electrolysis.

The interactive visualization tools assist researchers in
discovering trends and patterns hidden with the electrocatalyst
material based on historical experimental and modeling data.
Further ML and analytics functionalities are currently under
development, which will offer higher accuracy and better
inter-operability of the recommendation framework for idea-
creation and the screening of electrocatalyst materials for various
applications.
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